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FOREWORD

The theory of beams and plates on elastic foundations occupies a
prominent place in contemporary structural mechanics. A very large
number of studies have been devoted to this subject, and valuable practical
methods for the analysis of beams and plates on elastic foundations have
been worked out.
However, the existing calculation methods fall short of perfection, and
leave unanswered many problems of practical importance. The large CEE e .
majority of these methods are too cumbrous for practical use; in addition,
the assumptions made as regards the strains and stresses in natural soil
cannot be fully ccepted. Complex three-dimensional structures on elastic
foundations cannot be analyzed by existing methods. The hypothesis of a
foundation modulus, by which the elastic foundation is considered as a
system of separate unconnected springs, thus simplifying considerably the
analysis of structures on elastic foundations, leads frequently to incorrect
results, .
On the other hand, by means of the hypothesis of an elastic isotropic i ' _ . . '
semi-infinite space, we can describe correctly the physical properties of
a natural foundation. This, however, leads to cumbrous calculations; as
a result, practical solutions have been obtained only for a very restricted
range of problems.
Establishing more accurate foundation models, and developing simplified
methods for analyzing complex three-dimensional structures, taking into
account the elasticity of the soil, are among the problems which the modern
theory of structures on elastic foundations has to solve.
It can be expected that higher accuracy will be obtained by making
allowance for the elastic-plastic deformation of the soil.
Approximate methods are obviously best suited for analyzing complex 3
three-dimensional engineering structures on elastic foundations, since
they lead to relatively simple expressions.
A new theory for analyzing structures on elastic foundations, based on
Vlasov's general variational method, is proposed in the book. This theory
is more accurate than the well-known theory of Winkler and Zimmermann,
but is simpler than the theory of the elastic semi-infinite space.
This theory considers the elastic foundation (and, in general, the non-
homogeneous foundation) as a single- or double-layer model whose proper-
ties are described by two or more generalized elastic characteristics.
This model was proposed in 1949 by Vlasov in his book "'Structural m - mm  wm
Mechanics of Thin-Walled Three-Dimensional Systems." The theory of
the single-layer foundation was further developed by Leont'ev /11, 55/,
Ruchkin /68/, Kosab'yan /45/, Cheche /81, 82/, etc.
The basic differential equation describing the state of strain of a loaded
single-layer foundation has the same form as the solutions obtained by hS
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Filonenko-Borodich /75, 76/ and Wieghardt. The models of Wieghardt and
of Filonenko-Borodich are therefore mathematically equivalent to the single-
layer model used here. An elastic-foundation model similar to the single-
layer model was also considered by Pasternak /62/.

A merit of the theory proposed here is that the solution of many problemg
of practical importance is reduced to solving ordinary differential equations
whose integrals can be found from tables. The simplicity of the mathema- ' l l
tical methods and the clearness of the mathematical model make this theory
very adaptable; not only the basic problems of beams and plates on elastic
foundation, but also various more complex problems can be solved with its
aid. These problems include the analysis of shells, taking into account
additional transverse loads and the deformation of the underlying foundation,
and problems of the dynamics and stability of structures on elastic founda-
tions. The proposed theory can be applied to the determination of the
stresses and strains in single- and multilayer strata of horizontal or
inclined excavations.

The authors do not claim to have solved completely all problems of
practical interest; nor do they consider that the methods proposed by them
are universally applicable. Many problems are examined for the first time
in this book, and, as a result, have not been worked out to the stage of
formulas and tables for ready use. However, the extensive material,
collected so far on the analysis of structures on elastic single-layer
foundations, makes publication of such a book necessary. The authors hope
that the book will be of use both for engineering practice and for further
investigations.

The book consists of seven chapters. The first six chapters are devoted . ' _ ' . .
to problems of beams, plates, and spherical shells on elastic foundations,
and to the dynamics and stability of such structures. Chapters I to III are
mainly based on Leont'ev's thesis /55/; Chapters IV and V make use of the
results of Ruchkin's studies /68/, kindly placed by him at the disposal of
the authors. The last chapter (Chapter VII) describes a new approach to
contact problems, based on the method of initial functions /10, 13, 14/,
with whose aid complex three-dimensional problems of the theory of elasti-
city are reduced to two-dimensional problems; several examples illustrating
this method are given. The bibliography indicates the main sources which
were used by the authors in writing this book. The list given is, of course,
incomplete. More complete bibliographies on the subject of structures on 3
elastic foundations are given in f42, 50, and 64/,

This book is intended not only for research engineers, but also for
engineers working in design and planning firms. Tables, dimensionless
diagrams, and practical examples have been introduced in order to simplify
practical calculations. The basic aim of the book is, however, to make
available to the engineer an efficient variational method, with whose aid he
himself will be able in each case to select a certain scheme of calculations,
establish the corresponding model of the elastic foundation, and solve the
problem by relatively simple mathematical means.

Chapters I, II, III, IV, V, and VI of this book were written by N. N. I EN - mE  mm
Leont'ev, and Chapter VII by V.Z. Vlasov. The editor was V.Z. Vlasov.

The authors acknowledge the help of V.P. Ruchkin, V.V. Vlasov, E.I,

Silkin, A.N. Elpat'evskii, and L.. V. Kosab'yaninthe work onthe manuscript,
and of V. V. Petrov and D.N. Sobolev in preparing the manuscript for print,

V.Z, Vlasov, N.N. Leont'ev

vili

1IRARGRRRRRERERREEAR



Chapter I

APPLICATION OF THE GENERAL VARIATIONAL METHOD
TO THE THEORY OF ELASTIC FOUNDATIONS

§ 1. FUNDAMENTALS OF THE VARIATIONAL METHOD
USED IN REDUCING COMPLEX TWO-DIMENSIONAL
PROBLEMS IN THE THEORY OF ELASTICITY - mm o wm
TO ONE -DIMENSIONAL PROBLEMS

1

Consider a thin rectangular plate loaded by forces acting in its plane
(Figure 1,a). Assume that the plate is deformed without bending, so that
its state of stress is determined by normal stresses o,, o, and shearing
stresses 1, T, only. The stresses g, g, 14, T» are independent of the
coordinate z, it being assumed that the plate thickness § is very small. In
the theory of elasticity this is called a problem of plane stress. ’ . - . ’ '

L]
b )
== T2y
ff'
) 4,
1 Y
H H t d,‘%gidz
1+
r}-_

1“,.-0-"'1'42 -l
et A \

Problems of plane stress are two-dimensional since the displacements,
strains, and stresses are functions of the two coordinates x and y only.
Two basic methods are available for solving such problems: the method of
stresses and the method of displacements, The first method uses as basic
unknowns the stresses a,(x, y), s, (x, ¥), 75, (x, ¥), 1,2 (x,y), which are determined
from the conditions of continuity of the deformations. This method is
similar to the method of forces used widely in the structural mechanics of R — -
statically indeterminate strut systems. The second method adopts as basic
unknowns the displacements u(x, y), v(x, ), determined from the conditions
of equilibrium. of the elastic system. This method corresponds to the method
of strains in structural mechanics.

We shall use here the method of displacements, adopting as principal
unknowns the displacements u(x, y) and v(x, y) of a certain point M(x, y) of the

FIGURE 1.

ITITIIITIIII



plate. The x-direction will be called longitudinal, and the y-direction,
transverse. The displacements u(x, y) and v(x, y) will accordingly be called
longitudinal and transverse displacements respectively. These displace-
ments will be considered as positive if they are in the positive direction of
the corresponding coordinate axis.
In the two-dimensional case, the stresses and strains are related as
follows: 3

Oy = i_Eh;‘, (exx +ve),
E
% =73 (Fu + Vo), (1.1)

Tay = Tyx = m Exyr

where E = modulus of elasticity, v = Poisson's ratio for the material of the
plate, e.. =& (x, y) and e, =¢, (x, y) = strains inthe longitudinal and transverse L
directions respectively, e, =&, (x, y) = shearing strain.

The strain components e, ¢,, ¢, are related to the unknown displacements
u and v as follows:

du v du | dv
Exs = 32 EW’_-@- "”=6_g+a' (1.2)

The system (1.1) and (1.2) defines the states of stress and strain in the

plate; when the displacements u and y are known, the problem can be

considered solved. , I _ ' , l

2

In order to obtain a simple approximate solution, the unknown functions
u(x, y) and v(x, y) are expanded in finite series:

u(xny)=zui(x)?l(y) (i=1,2,3,...,m).

=1

n (1.3)
v =3 Veh(y) (k=1,23,..., 1),
k=3
The functions @(y), %x(y) are assumed to be known, and the functions U, (x), E [ I
Vi(x)to be unknown. It is often convenient to introduce dimensionless

functions ¢:.{y), ¢u(y) ; the functions U,(x) and V. (x) will then have the dimension
of length (displacement).

Becausge of the dimensions and physical meaning of expressions (1.3),
the functions U;(x), Va(x) can be called generalized displacements. Indeed,
each of the m functions U, (x), calculated for a given section x = const of the
plate, determines in a generalized form the magnitude of the longitudinal
displacement u(x, ) in this section. Similarly, each of the n functions V,(x)
determines the magnitude of the transverse displacement u,(x, y) for the
entire section x = const. Thedistributions of the longitudinal and transverse - -
displacements over the sections x = const are given respectively by the
functions ¢;(y) and ¢, (y), which are therefore called functions of the transverse
distribution of the displacements.

Provided they are linearly independent and express the physical meaning
of the problem, the functions ¢,(y) and ¢:(y) approximating the state of strain

ITITRYTITTITITITIIILITINI



in the plate in the transverse direction, can be chosen in different ways.
Some examples will make this point clear. Consider the bending of a
narrow plate (beam) with free lengthwise ends. Assume that the sections
remain plane during bending and that no transverse elongation takes place.
The unknown displacements u(x, y) and v(x, y) can be represented in this case

in the form: 4 :
u%w=%Mmm=MMW} ' .l l
(1.4)

v(x ) =Vih)=Vi(0):1

(the coordinate y is measured from the center of the cross section). The
functions of the transverse distribution of the displacements are therefore
in this case:

)=y hiy=1

the remaining functions ¢,(y) and §a(y) (i = 2...m, k=2 ...n) are zero,

It follows from (1.4) that the generalized displacement U, (x) represents
the angle of inclination of the section, and the generalized displacement
Vi(x), the plate deflection.

A second term can be added to the elementary solution (1.4), known from
the theory of the strength of materials, for the bending of a narrow beam
acted upon by a load antisymmetrical with respect to the x-axis (Figure 2);

(1.5) ' ' ] '

4t §) = Uy (1) g + U (n)sin 222, }

vix, y)=Vi(x)1 +V.(x)cos"H-—y.

The following expressions have thus been selected for the functions g (y) ,
$e(y):

.2
B =y @y =sing,

“"1(!!)-‘—‘1. 4’|(y)=COS:Ty.

The first right-hand terms in (1.5) represent the displacements when
the sections are assumed to remain plane; the second terms are introduced ;

to correct the inaccuracies due to this assumption and that of zero

transverse elongations.

Eeri %

1
' J, ,
< %

P LL-LLLUQ{:) [ T I

FIGURE 2,
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A different procedure can be adopted to find a more accurate solution
for a narrow beam. We imagine the beam to be divided into horizontal
strips each of which is assumed to remain plane, although this assumption
is not valid for the cross section as a whole. As an example, Figure 3
represents a plate with free upper edge and built-in lower edge (immovable
both horizontally andvertically). This plate is divided into three parts along
its height. It is assumed that the sections of each part remain plane, and ! I l

that the transverse strains ¢, =g_;’ are constant [over each section of the

parts]. Equations (1.3) can then be written in the form:

u(x, 9) =Ur(x) o1 (9) + Us (x) 92 () + U (x) 95 (¥), } (1.6)

v g) =Vi(0) ¢ () + Vi (x) §a (5) + Vs (2) §2 (1)

The functions ¢, (§), @:(4),....$:(y), ¢:(y) are represented in Figure 3. It
is seen that in the range of variation of y, the functions of the transverse TEN - TEE .
distribution of the displacements satisfy the continuity equations and the
geometrical boundary conditions for y=0 andy =4, The generalized
displacement U, (x) determines the horizontal displacement on the plate
surface, and the generalized displacement V,(x) equals the deflection of the
upper edge of the plate, The remaining generalized displacements
determine the displacements of the interior points of the plate along the
lines y=h;and y=n,.

Pr P) Pl
¥ [ 'y
FIGURE 3.
The accuracy of the calculation increases with the number of parts into { ! l

which the plate is divided (i.e. with the number of terms in (1.3)); the exact
solution of the two-dimensional problem is obtained by passing to the limit
n—oo and m-—s oo,

The manner in which, in this example, the functions ¢ (y) and ¢, (y) were
chosen for a homogeneous isotropic thin plate may also be applied to a thin
plate consisting of several horizontal layers having different elastic
coefficients £ and v and thicknesses .

Depending on the problem and the accuracy required, the functions ;;(y),
and ¢ (y) can be obtained as linearly independent and continuous functions of
the coordinate y by many other methods also.

The representation of the unknown displacements by means of finite
series (1.3) is equivalent to reducing the plate to a system having a finite
number of degrees of freedom in the transverse direction and an infinite
number of degrees of freedom in the longitudinal direction. Such systems
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canbe called discrete-continuous, in contrast to the two-dimensional models of
thin plates whose behavior is described by partial differential equations, in
which the plates are consideredas two-dimensional deformable solids possess-
ing aninfinite number of degrees of freedom in both the x - and y-directions.
It also follows from the series expansions (1.3) that the two-dimensional
problem of the theory of elasticity has been reduced to a one-dimensional
problem, since it suffices to determine m functions U, (x) and na functions l l l
Va(x) of the same variable in order to obtain the longitudinal and transverse
displacements u(x, y) and v(x, y).

3.
The functions U, (x) and Vi (x) can be obtained from the equilibrium conditions
for an elementary strip of length dx =1, delimited by the sections x = const
and x +dx =const (Figure 1,b). In accordance with Lagrange's principle of
virtual displacements, the equilibrium conditions are obtained by equating
to zero the total work of all internal and external forces acting on this strip
over any virtual displacement. IR
In accordance with (1.3), the virtual longitudinal displacements of the
elementary strip are u;=¢;(y) for U; =1, where j can have m different values.
The virtual transverse displacements of the strip are given in the form
vy = du(y) for V4, =1, the subscript & denoting any of the n virtual displace-
ments. Thus the vertical strip considered possesses (m + n) degrees of
freedom in the plane of the plate, m corresponding to longitudinal displace-
ments (parallel to the x-axis), and n to transverse displacements (parallel
to the y -axis).
The external forces acting on this strip are causedby the normal stresses ) . T ' o '

a3 ' . .
gy, 9z + al;d.x , by the shearing stresses 1, 1,,+a—f‘dx , due to the interaction

between the strip and the remainder of the plate, and by the given

distributed load whose x and y components [per unit height] are p(x, y) and
a(¢, y) respectively. The internal forces acting in the strip are caused by
the normal stresses s, and the shearing stresses t,. The work done by

all the external and internal forces of the strip over any of the m + n virtual \
displacements is given by the following expressions: '\
2 ~
S%np]dF—gt,ﬂ;dF+§p(x,y)q;l,dy=0 (i=1,2.3, ..., m), (1.7) : !
-2 , '
Sﬁq»hdF—SaytphdF-{- Sq(x,y)q),.dy: 0 (h=1,2.3,...,n), (1.8)

where dF =8dy = element of plate cross section, 3= plate thickness.

In each equation (1.7) the total work done by all external and internal
forces acting on the elementary strip in the longitudinal direction has been
equated to zero. The first term represents the work of the external forces

%dxdp.The second term represents the work of the internal shearing forces
<, dF. Byvirtue of (1.2) and (1.3), the shearing strains are given by the .

derivative ¢;(y) when ;= 1. In each equation (1.8) the total work done by - - s —
all forces acting on the elementary strip in the transverse direction has
been equated to zero. As in (1.7), the first term represents the work of the

external forces é;:id}’; the second term represents the work of the internal

normal forces o, dF.
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The last terms in equations (1.7) and (1.8) correspond to the virtual work
done by the given loads.
The following expressions are obtained by inserting (1.2) and (1.3) into

(1.1):
o= a3 Umty R V). ! ' '
i=1 k=]

o= o[ 3 Vi +v3 Unl. (1.9)

=1 i=1

E - . o
W=y 2 Usi+ T Vi

i=1 k=1

Substitution of (1.9) in (1.7) and (1.8) leads to a system of ordinary
differential equations in U, (x) and V, (x); this system consists of m equations
corresponding to the m degrees of freedom of the strip in the longitudinal

‘- T - -
direction, and » equations corresponding to the n degrees of freedom of the
strip in the transverse direction. This system can be written down as
follows:
< 1—v o Z 1— C 1w
Snev,— TS0+ 3 (tn— STtV + 50
i) im=y Ry
(i=1,23,...,m,
m n
—_ N, - . .10
-3 (Vfu—i—zrcm)ui +L2—v D rmVa— (1.10)
i=) k=1 . - . '
i —
— ZSMV.—F{EV gy =0 h=1,2,3,....n).
k=1

When the functions ¢ (y), oW (i, j=1,2,3,...,m), and ¢ (y), duly), (R A =
=1,2,3,...,n)have been chosen, and their derivatives are thus known, the
coefficients in (1.10) are obtained from the following equations:

=0y =omdF, ram=rm={dprdF,
bu=by=(omdF, sw=sm=ipndF, WD) E ! !
- . 1.1
Cix == S?/‘PA dF, Chi = S%CP.' daF,
by = S'M); dF, thy = S(P;.lpx dr.
The integrals are taken over the entire width of the strip; in the general
case § can be a function of y.
The expressions (1.11) can be easily obtained from graphs of the
functions ¢;(y), ¢u(y), and their first derivatives.

If p(x,y), and q(x,y), are given the free terms =P (i=123...,m),
and gy =gu(x) (h=1,2,3,...,n) in (1.10) are obtained from the equations: - - == -

p;= Sn(r»y)wdy. qn=Sq(x.y)¢ndy- ‘ (1.12)
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The loads p(x, y) and g (x, y) are considered positive when acting in the positive
directions of the coordinate axes.

In the general case it is assumed that the loads p(x, y) and q(x, y) are
distributed over the plate height as arbitrary functions of y. Expressions
(1.12) may also apply to the external load acting at the longitudinal edges
of the plate, which in the general case consists of given shearing and
normal forces. In accordance with the physical meaning of these expres- ! l l
sions (virtual work done by the loads), the concentrated forces must be
included. Thus, if shearing and normal forces p(x, 0), g (x,0) per unit length
act at the upper edge of the plate in addition to the loads p(x,y) and q(x, ),
we obtain for (1.12):

pi=p(®e 0+ {p(x, v o (5) dy,
an=q(X) 4 (0) + {4 (x, 4) bn () dy.

Such integrals, extended both over distributed and concentrated loads, are
called Stieltjes integrals. TR wm  owm

4

(1.13)

The most efficient modern method of integrating a symmetrical system
of ordinary differential equations with constant coefficients is Krylov's
method, by which such a system can quickly bereduced toa single equivalent
differential equation. In our case, the order of this equation will be 2(m + n).
Hence, the unknown functions U, (x), V. (x) satisfying (1.10) will contain
2(m + n) arbitrary integration constants. The number of these constants is
equal to the number of independent geometrical conditions to which the end ' .- . o '
sections x=0 and x =1 of the plate can be subjected {/=plate length in the
longitudinal direction).
The position after deformation of all points of an arbitrary section
x = const is in fact defined by m + n independent magnitudes: m functions
U,(x) determine the positions of these points in the longitudinal direction
(displacement from the plane x = const ), and n functions V,(x) determine these
positions along the height. Hence, m 4 n magnitudes can be arbitrarily
specified for one end section of the plate. The number of independent
conditions for the two end sections x=0 and x =1 is thus 2(m+ n), which is
equal to the number of arbitrary iutegration constants. By varying these iy
constants we can obtain a solution for the most varied geometrical boundary 3
conditions in respect to the longitudinal and transverse displacements.
Consider a plate with the boundary conditionsat x =0 and x=1{ given as
stresses or, in the case of a mixed boundary problem, partially as displace-
ments.
When the functions ¢;(y) and ¢, (y) have been selected, the stresses s, and
t,, at x=const can be expressed through m + n independent generalized statical
magnitudes. The virtual work done by the normal and shearing forces ¢,dF
and r,dF over anyofthe m + n virtual displacements of the points of the
section considered is:

T,(x)=Sa,q>l.dF (i=123,...,m),
Sa(x) = Sr,,d,,,df (h=1,2,3,...,n),

(1.14)

where df = ddy.

N

.

AN

N

|RRRARERERREREREREE



The integrals in (1.14) are taken over the entire cross section of the
plate. The magnitudes T,(x) and S,(x) represent generalized longitudinal and
transverse (shearing) forces acting in the section x = const of the plate. \
Considering these magnitudes as internal forces, we can express them ‘
through the functions U, (x) and V,(x). It follows from (1.9), (1.11), and

(1.14) that: ! ' l
m

n
T = E) auli + v Zgl,y,) ((,i=1,23,...,m,
A=

-

" (1.15)
ali+ R rmVa) (L k=1,2,3.....n).

1 =1

M3

S;.(x) =G(

i

Using (1.15), it becomes possible to impose 2(m + n) generalized boundary

conditions expressed as stresses on the plate edges x— 0 andx =1,
Let a given system of distributed normal force po(x,, y) and distributed

shearing forces g¢o(x, y) act at edge x=ux, (Figure 4). B
We imagine an elementary strip dx to be cut from the plate; from the

principle of virtual displacements, we obtain the following equilibrium

conditions:
[B—mgdi=0 (j=1,23,...,m),
(28— dy=0 (h=1,23...,n. (1.16)
Inserting (1.14) into (1.16) yields: ' _ . '
Shw) =V gndy.  TI(x) = pog; dy, (1.17)

We have thus obtained the relationship between the generalized forces
(1.15) and the specified external loads at x — x,.

Pl

After obtaining the general integral of (1.10), it is possible, with the aid
of {1.17) and (1.15), to determine the strains and stresses in the plate for
any boundary conditions at x=0 and x=1/, expressed as stresses, displace- - - == -—
ments, or both.

N
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§ 2. TWO-DIMENSIONAL DEFORMATIONS OF ELASTIC
FOUNDATIONS. CALCULATION MODELS

Consider now the inverse two-dimensional problem. Let the elastic

foundation be a compressible layer of thickness H placed on a rigid

foundation (Figure 5). The dimensions of this compressible layer in the
z-direction are assumed to be large. We also assume that the external

load is independent of the z coordinate and acts in planes parallel to the xy
plane. The thickness of the elastic foundation, its support conditions, the
elastic constants and all the other conditions are constant in the z-direction.
In the theory of elasticity this is called plane strain, since the displacements

of all points occur in planes perpendicular to the z-axis.

| i Sryyy S

— Yiz,y)
£s vs Y

L

FIGURE 5.

We imagine a narrow plate of thickness § to be cut from the elastic

foundation by two planes parallel to the xy plane (Figure 5). The stresses
S 9 Txp Tx , the strain components e,,s,, ey, and the displacements 4 and

v of this plate are functions of x and y only, and are, as in plane stress,

related by (1.1) and (1.2). In the case of plane strain, the following have to

be substituted for £ and v in (1.1):

2.1)

where E, and v, are the modulus of elasticity and Poisson's ratio for the

foundation material (soil) respectively.

In order to determine the strains and stresses in the plate by the method
of displacements, we express u(x, y) and v(x, y) by expansions (1.3). As in

section 1, we obtain the following system of (m + n) ordinary differential

equations in {/;(x) and V,(x) from the conditions of equilibrium of an elementary

strip of width dx = | (Figure 1):

m

1 m
. -V ’
S e =1 s L,

=1 i=1

{—
I

=3 (wotn— 2 a )L

+ -

| —

+ &

Yo

n
/

1— v

+ 3 (_Vot/k — 3 C/'k) V;e +

k=1

n

g =10

o

(j=1223,....m),

n n
1 — v . R
+ —z—u E TV e — 2 sV +

h=1
2

gr =0

k=1

th=1,2,3,...,n).

(2.2)
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The system (2.2) differs from (1.10) only by the elastic constants. The
coefficients ay, by, ...,cw th are again determined from (1.11) and depend
only on the functions o, (y) and ¢, (y).

As before, the free terms P, and ¢, represent the work done over the
displacements ¢,(y) and ¢, (y) respectively, by the given horizontal and
vertical distributed loads p(x, y) and ¢(r, y) , and are obtained in the general
case from (1.13). ' l '

The volume forces distributed over the foundation are usually neglected
when the deformation of an elastic foundation is considered; only surface
forces (the loads applied to the foundation surface) are taken into considera-
tion. The free terms in (2.2) are in this case:

p,=p(x)-9(0), 2.3)
9,=4 (x) '4’}. (0)1
where p(x) and ¢ (x) are the shearing and normal surface forces respectively; mm cww  wm
#,(0) and ¢, (0) are the values of the functions ¢,(y) and ¢, (y) at the foundation
surface y=0.
After the functions U, (x) and V,(x) have been determined from (2.2) and
the corresponding boundary conditions, the displacements of the elastic
foundationu(x, y)and v(x, ) can be found from (1.3), and the stressesa,, g, 1,,
from (1.9); the elastic constants are given by (2.1).
The system of ordinary differential equations (2.2) thus defines the plane
strain of an elastic foundation considered as a linearly deformable medium
of finite thickness #. Because of the limited number of terms inexpansions
(1.3) the solution obtained will be an approximation of the exact solution of ' - . '
the theory of elasticity. At the same time, the system (2.2) can be
considered as defining a generalized model of the elastic foundation, based
on the general variational method. Different models can be obtained by
selecting different expressions for the functions ¢, (y) and ¢, (y). Although
only approximations from the point of view of the theory of elasticity, these
models are nevertheless sufficiently accurate for practical application.
Their accuracy can be increased at will by increasing the number of terms
in (1.3).
Increasing the number of terms in (1.3) is, however, undesirable, since
an increase in the order of the differential equations (2.2) results. The .
accuracy of the solution can also be increased by a better selection of the
functions ¢,(y) and ¢, (). Since this selection is based on experimental data
oronamorerigorous theoretical analysis, a sufficiently accurate solution
can be obtained even with a minimum number of terms in (1.3).
Consider for example an elastic foundation in which the horizontal
displacements are either zero or negligible. In this case:

ulx, y)y=20,
< (2.4)
o8 = R Vih): - - =
System (2.2) then becomes:
1— v " . n s 1— v(’)
5 annvk—EShQVk-Q‘ E, q, =0, (2.5)
k=1 Al
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where

Pk = Smk dF,  spe= Sm; dF.

In this model the load may spread due to cohesion: reactions may appear
even outside the region of load application. The model described by
(2.5) can be represented schematically as a system of elementary elastic ' l l
columns (springs) mutually interacting as a result of internal friction and
adhesion (Figure 6).

q(z}
c - .

Wiz

£s,¥s
. 277 7 S, ¢,

FIGURE &. FIGURE 7.

The properties of this model depend on the functions ¢x (v) and on the
number of terms in (2.4). Since this is a particular case of the generalized
model described by (2.2), we can obtain from it even simpler models of the
elastic foundation by the introduction of additional hypotheses. Assuming,
for example, that the elastic foundation forms a thin compressible layer
whose base is fixed, we can write: . - ' ) '

vix, y) = Vl(x)4’1(y)’ (2.6)
i) = 2. (2.7)
The function V,(x) thus represents the settling of the foundation surface

(Figure 7).
From (2.6) and (2.7) we obtain for (2.5) the single differential equation:

1—v ’ 1—\03 3
5— ruVi—syV, + E @=0, (2.8)

where

H
o=\ grar =,
o
H (2.9)
3
su={¢raF=71.
[

Assuming that the external distributed load g(x) is applied only to the
foundation surface, the term g, given by (2.3) will be:

g = q (x).
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The model described by (2.8) can be called a model with two character-
istics, or simply a single-layer model (/11/).

The stresses in this model are obtained approximately by substituting
(2.4), (2.6), and (2.7)in (1.9):

Oy = 7 V,(})l ——V, {x), l l '
( ) (1 v’)1" .10

._y .
Tyx = Ty = 2(1-‘-\:) 14’1 2(1_'_\,) " Vl(x)'

The normal stresses o, thus remain constant over the height of the
foundation, while the shearing stresses r,, vary linearly.

If the thickness H of the compressible layer is large, the behavior of the
elastic foundation will be described only approximately by (2.7) since in
this case o, cannot be assumed to remain constant over the height. In order
to increase the accuracy without increasing the number of terms in (2.6),
it is necessary to select for ¢, an expression more closely describing the
actual decrease of the displacements and stresses with depth, We may,
for instance, write (Figure 8)

— Sh1(H—y)
$, = ~shyA (2.11)
where vy is a constant determining the rate of decrease of the displacements
with depth. In this case the solution is given by (2.8), but the coefficients
ry and s, are found from (2.11),

If horizontal displacements in the foundation cannot be neglected, and if
the foundation is sufficiently thin and fixed to its base, we can write:

u(xv y):Ul¢l- U(X, y)=vl4‘h

where (2.12)
H—y —_
Pr=—F > th=—F
R T = -
System (2.2) then becomes:
. —y, 2

anl, — 5 *by Uy + (Votn -3 Cn) Vl + 2 py =0,
o (2.13)

—(Votu - 1; vofu) U, — ;vo rmVi—syV; + Ton‘% =0.
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The coefficients in (2.13) can be found by inserting (2.12) into {1.11). We
can also write:

hy(H— I —
= Tsr(17/f 2, 'llzswsr(]ZH . (2.14)
or other suitable expressions,
If the foundation consists of several horizontal layers having different ‘

elastic properties, the functions ¢, (y), 9, (y) can be selected as in section 1
(Figure 3). The modulus of elasticity can then be assumed to vary over the
height. This model of the elastic foundation is thus called a multilayer
model. A multilayer model can be used for a homogeneous elastic foundation
when the thickness H is considerable; the solution obtained is far more
accurate than that obtained from the single-layer model described by (2.8)
or (2.13).

By selecting the functions ¢ (y) and¢, (y)differently, we obtain from (2.2)
an infinity of different models of the elastic foundation describing with
sufficient accuracy the peculiarities of the problem under consideration.
Since the selection of the correct model of the elastic foundation is very
important in the design of structures resting on such foundations, the
advantages of the general variational method are obvious.

Most models obtained by this method are simpler than the model of an
elastic semi-infinite plane based on the methods of Zhemochkin and
Gorbunov-Posadov. Henceforth only the simplest, i.e., the single-layer
model, will be considered. This simple model makes better allowance for the
elastic properties of the soil than the well-known model of Winkler and
Zimmermann, while permitting the design of beams, plates, and more ' - ' - l
intricate structures resting on elastic foundations by simple mathematical
methods.

§3. PLANE MODEL OF THE ELASTIC FOUNDATION
WITH TWO CHARACTERISTICS

1, Basic differential relationships v
Let the elastic foundation be a compressible layer of thickness # »

(Figure 9). Assume that the displacements in this layer due to the surface
load, are approximately:

ulr, ) =0,  vx ) =V (), (3.1)

where ¢, (y) is a function of y, selected according to the nature of the
problem,
According to (1.2) and (3.1) the strain components are as follows:

m - == -
ey = Vi () %0 (0),
e = Vi (1) 4y (4), , (3.2)
Erx = 0;
13
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The normal and shearing stresses are obtained from (1.9):

E .
°v=Zi—__a_v,)V1 (x) 91 (9)s
° 3.3
By (3.3)
v = Ty V() 9 ()
The constants E, and vy, are as follows [cf. (2.1)]: l l l
E v
By wei (3.4)

where E, and v, are the modulus of elasticity and Poisson's ratio respective -
ly for the material of the foundation.

M r—' ufny)
> y 3
viz.y}

FIGURE 9, \

The system (2.2) is in this case reduced to a single equation [cf. (2.8)] " ' ) '"L'.
containing the only given function of y, ¢, (y): N -
1 — v . 1— vg \
V1 —suVi + —— 0 =0 (3.5) \
The free term in (3.5) represents the work done by the distributed
surface load g(x) and is:
AN
71 () = g (x) $, (0). (3.6)
The coefficients in (3.5) are: } ! l
H
= S ‘Pf(!/) dF,
o
", (3.7)
S1 =S ¢ (y) dF,
[
where df = 8dy.
After multiplying each term by E, -, (3.5) can be written:
=% - - == ]
2V —kVi+ q, =0, (3.8)
where p— Eou
1— v",
Eor
t=4(1°-'-uvo)' (3.9)
14
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Differential equation (3.8) relates the vertical displacements of the

foundation to the load applied at its surface, It differs from the well-known

relationship obtained by assuming a direct proportionality (foundation-

modulus hypothesis) by the presence of a term containing the second

derivative of the generalized displacement V,. This term, multiplied by

2t, makes allowance for the shearing stresses in the elastic foundation, l l '
This model of the elastic foundation thus differs basically from the

Winkler-Fuss model*. Since allowance is made for the shearing stresses,

the load can spread, i.e., displacements occur not only directly beneath

the load, but also at other points (Figure 6).
The properties of the elastic foundation satisfying (3.8) are defined by the

two integral characteristics (3.9). The characteristic k determines the

compressive strain in the elastic foundation; it is thus similar to the

foundation modulus. The characteristic 1 determines the shearing strain

in the elastic foundation; it thus defines the load-spreading capacity of the

foundation#, - - - W
The solution of (3.8) requires the establishment of boundary conditions;

these should be given in integral form, either as generalized forces or as

generalized displacements.
From (3.1) and (3.3), we obtain:

T;={e.p,dF =0, | (3.10)
Si=\thdf = pE v (grdy = 21v. |

2. Selecting the function of the transverse
distribution of the displacements

The distribution of the displacements and normal stresses over the height
It of the elastic foundation, and thus the basic properties of this foundation,
are determined by the function ¢, (y). In the previous section the following
function was chosen for a sufficiently thin compressible layer, throughout
which the normal stresses o, are constant:

by =251 (3.11)

The foundation is assumed to be fixed on its base (Figure 7). The strain
in the y direction is constant;

Ewp = —Vl(x)";f;

the normal stresses are also constant over the layer height:

s,:—ﬁ)v,(x). (3.12) - - am -
¢ The hypothesis of the foundation modulus, usually called "Winkler hypothesis”, was first proposed by the
Russian academician Fuss in 1801, ’
** Pasternak proposed to call the characteristics & and ¢ “the two foundation moduli”; the single-layer model
would thus be called "the model with two foundation moduli” /62/. Equation (3.8) is identical with the
solution obtained by Filonenko-Borodich for his simplest model of the elastic foundation /76/, and also
with Wieghardt's solution,
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We then obtain for the coefficients (3.7) [cf. (2.9)]:

: (3.13)
S . Il
4]
the constants in (3.9) become:

Eed

P
H—v) (3.14)
(= EoH
T+
From (3.10) we obtain: - . W =
Eo3H ’ .
1= g Vi () = 2tV (). (3.15)

Expressions (3.14) and (3.11) are valid also for elastic foundations of
considerable thickness, consisting of several compressible layers having
different elastic properties, and in particular for a semi-infinite elastic
plane. In this case, # in (3.11) and (3.14) defines the height of an equivalent
layer throughout which the normal stresses s, are assumed to be constant )
(Figure 10). This height can be determined by comparing the displacements ' - ' : '
of the foundation surface, given by (3.8), with the actual displacements.

g1y

at

W,

% Equivalent -=1&

~ A - compressible
FIGURE 10,  layer X

If the concept of equivalent layer is undesirable, we can choose the
following expression for ¢, (y) when the elastic foundation is deep:

hy (H—
¢‘(y)=.__—751(:1ﬂ 9, (3.16)

where H is the depth of the subsoil {(for a semi-infinite elastic plane H — o}, and
1 is a coefficient depending on the elastic properties of the foundation and
determining the rate of decrease of the displacements over the depth of the - - = -—
foundation.
In accordance with (3.16), the normal stresses in the foundation are:

=L ch1(f —y 3.17
g Vi (x) el ( )
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and the elastic constants in (3.8) become:

= B EobH
k H(1—) oot 12(‘1—°+w,) .8 (3.18)
where .
¢ :_HshyHch';H-i—TH l l l
k=2 shiyH ' ] (3.19)
3 1 shyHchyH—qH I
W=Tim T emmA
We again obtain:
H
Sy =\ e dF = 2V (%), (3.20)
]
where t is given by (3.18). . owm e

In this case the normal stresses s, are not constant, but vary as the
hyperbolic cosine (Figures 8 and 14). The characteristics (3.18) define
the elastic properties of the soil more accurately than the characteristics
(3.14).

When H — oo the characteristics (3.14) tend toward infinitely and zero
respectively, while the characteristics (3.18) remain finite. Hence, (3.16)
and (3.18) are valid even when the thickness of the elastic layer becomes
infinite; expression (3.16) can be used for the approximate calculation of

structures on a semi-infinite elastic plane, ' "" '
Similar results can be obtained when the function ¢, (y) is an exponential ' - ’
function:
hy) =€, (3.21)

which also adequately describes the decrease of the displacements and
stresses over the depth of the elastic foundation.

Depending on the nature of the problem, many analytical expressions
in addition to (3.11), (3.16), and (3.21) can be selected, either based on
experimental data or on solutions obtained by the methods of the theory of

elasticity. x x

3. Action of a concentrated vertical force.

We shall determine the displacements of an elastic foundation, due to a
concentrated force P acting at the origin of coordinates (Figure 11). In this
case we obtain from (3.8) the following homogeneous differential equation for
the displacementsV,{(x):

2V, — bV, =0, (3.22)

The coefficients are obtained from (3.9) and (3.7).
The general integral of (3.22) is:

Vi(x) = Cie™x + Cpe®s, (3.23)
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where

o=V L. (3.24)

For reasons of symmetry we need consider only the right-hand half of
the foundation. One of the integration constants in (3.23) is determined

from the condition that the foundation displacement at infinity must be zero: ! ' '
at x — oo V) (x) — 0. (3.25)
Hence
Cy=0.

The second integration constant is found from the conditions at x = 0 .
We can define the generalized shearing force $, (x) as the work done by all
forces acting at the section x = const over the virtual displacements o, (x, y) =
= 1-¢,(y) when V;(x)=1. It hasa discontinuity at those sections where ‘- . -
concentrated forces act on the elastic-foundation surface (Figure 11).

A(0)

£, % 7[ f:(#’

7 72 s

’ Diagram of §,(z) I - . ’ .
‘ ”?’l?'g]mm

FIGURE 11,

Taking into account the symmetry of the problem we find [from (3.10)]

that:
P
at x=0 510 ==, (3.26)
where ¢,(0) is the value of ¢, (y) at the foundation surface. ! l I
From (3.10) and (3.26) we obtain:
P
2atCy = + ¢ (0),
whence
P 41(0)
C= (3.27)

The displacement of any point of the elastic foundation can now be
written:

vz, y) = PUD sy, (), (3.28)
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where

_ & b= Eosia f= Eorn
=V % Pk OEE l

(3.29)

H
=G si=ilwwar. | l l l
H 0

If the linear expression (3.11) is selected for the function of the trans-
verse distribution of the displacements, (3.28) becomes:

30— p ol —y
v(x, y) = Vo= v.,)Eoe - (3.30)

where
2= l/ _ 1 VEd—w)
- 2" H (H—v)

As an example, Figure 12 shows the dimensionless displacements V(x)
of the foundation surface as a function of x/H, obtained from (3.30) for v,=0.
The actual displacements of the foundation surface are:

Vi(x) = EEE V (x).

It is seen that the displacements decrease rapidly with increasing ' - . - .
distance from the point of load application.

10 20 Ty

o= /

” Diagram of V(z)

10 H- i
L2

viz)

FIGURE 12,

When the function ¢, (y) is given by (3.16), expression (3.28) becomes:

_ 30—v)H ¢ p ax ERT(H—1)
U(X: y) V8(1 o) 4,,4,‘! Eo‘e— * sh TH 4 (3.31)

1 V§{— )
where a= —""ﬁ‘ 3‘_\,0)" $as
3 1 shyHchyH—yH (3.32)

b= YH shivH ’

1 shyH chyH H
b= H Y 5 [cf. (3.18), (3.19)]

19
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We can write (3.31) in the form:

o(n 9 = 25V (% (), (3.33)

and plot diagrams of the dimensionless displacement

- 31 —¥ l l '
7 (x) A=v) 1

T Ved o Wt (3.34)

for different values of the parameter y=1//, Such curves are drawn in

Figure 13 for y=1, 1 =2, y= | (for v, = 0). Figure 14 shows the function ()
plotted for the same values of 7, and also the distribution of the normal
stresses s, over the foundation height, obtained from (3.17).

»
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FIGURE 14.
- T R . .
It is seen that an increase in the parameter v causes the displacements -

and normal stresses to decrease more rapidly with increasing depth.

The normal-stress diagrams also show that the propesed model of the
elastic foundation is to a certain degree artificial: it gives finite (nonzero)
values for the normal stresses at points on the foundation surface which
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carry no load. This is a result of employing the variational method, which
applies the equilibrium conditions in integral form without providing for
their fulfilment at every single point of the system.
Since the subject of this book is the analysis of structures on elastic
foundations, and not the stresses in the elastic foundation itself, these
shortcomings may be ignored. l l . l
4. Case of a distributed load
The displacements of an elastic foundation, due to a load ¢(x) distributed

over its surface are best obtained from (3.28), which for y =0 determines
the displacements of the elastic foundation, due to a concentrated force p .

If we put P =1, the curve of displacements becomes an influence line and
can be used to determine the displacements of any point of the surface at
any load.
> - - -
g Yz
EI
E ‘
& T I ¢
5
0 2 10 20 30 4o
2 é P
= P P
as H=0.5] — 7
g gl&)
i
z H=10 H=2.0
77 7 ? 12 _ -
. K
Ce™ \ 6 7 A 7 . _ l ) '
E4 1
y Piz)
FIGURE 15. FIGURE 16.
If the applied load ¢ () is a known function of the distance : from the
coordinate origin, we obtain for the foundation displacements at point K
(Figure 15) [whose coordinates are (x,0)}:
at a<x<b
x b
Vi =Clla@eeod+ (g@emnd; (3.35)
at x> b
b
Vit) =G {q@ o ay (3.36)
a
at x<a - - = -
>
Vi = G {g@e v, : (3.37)
21

ITITRRIRNIIITIELNINI



where

¢, =40 (3.38)

In the particular case of a uniformly distributed load ¢, (3.35) becomes:

ata<x<b
Vi(x) =qTC‘[2—e—““—“>-—e““—“]. (3.39) ! ' '

We assume that the displacement decreases linearly with increasing
depth:

H—
¢1= Hy'

the constant C, is then found from (3.14):

C, =31 +w R I -
1= TqEtH
and (3.39) becomes:
Vi(x) =_2gk—[2_e_¢(x-a)—ea“_b)]' (3.40)
where
E%
k=
H({i—)
Figure 16 shows the dimensionless displacements V (x) obtained from ) ' - ' ) .

(3.40) for several values of # (forv,—=0). The actual displacements are:
Vi(x)= ei.,s 7 (x).

It is seen that with decreasing H the behavior of the foundation approaches
that of the Winkler model. With increasing H the displacement curve
becomes smoother, and the absolute values of the displacements increase,

§4. SINGLE-LAYER FOUNDATION WITH VARIABLE ! x l
ELASTIC PROPERTIES

1

The determination of the strains and stresses of an elastic foundation
subjected to a load becomes considerably more difficult when the elastic
properties of the foundation vary.

Consider an elastic foundation whose thickness H varies linearly in the
x-direction (Figure 17),

We shall express the displacement of a point M(z, ) of the foundation as
before:

U@ =0 ot =V,0dx 9 (4.1)
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It will be assumed that the function ¢, (x, y) varies linearly:

by =25, (4.2)
where
H = H,— 8, (4.3) ' l l
and g, = tg B, (Figure 17).
The condition of equilibrium of an elementary strip of width dx=1, cut

from the foundation, is derived from (1.7), (1.8), [(1.9})], {4.1), (4.2), and
(4.3)., We obtain:

1— _ 1-— . 9 {1 —w) v
L BH (x) VP — T 8V — Hm[1+°——LJ ¢ = 0. 4.4)
According to (4.1), the generalized shearing force is:
" U E -
S=Sr,,cp,dF.(V,(x)=1) (4.5)
0

u(z.y)
wry)

~

Ho

9 fo= 8,
FIGURE 17. FIGURE 18,

Inserting (4.1) and (4.2) into the last expression of (1.1) yields:

_ Eo B8 Eo -y [
W= T4 9x Z(+w) [VI FVI]' (4.6)

where H = H,—fx. E l '

Substituting (4.6) and (4.2) in (4.5) and integrating, we find:

E
S1 = ey [2H @ Vi— Vil 4.7
2
Consider the particular case of a concentrated force P acting on the - - == -

surface of the elastic foundation at the origin of coordinates (Figure 18).
The following homogeneous differential equation is obtained:

RS vo)]V1=0. (4.8)

1 — .- .
——Bvo Hx)V,— 6% 8oV — H(x) [|+
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This is an Eulerian differential equation and can be written in the N
following form after cancellation and multiplying each term by-T(’_i_%):

H2(x)V; + nH (x) Vi+mV,=0, (4.9)
where
et m= = (i ).
Substituting V = H#* in (4.9) we obtain an equation with constant coefficients
Vi« (n— 1)V, + mV, =0, (4,10)
The roots of the auxiliary equation

M4+@n—Dh4+m=0

are

)‘1.2=—n;1i (n_—4-1_)’_m (4.11)

fince m must be negative, both roots (4.11) are real:
M=—r, l=r,. (4.12)
The general integral of (4.8) is:
Vi=Ci(Ho—8ox)™" ++ Cy (H, — Box)™. (4.13)
Since the displacements of the foundation [at «x =-:T°and] at infinity are

zero, the constant C, must be zero for x < 0 while the constant C, must be
zero for x> 0. Hence:

Vi=Cy(fl,—8x)", Vi = Cy (Hy —8x)", 4.14
( )

where Vi and Vi1 are the displacements of the surface of the elastic foundation
to the left and to the right, respectively, of the point where the force acts
(Figure 18).

To determine the constants of integration, we note that:

at x=0 V1=Vu. Sl-—-Sn=P, (4.15)

where S; and Su are the generalized shearing forces to the left and right,
respectively, of x= 0.
Substituting (4.14) in (4.7) yields:

_~Eqb (2r14 1) 8

_ Eod (2rs — 1) H'y
TT 02U 4 H s

12 (1 + vo) (4.16)

v Sn=

By inserting (4.14) and (4.16) into (4.15) we obtain the integration

constants:
C— S + o) H Co e 6(1 +vo) "
A N NCE I 2T T Eodgo(ry +re) | 417
1453 24
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Lastly, by inserting (4.2), (4.14), and (4.17) into (4.1) we find the vertical
displacement of any point of the elastic foundation:

atx< 0 61+ v) HY

Y= e

—r H —
PH™™ (0) =t ;

ry o ra)

at x>0 ! l l
6(1 —F: ’ - y
v (X, y) (14 w) Hu PH '(X) Hix)—y

= Eobey (r1 + 72) H{zxy °

where /, and r, are determined by (4.11).

§ 5. DOUBLE-LAYER ELASTIC FOUNDATION
1

Consider an elastic foundation of thickness H ==k, + h, , undergoing plane
deformations (Figure 19). The two layers have different moduli of elasticity
and Poisson ratios.

In accordance with (1.3), the displacements of a point of the elastic
foundation are given by the following expressions:

L9 =0,
vy } (5.1)

v 9) =Vi() b (9) + Vo () o (y),

where ¢ (y) and ¢, (y) are the functions of the transverse distribution of the

displacements, and V,(x), V.(x) are the generalized vertical displacements,
The functions ¢,(y), ¢, (y) are chosen according to the nature of the

problem. In particular, expressions (3.11), (3.16), or (3.21) can be used.
If the upper layer is thin and the lower layer thick, we can write

(Figure 20):
] h—y
at 0<Cy<Th ¢ = lh,y' 4,2:%';
- (5.2) v
at m<Cy<<H ¢ =0, ¢2=’_"%ﬂ, :

where 1 is a coefficient determining the rate of decrease of the displace-
ments with depth.

In this case, the generalized displacements V, (x) and V,(x) define the
vertical displacements respectively of the surface of the elastic foundation
and of the boundary between the two layers,

From (2.2), (5.1), and (5.2) we obtain the following two differential
equations for the determination of the functions V, (x) and V, (x):

1-——vf

1 — . .
"-zi (ruVi 4 rpVe) — (suVy + sV + E

g=0,

2
i

E, ", E, E. . c Ex V. — ‘
Fa w2Vt [zu T T e ’u] Vem iz sals [ (5.3)
I

£, | Ey . —
—{1—\'2 Snfi—-v; S“]V,~0,
)
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where
¢ sh & b
r“=8¢de=.Tl' 511=S¢1 dF:T'
o o
¢ Bh ¢ 3
ra={dhadF =5 s = ggaF = — 3
° o (
g o R S (5.4)
’22=S¢zdF=T- 522=S¢2dF:Kn :
0 o
¢ B - 3
re=4dF =0 s, ={ddF =5 d |
h, hy

The elastic constants E;, E,, v; and v, entering in (5.3)define the properties
of the elastic foundation in plane strain. For a soil block, these are:

E, — Ls oy o 1. '
! 1—vf s ! T—v
Ey s Y2, s (5.5)
Ez— ’ V=
1—v T—vy

where E;  Es s v, 5, v 5,are the moduli of elasticity and Poisson ratios
of the first and second layers respectively.

qix)

£,0

LU

J Ay sh yiH-y)
> shyh;
£1, Vs
& ¢1
FIGURE 19, FIGURE 20,

Substituting (5.4) in (5.3), we obtain:

2 Vi— ki + Vy + bV +g=0, } 5.6)
LV i+ RV +2(6 + ) Ve— (ki + k) Va =0, ’
where
_ E\b ___E
ky = (=’ t‘_12(i+vn) ' (5.7
_ __E® _ _Eshad
ky = pTpe Yo h= g e (5.8)
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and ¢, and ¢, are known from (3.19).

The coefficients &, and k, determine the compressive strains of the upper
and lower layers respectively, while the coefficients ¢, and t, define their
shearing strains.

In order to solve system (5.6), we introduce a function F(x). The dis-
placements V, (x) and V, (x) are then expressed through F(x) and its derivatives
in such a way that when these expressions are inserted into the second
equation (5.6), the latter becomes an identity. The expressions which
satisfy this condition are:

Vi = (ki 4 ko) F (x) — 2ty + t) F* (x), } (5.9)
Ve (x) = kiF (x) + 6,F"(x). '

Substituting these expressions in the first equation of (5.6) yields:
L (38 + 4,) F'Y — 28k, + tiky + tok) F* + kiksF = q (). (5.10)

Differential equation (5.10) defines the stresses and strains in a double-
layer elastic foundation. In order to solve specific problems it is necessary
to add to this equation the relevant boundary conditions which are given in
a generalized form in this method. We therefore introduce generalized
internal forces corresponding to the generalized displacementsV, (x)and V, (x).
Since an elementary transverse strip cut from the foundation possesses
two degrees of freedom in its plane, it follows from (1.14) that:

H
Sy = wudp dF,
[ (5.11)
H
52=S"yx%dF.
0
where dF = édy .
By (5.1) and (5.2) the shearing stresses t, are:
at 0 < y < 4,
= _E Ch—y LAY
= ey (VR V)
at <y H (5.12)

_ __E “shy(H —y)
VT (v 2 sh Ay )

T

Substituting (5.12) in (5.11) and integrating over the entire height of the
elastic foundation, we obtain:

Sy =1, 2V, + V),
1 1(’ 1+ Vo) ) ] (5.13)
Se=4HVi+2(ti + ) Vs
Using (5.9), S, and S, can be expressed through F (x):
Sx=11['(3t1+4t2)F"'+(3k1+an)Fl].} (5.14)
Sy = (3ttky + tiks + 2oky) F.
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2

The double-layer model can be called a foundation with four elastic
characteristics. It permits a higher accuracy than the single-layer model
characterized by only two independent parameters %4 and ¢ (cf. section 3)

Different schemes of the elastic foundation can be obtained according
to the selection of the parameters &, &, ¢, and ¢,. Only one such scheme l ' '
will be considered.

It is seen from (5.7) that when both 4, and E, decrease, ¢, tends toward
zero while &, remains finite. If we assume that a thin compressible soil \
layer near the surface of the elastic foundation has a modulus of elasticity N
considerably smaller than the lower layers, we can write for the first layer N

=0, k=K, (5.15)
where K is a coefficient analogous to the foundation modulus and depends on

the properties of the elastic foundation near the surface.
The double -layer foundation thus consists of anupper layer subject only to

compressive stresses, (¢, =0), similarinthis sense tothe Winkler foundation, - . —
while the lower layer is subject to both compressive and shearing stresses.
Substituting (5.15) in (5.9), (5.13), and (5.14) yields:
Vi=(K+k)F—24L,F", V,=KF: (5.16)
$,=0, 8,=8=2V,=2KL,F. (5.17)
Inserting (5.15) into (5.10) yields:
—21,F~+k,r=i;(ﬁ. (5.18)
Unlike (5.10), (5.18) can be applied to a double-layer foundation with I - l : '

upper Winkler layer. The term ''double -layer foundation' will henceforth
be applied only to this particular case of a double-layer model.

3

Let a concentrated force P act on the elastic foundation at the origin of
coordinates (Figure 21). The following homogeneous differential equation

is then obtained for the determination of F (x):
— 2L,F" + k,F =0. (5.19) { ! l

Equation (5.19) is identical with (3.22), The following solution is
obtained by analogy with (3.31):

3(1—vp) 1 P

F - — X =
F V6 (—v) %%, EKC ' * (5.20)
where
4 VEO—w)
°‘==l/7: = 1= Y (5.21)

while ¢, and ¢, are given by (3.32).
Substitution of (5.20) in the second equation (5.16) yields:

30—=v) 1 p
V= rae W B ©-22)
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which is identical with (3.31). By substituting (5.20) in the first equation
(5.16) it is seen that, except at the point where the force acts:

n=v,
] '
¢
g
EREEN ]
H
ez |
i
2
FIGURE 24. FIGURE 22,
b T -
4

When a uniformly distributed load q acts on a double -layer foundation
(Figure 22), it is easiest to obtain the solution by using function (5.20),
which for P =1 represents an influence line.

FIGURE 23.
By analogy with (3.36) and (3.40) we find: E l l
<
at 0<Cx b F= 2,&’ [2— e~ — pane-n1y
(5.23)
at x>b F = i leetsb— ey,

Substituting (5.23) in (5.16) yields:

at 0 <x<b VF%Z_M'—‘z%:("""Jr""‘"’)-
q q (5.24)
V,=_F;_2_k.(e—-.z+¢a.(x—a)); - - - -
at x>0 Vl=V'=—2‘;—’-(el.{l—.)_e—-c.z). (5.25)
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It is seen from (5.24) and (5.25) that the surface layer exhibits no strains
outside the zone of load application (this corresponds to the postulation of
the foundation modulus), since here V,=V,. Within the zone of load applica-

tion, we have:

AV =V, —V, =2,

K

(5.26)

The function V, is everywhere continuous, while V, has a discontinuity
at the borders of the zone of load application (Figure 23).

§6.

THREE -DIMENSIONAL DEFORMATIONS OF
AN ELASTIC FOUNDATION

Consider now a three-dimensional elastic foundation of thickness H

placed above an incompressible layer (Figure 24).

Let an external load,

whose x, y z components are réspectively p(x, y,2), g(x,4,2), and ¢(x, 4, 2),

act on this foundation.

As in the two-dimensional problem, we shall use

the method of displacements to determine the stresses and strains in the

elastic foundation.

w(x, y, 2)of a point M(x, y, 2} of the foundation.
considered positive when their directions coincide with the positive direc-

tions of the corresponding coordinate axes.

By analogy with the two-dimensional problem, the unknown displacements

The unknowns will be the displacements u(x, y, 2), v(x, y, 2),

The displacements will be

u, v, ware represented by the following expansions:

m

u(x, y, 2) = ‘vzlul'(x' y)?’(z)

!
vix, p,2) = ‘Zx vg (X, ) %g (2)

w(x, v, 2) — é_‘l we (x, y) P (2)

(i=1,

@=1.

(k= 1,

2,3,..., m),
2, 3,.... 0, 6.1)
0, 3,..., )

The functions ¢,(2), #(2), $x(2) in (6.1) determine the variation with height
of the horizontal and vertical displacements.
dimensionless, linearly independent functions.
wy(x, y), which have the dimensions of length, are the unknowns. In
accordance with their physical meaning, they will be called generalized

displacements.

They are assumed to be known

The functions u;(x, y), vg(x, v},

The normal and shearing stresses in the elastic foundation are in the
three-dimensional case:

-5

i)

(6.2)

E, Au ‘du
g, = 5 = - =

l—va[dx : y"kéy !

Eq du Jw du
g, = —— | Z& -2
v i—v:[ay v"(dz + 3,\)

Eq dw du v
g, = —_ - —_— —
‘ I—-vg[dz +v oax + dy)]’
t,, =1, = Eo 9w . v
YT T YA S wlay Uz
o -1 _—Eu__ du _1‘0w
M TR ) [0 T o
oy — o Ea [ o
TN 2 4w {0 dy
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where

Ys

oT TV (6.3)

Es and v, are respectively modulus of elasticity and Poisson's ratio for the

elastic foundation.

FIGURE 24,

Substitution of (6.1) in (6.2) gives the
stresses as functions of the generalized

!

rm
Eo aui
el DI RN )
oli=y z=1
! e n
Eq l'z 'y
Sy = T 5, XY Z
1=l 2 oy i
n m a
Fy
Cp = 1—(£ Z :Q'Lv(;ll?""’o (Z 3
TVt k=y i
n
Es g
-
' k=1
E [<
o .
Tox = Txz = I T vy 121 Up;
E - du
_ _ ] £
T = T = iy ‘Zl ox

FIGURE 25.

following expressions for the
displacements:

-] 2 .
5t 2 w.(p.)]
k=]

. & du,
wepr + 2 a—;?r”. (6.4)

i=]

1]
U, dv
ot 2 Tf"n)

{
N .
y 4” + Z Ugxg

2=1 ].
+é}l%¢,]. (6.5)

- du,
®xg Z —-q:,].
¢ (=] dy

In order to determine the functions u; (x, ¥}, ve(x, ¥), wa(x, y), we cut from
the foundation an elementary column of height H and sides dxr=1, dy=1,
(Figures 24 and 25). This column possesses (m+ !+ n) degrees of freedom
in the three directions. The generalized equilibrium conditions of the
elementary column (considered as virtual displacements) can therefore
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be written in the form:

86.:: -4 uwd2+g {pwidz=0
(i=123...,m,
S%xydz——gtnx/dz+g x,dz+qu,dz—0 (6.6)
(=1, 23,...,0, .
S u(phdz—gﬁgfhdz-*-g y¢hdZ+Sq4n.dz_0
h=1,23,..., n). [ef. (1.7}, (1.8)]

Each equation (6.6) states that the total work done by all external and
internal forces acting on the elementary column over the corresponding
virtual displacement equals zero:
up(x, ¥, 2) =4 (2),
U (x, ¥, 2)=%(2),
B (x, ¥, 2)=bn(2)

for
uj (xv y) =1,
vplx, y) =1, wa(x, y)=1.

The terms behind the minus sign correspond to the work of the internal
The other terms represent the work done by the forces external

forces.
relative to the column,
Substitution of (6.4) and (6.5) in (6.6) yields the following system of partial
differential equations for the functions y,(x, v). v, (x, ). we(x, ¥) :
& PBu { ey, Ot {— <
Z i ( (3,:: + 2"" 0!}’1 ) - 2“0 2 bju; +
=1 i=1
14 v c 0’"1{ < 1—v ow, 1_“3
+ Z—l‘lt/l 9% 0y +§1(v,,d,.—— 7 ‘”‘)T + g pi=0
(j=123,..., m),
: Vg 1—v a"'g 1—v ‘
2 l( 6y’+ ) a,i)__z”znflt'n+
£=1
dw, v (6'7)

1—+— — v
vl’:>_l ”ﬂxay +2 ("ol/‘l_ Pl l)kllt) K + I “gr=0

Gl 2.3 .1
- a : _v a
_ Z(vodn:— Ly, ) —2(701,,,_1_%,.,)& +

{fw]

=1

n
1_ o'w tw
x g (ax: dy:) Zshkwh + l]n =0
(h=1,2 3,. n).
32

ITITYIITIIINI



The coefficients in (6.7) are:

ay=a;= Scpm dz, myg=my= S“I"t dz,
by =by= Scp,q.:/ dz, mg=ng= Sx}x'g dz,
c,.=Sqa,'¢.dz, k,,,=Sx}¢.dz,. l ' | l
dn = Yoz, l”‘=sx’¢',dz' (6.8)

= \rin=Gadudz, = {gnpi dz,
She = Sap = Sq);d»; dz, dy= Sd‘;?z dz,
kog = { gaxp dz, ti={

Ing = { fhxg dz, tie={pupdz.

i dz

The definite integrals are taken over the entire height H of the elastic
foundation.

The free terms in (6.7) represent the work done by the known external
load over the corresponding virtual displacements:

Sp(x. Y, 2)9;(2)dz,

pi=
gr={gx y. x(2)dz, (6.9)
g =190 v, D¢n(2)dz. E-K B

When an external load acts on the elastic foundation, the integrals (6.9)
are to be considered as Stieltjes integrals (cf. explanations to (1.12), (1.13)).
If no body forces act, i.e., if the external load consists only of [distributed]
surface forces p(x, ), g (x, y).q(x. ¥), expressions (6.9) become:

pi=prx ye0),
gr=g0x v)%(0), (6.10)

4 =q(x 5O, ! l !

Differential equations (6.7) describe completely the states of strain and
stress of an elastic foundation having a finite thickness#. The elastic
foundation is considered to be an infinitely thick slab secured to its support -
ing surface and capable of sustaining normal and tangential loads.

The solution (6.7) for a thick isotropic plate is approximate from the
viewpoint of the theory of elasticity. Its accuracy increases with the
number of terms in (6.1). The differential equations (6.7) define at the same
time a generalized three-dimensional model of the elastic foundation, whose
properties depend on the number of terms in (6.1) and on the properties of
the functions ¢, (2), % (2), ¢&(z) . Different schemes, corresponding in varying
degrees to the actual foundation, can be obtained by selecting different
expressions for the functions & x,, ¢4.

The selection of these functions was discussed in detail in section 2,
dealing with the plane strain of an elastic foundation, We repeat that this
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selection must be specific to the problem considered (e. g., according to
an experimental law). In this case even the simplest model described by
a minimum number of functions ¢, x%, ¢: will be closer to reality than the
model based on the postulation of the foundation modulus.

§ 7. THREE-DIMENSIONAL MODEL OF AN ELASTIC
FOUNDATION WITH TWO CHARACTERISTICS

1

Consider an elastic foundation of finite thickness H (Figure 26). Let
the horizontal displacements of the foundation vanish everywhere:

ux 4, 2)=0, v(x y 2)=0, (7.1) T W
and let the vertical displacements bex:
wix, y, =w(x, 9)¢(2), (7.2)
where ¢ (z) is the function of the transverse distribution of the displacements,

chosen in accordance with the nature of the problem.
By (7.1) and (7.2), only a single equation of (6.7) remains:

i-——v"’ "'-.

1—wv

7 Vel ) —suwx g+ —5—a=0, (7.3)
where
_Poxy) | Bw(r g (7.4)
Viw(x, y) = T ar !
H H
’11=§4)’(Z)d3: su=g¢"(2)d2' (7.5)
0 ¢
The free term in (7.3) represents the work done by the known [external] { l !
load g(x, y, 2) over the virtual displacement @(x, y,2) = ¢(2) (for w(x,y)=1)
and is:
M
Q1= S g(x, ¥, )9 (2)dz. (7.6)
[4

If the external load consists only of surface forces g (x, 4). this becomes:

d1=q(x, N0 (7.7)

where ¢(0) is the value of ¢ (z) at the surface of the elastic foundation.
Equation (7.3) can be rewritten as follows:

2V (x, y) —kw(x, y) + 4= 0. (7.8)

* The subscript 1 in w (x, ¥) and ¢ (2) will henceforth be omitted.
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where
b= _Eosu Eorn

1= T AW (7.9)

The coefficient k£ characterizes the compressive strain in the elastic
foundation, and is thus analogous to the foundation modulus. The coefficient
t characterizes the shearing strain in the elastic foundation. ! l l

FIGURE 26. FIGURE 27.

The partial differential equation (7.8) differs from the relationship
derived from the postulation of the foundation modulus by the term:

2tV (x, o),

which makes allowance for the shearing stresses. In order to determine
coefficients (7.9), we must specify {(z). Assume that, in accordance with ' l
the problem, this function has the form: ' ' - '

¢ =2LE=9 (7.10)

where y is a coefficient determining the variation with depth of the displace-
ments,
Substitution of (7.10) in (7.9) yields [cf. (3.19)]:

he—FE g,
”‘;;"D (7.11) ,
"= marw ¥ ‘

where
_ TH [ shaH chyH +H
a 2 [ shdqH ] (7.12)
o= 3L [ShyHchyH —qH '
'S T YA [ shiqH ]
The elastic constants E; and v, are (see (6.3)): - - m
K _ Y
E“—_i—v’ , vo-—l_v (7.13)
1 K
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We shall now calculate the displacements of an elastic foundation, due to
a concentrated force P acting at the origin of the polar system of coordinates
(6, p) (Figure 27). [For P = 0], the following homogeneous differential

equation is obtained: ! ' l
VW oW =0, (7.14) .

where

u (7.15)

Since the load is gymmetrical with respect to the coordinate origin, the
generalized vertical displacements will be independent of the angle y. The
Laplacian operator is in this case:

- . -
L O AU RLACN (7.16)
By introducing a new variable
E=ixp (7.17)
we can reduce (7.14) to a Bessel equation of the imaginary argument ¢ :
T Etw=o. (7.18) E-F K

The general solution of (7.18) is*:

W = Cy], (ap) + C:K, (ap), (7.19)

where f,(a) and K, (ap) are modified zero-order Bessel functions of the first
and second kind respectively, while C, and C, are arbitrary integration
constants., Curves of J,(ap) and K, (ap), as functions of the argument (ap)
are shown in Figure 28. It is seen that the behavior of these functions is
similar to that of exponential functions.

! N : l !
08 I @
K 2 \\ Kylap) Llap) 1/ . 'l.
y

04 ) ,/ 2

\ /

N V
02 \ 7 0 - - -
) £~y

/) ! 2l J 4 5 [
FIGURE 28.

* See, e.g., G.N. Wanson. Theory of Bessel Functions. —Cambridge. 1923,
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Since /,(ap) and K, {ap) are real for all values of ;, the integration constants
C, and C, will also be real. They can be found by considering the physical
aspects of the problem. Since at infinity the displacements of the elastic
foundation vanish, we obtain the following boundary condition:

at p— oc W—-0. (7.20)
Since [, tends to infinity with p, it follows from (7.20) that: ! ' '

¢, =0. (7.21)

To determine C, from the equilibrium conditions, we cut an elementary
cylinder of radius p=¢ (¢ —0) from the elastic foundation (Figures 27 and
29). The equilibrium conditions for this cylinder can be written in the form:

33 M
ogpdﬂus %o $(2) dz4 PY (0) = 0. (7.22) - = =
This equation represents the work done by the shearing stresses ..,
distributed over the envelope of the cylinder, and by the external force £
over the virtual displacement @(p, z2) =¢(z) (for W(p)=1).
By analogy with (6.2), the shearing stresses 1, are expressed in the
cylindrical system of coordinates (z, p) as follows:
= E dw (p)
Clals T Sl (CR (7.23) , ,
Substitution of (7.23), (7.19), and (7.21) in (7,22) yields: ' - . ) '
I’
S 2aCyK, (ap) pdd = P (0), (7.24)
[
where, for « <1
Ky (op) = o=,
(and t is given by (7.26)].
Integrating (7.24) we obtain for C,:
C= 230 (7.25)
where
E H
Tl
T = =§ Pl dz. (7.26)
From (7.19), (7.21), (7.25), and (7.2), we obtain the vertical displacement
of any point of the elastic foundation:
- - -

we, 9= 25 K w4 2). (7.27)

If, for instance, ¢(z) is given by (7.10), expression (7.27) becomes:

3P hy (H—
wie, 2) = LA K, @) DLE D) (7.28)
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where [cf. (3.32)]

_ k1 V&t —v)
=V =5 G %
" _3i[sh7ﬁch7H—7H

=TIHT mnﬁT‘__]'

bomon Y TEGTET
If ¢(2) is given by:
)=
we obtain for an elastic semi-infinite space (H — o) :
w(p, 2) = LGN K @ e,

where

z VZ(i—vo

@ = 2 T 1—v

(7.29)

(7.30)

(7.31)

and 7 is a coefficient of dimension 1/L which determines the variation of

the displacements with depth.

As an example, Figure 30 shows displacements of the surface of the

elastic foundation in units of &, obtained from (7.31) for v,=0.

The .-'.

Boussinesq curve correspondmg to v, =U has also been plotted for com-
parison. It is seen that the cohesion of the elastic layer decreases with
increasing y, and the properties of the foundation approach those assumed
by Winkler. On the other hand, when y decreases the elastic foundation has

a higher load-distributing capacity.

2 t 04

e
L }'-ZJ/'J
et TURAN o A e

\'\\ #/‘ -
\\ \'\7 i ’/ |

/]

18%

£
IS

- -
- b -

>
L~
o
K
*F\ S
N\

\ According to
\- |,’ } .Boussinesq
I
W
i
\ '5.0:
FIGURE 30.
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3

Consider now an elastic foundation acted upon by a load, uniformly
distributed within a circle of radius R (Figure 31).
Two regions exist in this case and, by (7.8), two differential equations:

aw 1 4d¥
‘0 1 4 34V o 9 l ' l
at 0{pKR a4 P dp o'W, 2 l (7.32)

W 1 4w
at R<P<°° dp" ? dp. —a’\V,:O.

The solutions of these equations are:

_ q
Wy =Cily(ap) + C:K, (ap) + } (7.33)

W o= Cyl, (ap) + CuK, (ap)

where £ is given by (7.9).

¢ ywip)

FIGURE 31. - ' -' - .

The following boundary conditions are deduced from the nature of the
problem for the determination of the integration constants C;, Ci Gy, Ci:

dw,
at p =0 — =0,
o dp (7.34)
at p— oc Wy=0,
at p=R W,=W,,
dw, _ dw, ] (7.35) ‘ v
o f E l '
It follows immediately from (7.34) that:
C,=Cy=0. (7.36)
After substitution of (7.33), we can write (7.35) as follows:
Cl,(aR)—CK,(aR) = — 2,
e e £ (7.37)
Cily(aR) + CK;(aR) =0,
where /,, K, are the first-order modified Bessel functions. - - . -
Solving the system (7.37) we obtain for C, and C;:
C, =4 Ky (aR)
L= k lotaR)Ki(aR)+ I (aR) Ko (aR) '’ (7.38)
C __ 9 I (aR)
7 k Ig(aR)Ki(aR) + 11 (aR) Ko (aR) °
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Finally:
W,(p)=Cilo(ap) + £,
7.39
W3 () = CoK, (ap) (.39)
This problem could have been solved by proceeding from (7.27) which, l ' '
for z=0 and 2 = |, defines the influence surface for the displacements. We

then obtain for the displacement atz =0:

m R
W (©0) = %O {§ Koppdpdn = O _aRrK, @R)). (7.40)
o0
§ 8. THERMAL STRESSES IN AN ELASTIC FOUNDATION ‘W .
1 x
In the design of foundations for heavy structures, it may be necessary to \
determine the stresses and strains caused by temperature variations. This

problem is also encountered in the design of thick slabs and beams on rigid
or elastic foundations.

Consider an elastic layer on a rigid foundation (Figure 5), and let this :
layer be in a state of plane strain as a result of a two-dimensional temper- - . - . - '
ature field. In the general case the temperature is a function of the b
coordinates x, y and the time ¢:

T=T(x,y,1).

The problem will be solved by the variational method. The unknown
displacements u(x, y, #), v(x, y, f) are expressed as finite series:

u@g g )= Uik, Deily) (=1,23,..., m), R
- (8.1)
vy = 2 Vals, hy)  (k=1,2,3,...n),
L
where the functions U, (x, #), Vi(x, t) are the unknowns, while the functions
9:(Y), ¢x(y) are chosen according to the nature of the problem,
The following system of m+ n equations is obtained as before ((1.7) and
(1.8)) by considering the generalized equilibrium conditions of an elementary

column of height H and measuring | x § inplan, and assuming thatno surface
or body forces act on the elastic foundation:

a -, )
S%mdF-—S:,,q: dF =0 (i=1,223,..., m),
(8.2)

o, .
S v gpdF — S ondF=0  (h=1,23,. .. 1),
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where dF =8dy
The strain components are:

du dv du  do

‘xx=a—x\ ‘gy=5!79 Sx,=a—;+a—zn
the stresses s,, o,, 1, are, in the case of plane strain caused by temperature
variations: l
Ey, [Ou dv aEeT
O = ——{ _ Vo — | — .
* 1—v;(ax+°ay) 1—v
= B (2 o ) BT (8.3)
1—v)\ay ax

1—v°'
By [, @
T’”_2(1+vo)(3_y+$)’

where a is the coefficient of linear expansion; T = T(x, y, t) is the temper-
ature at point (x, y) and time ¢ ; E, and v, are elastic constants defined by (2.1).

The following system of m 4 n ordinary differential equations in the
unknowns U, (x, #), Va(x, ) is obtained by first inserting (8.1) into (8.3), and
then the resulting expressions into (8.2):

m m n
EaﬁU;— 1_2% th‘ U+ 2 (Vof/x—i_zv" C/A)V;—'

iy fm=1 Rum]

—1(1+V0)X11-= 0
(i= l| 2| 3)"'9 m)!

_%(v.t,,,_.’;'°c,.,)u,‘+ ‘—;—“‘Z Vi — 8.4) -K-K K
-1

(=}

— D suVata(l +v)Yar =0
k=)

th=1,23, ... n).

The coefficients au, by ,..., ra, sm in (8.4) are given as before by (1.11)
as functions of ¢ (y), ¢u(y). The free terms X,r and Y,r are:

Xir =\ 5 eidF, Yir={T4aaF. (8.5) E ' l
\

Equations (8.4), together with the corresponding boundary conditions,
completely define the temperature equilibrium of a layer of finite thickness
H in a state of plane strain. This method can also be applied to the design
of elastic foundations and thick plates in a state of three-dimensional stress.
The three-dimensional thermo-elastic problem can be reduced to a two- \
dimensional problem by the method used in section 6 for an elastic founda -
tion subjected to an external load.

2 I - == -

As an example, consider an elastic layer of finite length inthe x direction,
which is in a state of plane strain (Figure 32). Let the layer be rigidly
connected to its base, so that the displacements u(x, y) and v(x, y) in the plane
of contact between layer and base vanish.
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Taking only the first three terms in (8.1), we obtain the following

approximations:

u(xv Yy t) =U (X, t) P1 (y) + Uﬁ(x’ t) P2 (y) + U3 x ?) %3 (),
vix, 4, =Vilx, H () + Valx, Hda (y) + Vs ix, £) d5(y)-

}

The functions ¢, (), ¢: (4). 9s(¥). $1(y), $a(¥), ¢, () are represented in Figure 33.

From (1.11) and Figure 33, we obtain the coefficients in (8.4):

FIGURE 32.

By substituting these values in (8.4), a system of six differential
« €quations in the six unknowns U,, U,, U,, V,, Vs, Vs can be represented in the
In this table D and D? denote respectively the first
second - order differential operators on the function given at the head of the

form of Table 1.

(8.6)

SH
ay =" =3,
H
Qs = Qg =M1y =73 = Qgy = Qg3 = g3 =Ty = g,
Gp=ay=ry=rn=0,
28H
Q39 =033 = ~5—»
3%
bu=3u=—,.,—,
3t
bn=bn=5n=5n=bn=bsz=5n=ssz=—7v (8.7)
by =bsy = S13 =153 =0,
6%
bn=bas=7,
1]
p=Cu=tly=ly=Cu=lp=— 5,
3=l =Cap = by = (31 = ly) = Cpy = g3 = 0,
8
Cn=tu=¢n=tu=f-
o P g @
% , 7
Hh 4 H
0 ' =
§_p i 4
W TH H| B
14 T T
h £ Ef; ) ES "
g HZE HBEE
2 Kl
H H
FIGURE 33.

and

column. The terms A,,A4,, As, By, B;, B;, in the last column on the right of

Table 1 are:

a=a(+w)(Fady,  Bi=—a+w (Tyd,
A=a(l+w(Fedy, Bi=—a(l+w|Thdy,

Av=a(l+ w0 { L ady, By=—ali+w) T4y,

42
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TABLE 1
U, 283 U, v, Vs v,
H H
—_ D — :
g D 13 D'+ 1— 3y 14w
— D _D _ A]
_ 31— N 31—y, 4 4
ZTH 27 H
H H
—_— 2 —_— 2 2
50+ (gD 180+ _ltw, B E p
$31—wl 31— +31=w 4 g *
2 H 2 H) 2TH
iD’+ 2(102._
_ 18 9 _ -—1+v“D _ A
s il=vw | 31w 4 - - -
2 H 2 H )
_ 13w 1+ v 1— v 3 f—wv 3
7 P T D - I HD—- | 3 HDt g - B,
_1+vo _ f+v 1 —v 3 1 —wv 3 1—vw i B
P 7 D % M0+ 2( 13 ”D’—T) 3% 1D+ :
14 v 1—w 3 (i—vo 3
- -z P - - Ty | (Tt —)| 8

When the function T =7 (x, y, ) is known, the differential equations in
Table 1 can be integrated by usual methods. In accordance with the
variational method described above, the boundary conditions at x =0 and
x =lhave to be given in generalized form. Thus, in the case of free ends
they can be written in the form (cf. (1.14)):

Sa,‘p,- df =0, Sfxy¢h dF = 0. (8.9)

When the ends are built-in, and both horizontal and vertical displacements :
are prevented in sections x=0and x =/, the generalized displacements
must be zero:

Ui=0, Ve=0, (8.10)

We shall later discuss the case when diaphragms, rigid in their plane
and flexible outside their plane, are located at x=0 and x=!. Such
diaphragms prevent only vertical displacements, The stresses 5, in the
end sections then vanish. These boundary conditions are written as
follows in a generalized form:

&u,cp,-dF——-O, Vi=0. (8.11)
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3

Let the function 7 (x,y,!) be expressed as a trigonometric series:

— {)nx

Ty = 2 Ta(y ! sin-_(zn i . (8.12) ! ' '
n=y

The Fourier coefficients are:
!
Ta(y, t)=%ST(x,y,t)sin de. (8.13)
[

It will be assumed that the boundary conditions of the problem are given by
(8.11). In this case, the solution of the differential equations in Table 1

can be approximated by trigonometric series. Writing the unknown functions
Ui(x, 1), Va(x, ) in the form:

(-]
Ui(x, t) = 3] Uun () cos &=
Rl

w© (8.14)
Ve(x, ) = 3 Vin (1) sin E2 020

n=]

it is easily seen that they satisfy (8.11). B . . .
Substitution of (8.12) and (8.14) in Table 1 yields a system of algebraic

equations for the determination of the coefficients U,,(!), Vi (1) in (8.14). Six

equations in six unknowns U,,, Us,, Usn,Vin, Van, Vi correspond to each value

of n(Table 2). The free terms in these equations are:

H
An=Cn—Nr(1+val Taw, hody  (=1,2,3),
[1]

H (8.15)
Bin=—(+vwal{ To(y, )udy (k=123

]

The solution of this problem has thus been reduced to solving a system I ! I
of algebraic equations. This must be done in a generalized form, since
the free terms A,,, By, are functions of ¢.

After Usa (), Ui (2), Usn (1), Vin (1), Van (£), Vs (1) have been determined, the
displacements of the elastic layer can be obtained for any instant from (8.14)
and (8.6). The stresses are found from (8.3), after insertion of (8.6) and °
(8.14). The following expressions are obtained for the normal and shearing

stresses of the elastic layer:

- 3
o= L3 [—“""—,”“2}u,n<t)¢f(y)+
1~ % am =

3
+% 2 Van (D (9) —a (1 + %) Ta(y. t)}sinw. (8.16)
o]
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3 3

o= 2 [va O ) =% T DU (9 (1) — (
0 nmit=1 =1 8.16)

—a(l +v) Taly, l)]sin QL‘—I”" cont'd

co 3
_ £ .
T = T0 +ve) n§1[l§1Uln(t) o (y) + l ' I

n—1)=x

 }
+ BT RV O b (y)] cos &=

From (8.16), we can determine the stresses in any section of the elastic
layer for the duration of temperature variation, provided T(x, y, ¢}is known.
It is thus possible to find the stresses in a block of concrete caused by the
temperature variation during the setting and hardening of the concrete, or
by its contraction, if the latter can be analytically expressed. *

* See, e.g., Cheche's papers /81, 82/.

46

N

\ .

RARSRRERERR00REEEE



Chapter 11
BENDING OF A BEAM ON AN ELASTIC FOUNDATION

§1. DIFFERENTIAL EQUATION OF BENDING OF A BEAM ON
AN ELASTIC FOUNDATION WITH TWO CHARACTERISTICS

Consider a beam lying on the surface of a single-layer elastic foundation. . -
Let an external load p(x) act on the beam (Figure 34). It will be assumed
that the sections remain plane during bending, and that friction between the
beam and the foundation can be neglected. The differential equation of
bending of the beam is then:

EJVIY (x) = p(x) — g (%), (1.1)

where g (x) is the reactionof the elastic foundation (= load acting on foundation),
and V (x) is the beam deflection [ V™Mrepresents j—:} ] : . - . '

Equation (1.1) contains two unknown functions V (x) and ¢(x). In order to
determine them it is necessary to establish the relationship between the
load acting on the foundation and the displacements. This relationship is
obtained from the condition that the deflection of the beam is everywhere
equal to the vertical displacement of the foundation.

[ 10]

7 A vz
FIGURE 34.

The equation of equilibrium for a single-layer foundation is* [cf. (3.7),
(3.8), (3.9) of Chapter IJ:

—24V" 4 RV = q(1)$(0), (1.2) - -

® The subscript 1 is henceforth omitted in V (4) and ${y -
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where

H
Egb

t— 2
09

k=

) dy,

Ed ¢ (1.3)

= T V@ l l '

It is most convenient to select the function $(¥) in such a way that ¢ (0) = 1.
The generalized displacement V (x) will then represent thedisplacement of the
surface of the elastic foundation, and equation (1.2) becomes:

t

—2tV* - kY = q (x). (1.4)

Since the deflection of the beam equals the vertical displacement of the
surface of the elastic foundation, equations (1.1)and (1.4) can be considered L N
together: S e v
—2V" + RV = q (x), (1.5)
EJVNY =p(x) —q (x). )

Elimination of ¢(x) from these two equations yields:

EJVYV —2tV* 4+ kV = p(x). (1.6)

This equation differs from the equation, derived by postulating the ) ) )
foundation modulus, by the term containing the second derivative which - ' - . - l
makes allowance for the influence of shearing stresses in the elastic
foundation.

We introduce the dimensionless coordinate n= % , where:

. f————
L= l/ O (1.7)
Enb

is the "elastic characteristic of the beam. "*
Egquation (1.6) then becomes:

Ld
W‘z'm*"w:pﬁ' (1.8) } ' l

where

tLe 11—
re.__ﬁ =7_L-S didy , )
‘ N ° (1.9)
s‘=y‘7=2LS $tdy
]

Equation (1.8) represents the generalized equilibrium conditions of the
elastic layer together with the beam lying on its surface. Hence, V(n) is
the generalized vertical displacement,

* Asimilar expression was adopted by Gorbunov-Posadov for analyzing a beam of infinite length /25, 26/.
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To the generalized displacement V(y) and slope ¢(x) =%V‘ () (in this case,

these magnitudes represent the actual displacement and slope of the beam)
there corresponds a generalized shearing force representing the shearing
stresses. This force is distinct from the shearing force @ acting on the
beam. In accordance with the variational method employed before (cf.

second equation (1.14) of Chapter 1) (see table on page 82): ! l l
EJ » 2177
N () =— S5V () — 20 (1. (1.10)

This expression must be taken into account for the boundary conditions
which, as mentioned in Chapter I, have to be in integral form.

When V() has been determined, the reactions g(y) can be found from (1.4).
The bending moments and shearing forces are;

4V EJ dWV
M=—E1 5= -5, (1.11) |

"' EJ &V - - -
Q=—El Ga=—Tr g~ (1.12)

The solution obtained corresponds to the two-dimensional problem of the
theory of elasticity. Hence, (1.8) (or (1.8))is valid both for a beam lying
on a vertical foundation of equal width § (Figure 35), and for strips of width
§ cut in the transverse direction from a long plate (Figure 36) lying on an
elastic foundation. These two cases correspond respectively to plane stress
and plane strain.

772772

FIGURE 35, FIGURE 36, : ! l
In the case of plane strain, we have:

P, (1.13)

Yo =

where E;, v, are respectively the modulus of elasticity and Poisson's ratio
for the elastic foundation.

Furthermore, in (1.11) and (1.12), the equivalent moment of inertia J of
the strip is:

VA

J=12(1—p’)' - - . -

where i is Poisson's ratio for the material of the strip.
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2. SOLUTION OF THE GENERALIZED EQUATION OF
EQUILIBRIUM BY MEANS OF PARTICULAR INTEGRALS

1
To solve (1.8), we must first find the general integral of the correspond-
ing homogeneous equation: 1
av ay
va‘z’zd_m"*'s“/:o' (2.1)
which is:
Vn) = 0, + C,0, 4 C0y + C,D,, (2.2)

where C,, C;, C;, C, are integration constants and ¢, ®,;, ®,, ¥, ,are roots of
the auxiliary equation:

RE—2rht 44 =0 * (2.3)
Since neither s nor r can be negative, the ratio % is always positive,
The solution of the auxiliary equation is:
1) fors>r
k= i; _,__ﬁ_,, (2.4)

where @ and f are real and positive:

z = ]/s:_::,:’ ﬁ—= ”_"2',’_’; (2.5)
2) fors=r
ky=ky=r,
by =ho=—r; } (2.6)
3) fors<r

b=—t=2=Vp ya—g, 2.1 '
ky=—k=h=} _yA_gx. 0 H l I
The functions ©,, ®,, ®,, @, , their first three derivatives, and their first
integrals denoted by ®¥ corresponding respectively to (2.5), (2.6), and (2.7),
are given in Table 3. The derivatives are expressed linearly through
O, O, O, D, .
The first case is the most important for the analysis of beams on single -
layer foundations. When s>r, the functions in Table 3 differ from those
for the bending of a beam on an elastic Winkler foundation by the
arguments a and B of the hyperbolic and trigonometric functions. These
functions can be characterized by the ratio between the real and imaginary - - = -
parts of the complex root (2.4):

_E_ s*—rt
T="T4 =l/m- (2.8)

* [kin this equation should not be confused with the characteristic % introduced in (3.9) of Chapter 1.]
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TABLE 3
9 ¥
v ® O
o 32 ; = S @, [ O, <,
zEEl 2% (odd) (even) (0dd) (even)
@ oo, E b=l
DR ERR
] @ sh az cos By ch ancos fn chansin an sh ay sin fn
§
| . - ~ ~ _ - - - -
| @ ad,, — O, ad; — B, a® 4+ B, a®s + 8O,
s>l Lol _ - - _ e - o .
©O7 M@t 5 @, — 2250, | (31— B%) @ —2aB0q | (a® — BY) @y + 22BD; {(a® — 1) @, + 2aFD,
; - 2 (at—35Y) @, + a (a*—3FH O, + a(a*— 3o, - a (a* — 3% O, —
' + 3 (37— 3ah) O, + B (B*— 3at) 0y ~B@E -3y, —B@E* -3,
[ shry chry nchry nshry
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This ratio varies between 0 and 1. For y=0 the functions @ (i=1...4)
degenerate into hyperbolic functions, multiplied by 1 ory. For y=1Ithey
reduce to the functions of the bending of a beam on an elastic Winkler

foundation.
The functions ®,, ¢,, ¢,, ®,, are tabulated in the appendix (Tables 1, 2, 3,
4) for values of 7 between 0.0 and 1.0. In these tablesz=an. l ' l

2

The general solution of the nonhomogeneous equation (1.8) is equal to the
sum of the general homogeneous solution (2.2) and of a particular solution V,:

V() =Ci®y+ C®y + C@, + Ce®y + V. (2.9)

When the distributed load is either constant or varies according to a
linear law p(n) =a+ by, we can write:

Le

Vo= Fr<. (2.10)
Although this method of determining V() is very simple in principle,

it involves cumbersome calculations. Even when the function p(n) is defined

by a single analytical expression for the entire beam, a system of four

algebraic equations has to be solved in order to determine the four integra-

tion constants C,, C;, C;, C,. If the load varies according to different laws i .

in different zones of the beam or includes concentrated forces, the general - ' - ' - .

integral (2.9) will contain different integration constants in each zone, their

total number being four times that of the zones. In the relatively simple

problems represented in Figure 37, we have to find 12 constants by setting

up 12 algebraic equations. Hence, the method described is only practical

when the external load is given by a single analytical expression valid for

the entire beam,

7 A, AN A L A : ! '

a % a b, I by

FIGURE 37,

To solve the problem considered in a practical and general manner, we
shall apply Puzyrevskii-Krylov's method of the initial parameters (this
method was first suggested by Cauchy) in the form proposed by Vlasov.
This method requires the determination of only two integration constants
irrespective of the load distribution*

® The method of initial parameters as applied to the analysis of beams (both ordinary and on elastic
Winkler foundations) is explained in /73/ and in /47/.
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§ 3. SOLUTION BY THE METHOD OF INITIAL PARAMETERS

1. General integral of the homogeneous equation

It will be assumed that the load consists of concentrated forces and

moments. Between their points of application the bending of the beam is
determined by the homogeneous equation (2.1) whose general integral (2.2)
is written:

V = CiKy 4 CiKy + CoK; + CiK,, (3.1)

where K, K, K, K, are independent linear functions of Oy, O,, Py, ®,. The
system K,, K, K, K. can accordingly be called the fundamental system.
We choose the fundamental system in such a way that when 5 =0, the
generalized geometrical and statical magnitudes V, ¢, M, N, expressed
through the functions K,, K,, Ky, K, and their derivatives, form a unit

- B -
matrix:
N(0) =
. . EJ
iV 0 = K ()| #(0) = 1K (0| M(0) = —EL K] (0)|= — Fkior -
— 20 (0))
1 I 0 ] 0
2 0 1 0 0 .
3 o 0 1 0 X -¥ K
4 0 0 0 ]
Hence:

Ci=V, Ci=¢9, Ci=M, Ci=N,,
[the subscript ""O'" denotes the values for « = 0}].
The functions K, K, K; K thus express the influence of unit initial )
parameters on the deflection, i.e., they are influence coefficients. Writing: E ! [
Ki=Kvw. Kei=Kve, Ke=Kvn, Ki=Kun,
we obtain:

V (1) = VoKvv + @oKve + MoKy + NoKyn. (3.2)

Inserting (3.2) into (1.10) and (1.11), the following system is obtained,
including (3.2):

V(n) = VoKvv + ¢oKve + MoKyst + NoKyn, m = -
() = VoKev + Koo + MoKon + NoKoN- 3.3
M) = VoKuv + 9oKno + MoKumt + NoKnn, (.3)

N (1) = VoKnv + @oKng + MoKnn + NoKn.
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The 16 influence functions Kvv, Kve,..., Kyy,in (3.3) form a matrix for
the direct linear transformation of V,, ¢, M,, N, into V,, ¢,, M,, N,. After the
initial parameters have been determined, the problem can be considered
as solved.
Any section % ={in which V,, ¢, M,, N; are known can be taken as initial
section. The values of V., ¢,, M,, N, in a section situated at a distance n—¢
from the initial section will be determined by the same influence functions, l ' '
provided the homogeneous differential equation of bending (2.1) is valid
between these two sections:

Vo= ViKvv + 9:Kve + MiKyn 4+ NiKyy,
Pn = ViKov + ¢:Kgo + MiMou + NiKon,
My = ViKmy + 9:Kue + MiKum + NeKun,
Ny =ViKav + 0tKne + MK+ NiKuno

(3.4)

The influence functions Kyv,..., Kyy are here functions of the argument
(q—1t), while @,,..., &, become &, (n—1{),..., P (y—1).

A very important property of matrices (3.4) and (3.3)is their symmetrical
structure, as a result of which there are only 10 distinct influence functions.
The four functions forming the secondary diagonal are not repeated. The
remaining 12 functions, arranged symmetrically to this diagonal, are equal
by pairs:

Kllll:Kvm K0N=KVMy KMN=KVo. l (3 5)
KNN=KVV' KN:p=KMV. K~M=K¢V. J : - I . .

This property is derived from the reciprocity theorem of Maxwell and
Betti.

2. Effect of external load. General integral of
the nonhomogeneous equation

Consider a beam of length /, acted upon by concentrated forces P, P,,..., P,
(Figure 38) at points whose dimensionless coordinates are respectively
ty, Ly.ee, In.
{’l

t

1]

I _,!P, Py P Pn
Mot g | 7

1
1
]
1

\
25l 1 vi) M
YA . Lo - o= -

FIGURE 38,

* For a detailed discussion of influence functions forming matrices of direct and inverse transformation, cf.
V.Z. Vlasov, "Tonkostennye uprugie sterzhni” (Thin-walled Elastic Bars), —Gostekhizdat. 1940. [Trans-
lated by IPST, No. 428.], and "Stroitel'naya mekhanika tonkostennykh prostranstvennykh sistem”
(Structural Mechanics of Thin-walled Three-dimensional Systems). — Stroiizdat, 1949.
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For 0 <n <1, the kinematic and statical factors are determined by the
initial parameters and influence functions:

V () = VeKvy () + ¢uKve (0) 4 MoKyu (m) 4+ NoKyn (),
¢ () = ViKevy () + ¢ Koo (1) + MoKen (%) + NoKon (), (3.6)
M () =V Kuy () + @K ue (1) + MoKpa (0) 4 NoKmn (1), )
N (m) = VeKay () + ¢oKne () + MoKt (1) + NoKnw (n). l l '

These expressions remain valid as long as the homogeneous differential
equation (2.1) holds true, i.e., as long as V (y), ¢(m), M(y), N(y are
continuous.

If one of these functions has a discontinuity at 4 =4, i.e., if a concen-
trated load acts at this point, the influence of this load must be taken into
account for 4> 1f:, in accordance with the principle of superposition
following from the linearity of (3.6). This influence is equal to the magnitude
of the discontinuity multiplied by the corresponding influence function, CEEEm -
calculated for the coordinate (n—1,).

Thus, V(9), §(n), M(y) remain continuous at all points where a concentrated
force P; acts, only N(y) increasingby (—P,). Hence, fort, <y <ty (Figure 38):

V(m) = VoKvv (0) + 9oKve () + MoKy (1) + NoKvn () —
— PKyn(m—1ty),

? () = VoKev (1) + PKoo (1) + MoKom (1) + NoKon (1) —
= PiKon (n—1ty), (3.7) )
M) = VoK (1) + @oKnte (1) + MoKnn (1) + NoKnen (7)— ' X -K K
— P Kux ("l —1h),
N () =VoKnv (1) + 90K s (0) + MoKnn (1) + NoKnn (m) —
— Pi\Knun (—1t)).

For t; <y < t;, we have:

V(n) = VoKvy () + 90Kve () + MoKy (1) + NoKvn (1) — 4
—ﬁ] PrKvn (n—14), ! l '

? () = VoKov () + $Kop (1) + MoKen (:;l—k NoKow (n) —
- i‘n PiKon (n— 1),
M (%) = VoKuv (1) + goKug (4) + MoKuuk(-nl) + NoKnn () —
— é} PiKun (n—ta),

hemm]

N () = VoKny () + $oKnie (1) + MoKnons (1) -+ NoKww () —

(3.8)

i
— 2 PuKnn (n—t)-
=1
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A distributed load p(f) (Figure 39) can be considered as a system of
elementary concentrated forces; we obtain for the loaded part of the beam:

V() = VoKuv () + 9.Kve () -+ MKvm (n) +

+ NoKvn (1) —{p (0 Kvw (n— 1), l l '
% () = VoKev (1) + 9oKoo (1) + MKom (1) -+ '
n

+ NoKew (1) — {2 () Kew (1 — 1) dt,

a

M )=V Kuv (0) + ,Kns () + MKum (n) + (3.9)

"
+ NoKnw 0)— | p () Knw (n—1) dt,

a

N () = VoK (1) + @K e (1) + MoKum (v) +

+ NoKnw —p () Kw (9 — 1 dt.

a

When distributed and concentrated loads act simultaneously, the integrals
in(3.9) are Stieltjes integrals, i.e., the terms under the summation signs in
(3.8) have to be added to them.

L e
‘ Moy AN s 1.
N 1 i

= 2t) b i) | ' 1

. H 1 :

0 - 7 /AV "’P ;

7 7 7 Zz .
FIGURE 39. FIGURE 40.

In the most general case of arbitrary external influences, the solution )
of the nonhomogeneous differential equation (1.8) can be represented in the x ! I
form:

Vv (‘7]) = VQKW + %Kvo + MoKVM -+ NOKVN _ Fy,

¢ () = ViKov + 9Koo + MyKom + NoKoy — F,
M(n) =V Kuv + 9oKne + MoKum + NoKuw — Fu,

N (7)) = Vo Knv+ 9Kno + MKy + NoKww — Fy, J

(3.10)

where Fy, F;, Fy, Fy are known functions depending on the load and its
distribution. These "loads' need not be vertical forces and moments; they
may also be breaks and abrupt bends in the beam, . - == -
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For the case represented in Figure 40, we obtain for Fv and Fy,:

at0<~q<tl FV:FM=O§

at L<n <L, Fyv = PKyn(n—1ty),
Fu= PKun (T]— t);
at h<n<ty Fy=PKyy@—b)— MKym(n— 1), l
Fu= PKun (n—1,) — MKy (r,— to);
at <<,
Fv = PKvn (0 — ) — MKvy (4— t;) — AVKyy (n— 1), (3.11)
Fu=PKny (n—t,) — MKym (n— t3) — AVKpy (4— 15):
at 1, < n
Fv = PKyyx (n—t)) — MKy (m—ts) — AVKyy (n—t5) —
— 8Ky (—¢y),
Fau=PKun (n— 1)) — MKum(n— ty) — AVK v (n — t) — - . w w
— BpK me(m—1y).
The initial parameters V,, ¢, M, N, can be obtained very simply by this
method, the initial section of the beam being chosen arbitrarily. Thus,
by selecting one of the beam ends as initial section (n=0), we automatically
determine two of the four parameters. The other two initial parameters
can always be found from two equations defining the boundary conditions at
the other end of the beam. )
Thus, for a simply supported beam, we obtain respectively for # =0 and . ' - . . .
!
=Tt
Vo=0, My =0; (3.12)
v(£)=o M(¢) =0 (3.13)

Substitution of (3.10) and (3.12) in (3.13) yields:
l ,
V() = oKve + NoKyw — Fy =0, ! ! !
M() = Ko + NoKon — Fu =0,

Kve, Kyn, Kuo. Kun, Fv, Fu

where

are determined for
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3. Determination of the influence functions

The functions Kyy, Kve,..., Kvv in (3.10) were assumed to be known. It
will be shown now how these functions are determined for the most important
case s>r.

We proceed from the homogeneous differential equation (2.1) whose
general integral, determining the generalized deflection V(y) , is

V(1) = C®, + Cy®y + Co®, + C,0,. (3.14)

The other kinematic and statical factors are linear functions of the
derivatives of V (n):

P00 =TV
M@ =—5rve, (3.15)
N =—5 v —omv).

Substitution in (3.15) of (3.14) and the initial conditions (for (y = 0)
[cf. Table 3]

o, =1, O, =P;=D,=0,
V=Y, p=¢, M=M, N=N,
TABLE 4,

Influence functions

Vo Po M, Neo
, , Kyy =
v _1L — = —— _— L
n [Kyy =@y 228 o, Kye Zaﬂ (A1 + a®y) Kym ZaBE/ @, 2aBs'EJ ———— (A —aDy)
- rs .
% | Koy = 2E§L BO—a®n)| Koq = ®s + 5= O Kow=—122 351 7a5Es COBOY  Kou=Kyu
_E
EJ KM = e [(30-'
My |Kuv = g5 Y WL | Kyw= Ky Kun =Kye
— %) B®; — (a* — 3p%) a s}
EJs?
= — (5% —
N, K 2aBL? Its Ko =Kny Ky =Ky Kyw = Kyy
— 2r%) BO—(s3—2r")a®y]
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yields the following expressions for the integration constants C,, C,, G, C,:

—_— —_ Ll
C1=2_Esl [S’qu>0+ﬁE—No],
C.=V, . _
=1 ~ oL 3.186)
it n) < 1
1 3
Ci=— 55 [r’V°+ﬁMo].

Substituting these values in (3.14) and (3.15), we can express V(y), ¢(v),
M(y), N (n) through the initial parameters Vor 90 My, N, and the influence
functions Kvv, Kvs...., Kyv , given in Table 4,

The influence functions for the two other cases:

s=rand s<r,

- .. -
can be similarly determined.
§ 4. INFINITELY LONG BEAM
1
Consider an infinitely long beam. If a concentrated force P (Figure 41) ) ' - ' ) .
acts at the origin of coordinates, we obtain the following homogeneous
differential equation [for all points except the origin]:
dw 4
T - ) [cf. (2.1)] (4.1)
Assumings>r, the general integral of (4.1) has the form
V (m) = Cye~*sin By + Cye—" cos P -+ C,é=" sin By + C,e¥cos B, 4.2)
where a and B are given by (2.5).
For reasons of symmetry we consider only that part of the beam for
which x >0,
Since for n— o V=0,
we obtain Cy=C¢=0. (4.3)
Substitution of (4.3) in (4.2) yields:
- - w= -

V) = C,F, + GyFy, (4.4)
where _ _
Fy = e=nsin By, }

Fy= e cos py. (4.5)

¥ I K X

TTITRITRIINII




The integration constants ¢, and ¢, can be determined from the conditions at
the origin:

at 7=0 ?0) =1 5 =0, 1

dn
(4.6)
_ __Elraw dav P

where ¢(0) is the slope and N (0) the generalized shearing force forn=0.*

P
U )

L4 . -
FIGURE 41.
Substitution of (4.4) in (4.6) yields:
C\F1(0) + CF, (0) =0,
1:() z:() - “.7)
C\F7 (0) + C.F; (0) = 2ET "
By solving (4.7) we obtain the integration constants: : ' - ' - '
c. P F, 0
V= 2ET Fy (0)Fy (0)— Fy O F (0} ' (4.8)
c. =P _F'(0)
T T (OF, 0 —F; (O)F;(0)
where F;(0), Fy (0), F(0), Fy (0) are the first and third derivatives of |, and
Fz at n =0. -
By substituting (4.8) in (4.4) and taking (1.7), (1.9), and (2.5) into account E : l !
we obtain finally: AN
P—v) 1 —
V(’i)-‘-—Eog— g [aF;(q) + BF: (m)). (4.9) .
N
Expressions (1,11) and (1.12) for the bending moments and shearing
forces respectively then become:
_PL[Fs() __ Film)
M(,l)_T[_L;___AF_ , (4.10) .
3
Qi =—F [Pt — 5 Fa]- (4.11) -

® The following ordinary boundary conditions correspond to the generalized conditions (4.6):

1 dV
Y= — =0,
? 0 L dn

El &V __ P
Q)= wam=—— %"




The reactions of the elastic foundation are, by (1.4),
100 =25 [F + 2 Fa) +a (s — 2y F, ] (4.12)

Expressions (4.9) through (4.12) make possible rapid calculation of the

Stresses and strains in an infinite beam [on an elastic foundation]. They ! l l
can be written in the following concise form, similar to that for an[ordinary]
infinite beam (cf., for instarce, /25/):

P(l—v:) - —
V) = —fz——0v(), M) =PLm(), J
(4.13)
Q) = — PQ(n), 90 = 2-7 ).
where
_ 1 _ _ k4 T . -
o) = == [@Fy(n) + BFs ()],
)= L[ Fim
U= 3 [t~ 5 P, o
700 = 5 B+ 2 Fa )+ (62— 2 F, ().
The following relationships exist between these functions: ) ' _ . ) .
CO=—¢W*. mm=—qm. J (4.15)
() =m(w), ) =—q .
2

Expressions (4.9) through (4.12), or (4.13), are quite general. They are

valid for any function ¢(y), the accuracy being equal to that with which &, ¢, s, ‘
r%,a, B have been determined. 3

Consider the case for which:

ab1H—y

P =———

H
by —
s'rL

' (4.16)

where L is defined by (1.7), and 1 is a coefficient depending on the properties
of the elastic foundation.

Pt —v))_
i 1 Fi(m) is the dimensionless slope whose dimensional value is: ¢ () =— ( v°)q;(-q).

P (1) = 225 AL
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The constants entering in (4.9) through (4.12) are:

___Ee _ EotH
Sl yrpee a CHE R T E ST

L 1—v, H
=27 =20 T
-~ s‘_]._’l -— s1—r3
o« = 3 B= T

H . tH . 1H

Lt LR

_ i BT
=T

(4.17)

[cf. (2.5) of this
chapter and (3.18),
(3.19) of Chapter I)

If the elastic foundation is a semi-infinite plane (H — o), expressions

(4.17) reduce to:

S - . &
20—-vp L
f_Ed L
T8l +w v
st=y,
=1=w
f’—T-

(4.18)

Curves of v, m, Q and ¢, calculated from (4.14) and (4.18) for H —voo ,
v = 0.3, and 4 =1.0, v=1.5, are shown in Figures 42, 43, 44, 45. The

abscissae are the dimensionless distances n= -, measured from the origin.

4
ao 10 20 30 A0
a0 e
\ _I
a 4+ ,/ LT
22 -
AL AT
QI—t p=15 — —<~Foundation.modulus
0 il M e hypothesis {y-.5)
Py U= e il 1\
5
7 (e

Deflections @
FIGURE 42.

These curves have been plotted only for positive values of v since
[obviously] v, m, and g are even functions of %,only @ being an odd function,
The dimensional functions V, M, Q and ¢ are obtained from (4.13).

When 7 increases, the bending moment at 4 = 0 decreases. This is due
to the larger reactions near the point of action of the force. In addition,

the deflections of the beam are considerably less.
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FIGURE 43.
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FIGURE 44.
P 20 40 40
0.0 10 o
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FIGURE 45,
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Curves obtained by Gersevanov and Macheret (cf. /21, 25/) for an infinite
beam on an elastic semi-infinite plane*, and also those obtained by
postulating a foundation modulus, have been plotted in Figures 43, 44, and
45 for comparison. The foundation modulus is assumed to be:

— Bt 1 .
k_Z(i—v:) T (4.19) ' l l

3
ET(1—
=15 v,=0.3, L=]/__iﬁ_i_

where

Comparison with the results, obtained when the foundation modulus is
postulated, shows (see the curve for ¢ = 1.5 in Figure 44) that when
allowance is made for shearing stresses in the elastic foundation, the
maximum bending moment decreases. The difference is of the order of 4 %
for the values of ¢ considered.

When ¢ (y) is given by (4.16), the solution presented here gives for 1= 1.0
and 1.5 lower absolute values of the maximum bending moment than the
solution of the two-dimensional problem of the theory of elasticity. The
difference is of the order of 15 to 20%, becoming less when ¢ decreases.

3

Consider an infinite beam on which a positive moment M, acts ina ' . .
clockwise direction (Figure 46). - )

1
as
/‘\”o x afm)  q
] /) 700
/Z 4 P,
2 [

FIGURE 46. FIGURE 47.

Let two equal and opposite forces P be applied at points 0 and K situated ‘ l
at a distance ds from each other (Figure 47). We shall determine the
deflections of the beam due to this couple. The firstequation (4.13)becomes:

Po(1 —v3) —
Voo () = 225 5,

Pr(d—vh) —
Veg(n = — 252 50+ ds).

The total deflection of the beam at point n(y) is: - - == -

P(1—

v’ - -—
V("l)=VPO+VPK=——TB")—-=(U(11+ds)—v(11)], (4.20)

* This was not done in Figure 42, since the vertical displacements cannot be determined in the two-dimen-
sional problem of the theory of elasticity.
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Let ds tend to zero and P to infinity so that the product Pds = M, remains
finite and constant. By multiplying and dividing the right side of (4.20) by
ds[=Ldn},we obtain in the limit:

Me(d—v) — Mo{l —3) —
Vi = =2t v ) = 25 T, (4.21)
Similarly: l l '
Mo —v}) —, Mo(1 —v)) —
pn) = e g = S G,
M (n) = — My’ (1) = Momu (n), 4.22)
Q=20 m=—L%wm,
am =—22 ) = e quin.
T . | -
By (4.15) :
oum =g,  mu(m)=T (4.23)
pu(m) =m(m), Quin=4q(. :
By differentiating the last equation (4.14) we obtain:
e =R+ S (4.24) K -K K

§ 5. RIGID BEAM
The case of an infinitely rigid beam is very important in the theory of

beams of finite length, Analysis of such beams reduces to iinding the
reactions ¢(x); the other unknowns can be found by means of the ordinary

equations of statics. .
It is convenient to resolve the external load into symmetrical and E ! l

antisymmetrical components and to carry out the calculations separately.
The final result is then obtained by superposition.
1. Symmetrical loading

The deflection of a rigid beam under the action of a symmetrical load '
is constant;

V(x) =C, (5.1)

The vertical displacements of the surface of the elastic foundation are
also constant beneath the beam, as follows from (1.4):

q (x) = kC,. (5.2)
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The reactions of the elastic foundation are thus determined in a manner
similar to Winkler's method. The only difference is that in our case V (x)
has no discontinuity at the beam ends, as would happen if the foundation
modulus were postulated. In other words, the elastic single-layer foundation
is strained even beyond the edges of the beam (Figure 48),

- A [ 8 k)
| Co ¢
(A2 . P MU |
h ¢ .
s fgm,w_ MEEaanicaxnaal
I
qix) i | 0-
IERXEREERYY b L) [ [ 7 i
K 0-46s @ 222z 277 - o
FIGURE 48. FIGURE 489,

In section 3 of Chapter I we introduced the generalized shearing force:

H
Sw) = S e (9) dF = 21V’ (x) (5.3)

[
[cf. (3.10) of ChapterI] i

which is discontinuous at points where concentrated forces act at the surface : ' - ' : I
of the elastic foundation.

In accordance with (5.1), S becomes zero beneath the beam. Beyond the
edges of the beam, the generalized shearing force is, however, different
from zero, so that S(x) has discontinuities at x=_{ and x=/. Hence,
concentrated reactions Q% arise at the beam ends, which are due to
stresses in the elastic foundation beyond the beam edges.

The existence of concentrated reactions Q% can be proved also by different
reasoning. The assumption that only distributed reactions, given by (5.2),
act on the bottom of the rigid beam leads to a contradiction: the vertical .
displacements of the surface of a single-layer foundation acted upon by a ,,
uniformly distributed load are not constant (cf. (3.38) Chapter I). In order 1
that condition (5.1) be satisfied beneath the beam, concentrated forces must
act at the beam ends, causing additional displacements of the foundation
surface (the hatched part of the displacement diagram in Figure 49),

In the general case the concentrated reactions Q® are equal to the
difference between the values of § to the left and to the right of the beam
end:

Q% =Se(—H—Sp(—1, |

(5.4)
Q% = Sp() — S, (),

where S, = generalized shearing force acting in the free foundation, Sb
= generalized shearing force acting in the foundation beneath the beam.

The sign of Q® is determined in a similar manner as the sign of the
reactions g (x), being positive for forces acting upward.
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The stresses in the elastic foundation beyond the beam edges are given
by:
— 2tV + RV = 0. (5.5)

Solving (5.5) for V, we obtain:

— w 11T

at x> Vir = Cg—atx—4,

Taking (5.1), (5.6), and (5.3) into account, we obtain from (5.4):

where —_
&
“=1/2: . (5.8)

The displacement C, is found from the equilibrium condition of the beam
by equating the projection of all vertical forces to zero. The forces acting
on the beam are the known external load P,, the uniform reaction ¢, and the
two forces @4 and Q}; therefore [by (5.2)]

P,
Co=m. (5.9)

Substitution of (5.9) in (5.2) and (5.7) yields:

P 1
o= % rar (5.10)
Qb= 8= ——. (5.11)
l+m

The constant C, could also have been determined from the generalized
(variational) equilibrium condition for the entire system (beam and elastic
foundation), obtained by equating to zero the total work done by all external

and internal forces in the system over the virtual displacement v (x, §) = :
=1-9(y): } ! l

o’ (v) dF dx + Py (0) = 0, (5.12)

S

-1

where dF =38dy, and o, is the normal stress, given by the first equation

(3.3) of Chapter I.
Substituting (3.3) of Chapter I in (5.12), taking into account (1.3), (5.1),
{5.6), and noting that ¢(0) =1, we obtain:

N - == -
-t ] ©
Cok[_gme“““'dx—{- tg‘ ¢x+§e—-u—n dx | = P, (5.12')
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or
Ck [21+ —i-]:?Co[kl-f-th[ =P, (5.12")

from which we again obtain (5.9).
From (5.12') or (5.12") and (5.7) it is seen that each reaction Q° is equal
in magnitude to % times the volume of the displacements in the elastic
foundation beyond the corresponding beam end: ! l '

-f
Q% =k | Certth dx = 2alC,, I

-0

(5.7")
)

»
£ Coeitidx = 2atC, ]
i

A similar result is obtained if the displacements given by (5.1) and (5.6)
for C,=1 are considered as virtual displacements. Unlike {5.12), the work
done by the internal forces is in this case the sum of the work done by the
normal stresses ¢, and by the shearing stresses t,.. The final result will
again be given by (5.12"),

2. Antisymmetrical loading

The deflection of the beam due to an antisymmetrical load is:

V) =8, (5.13) ¥ -K K

where 6, =1tg¢, = the slope of the beam (Figure 50),

t oy
00 a0
04 a7 84
as—L=T— \{\\\ a8
12 AN 12 - { ! [
o 4Gy e
FIGURE 50. FIGURE 51.
It follows in this case from (1.4) that:
q (x) = kb x. (5.14)

In order to determine the concentrated reactions Q’, we calculate the

generalized shearing forces S(x). B - o= bl
Proceeding from (5.3), and noting that the displacements of the foundation

beyond the beam ends are:

at x<—1 Vi = — G fext+h;
at x >[ V" . Bule—ﬂ(:—-l)' (5. 1 5)
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we obtain the following expressions for the generalized shearing force:

at x << —1 S = — 2utBlexx+0
at —l<x<! S = 210, {(5.16)
at x>! S = — 2atle—at—n,
The concentrated reactions at the beam ends can now be determined ! l l

from (5.4):

—Q2=Qg=2t(l+al)90: (5.17)
where _ i

a= 2—, .

From the equilibrium condition for the beam, obtained by equating to
zero the sum of all moments acting on the beam about its center, we find: W T

M
% = s rera T am TFan” (5.18)

Substitution of (5.18) in (5.14) and (5.17) leads to the following expressions
for the reactions:

g=— M (5.19)
2 [1+6m(i+ul)J

Qoo M (5.20) K-K K

2’[‘+e:(f—imJ

where M, is the sum of the external moments about the coordinate origin.

Expressions (5.10), (5.11) (for symmetrical loading), and (5.19), (5.20)
(for antisymmetrical loading), give the complete solution for a rigid beam,
since the bending moments and shearing forces can be determined by known
methods once the reactions have been determined.

3. Calculation examples and analysis of results : l !

The exact solution of the problem of a plane symmetrically loaded punch,
obtained by Sadovskii, is:

P,
q('vz)=7,—‘°y—_—?' (5.21)
where 7= i;— (Figure 51). ‘

The reactions given by (5.21) are also shown in Figure 51. It can be seen
that they increase to infinity toward the punch ends.
The elastic foundation is not considered by us to be a semi-infinite plane [ ] -
but a single-layer model whose properties are determined by two parameters
k and ¢, inwhich concentrated forces Q¢ correspond to the infinitely large
reactions g(r) obtained for the exact solution.
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The concentrated reactions Q¢ are obviously not real forces acting in the
elastic foundation at the beam ends. Their appearance is due to the stresses
in the elastic foundation beyond the punch ends. They should therefore be

considered as fictitious forces by which allowance is made for the influence

of the free foundation on the stresses in the punch,

We put:

H—y

{

sh ¢
4‘( ) =——7f— sh’l—ﬂ '

(5.22)

where [ is the half-length of the beam, and 7 a coefficient characterizing
the variation with depth of the vertical displacements in the foundation.

In accordance with (1.3) and (5.22), the elastic parameters of the founda-

tion are:
Egbd _EQH
= — {=
H(I—v) L
V6 —v) 1,‘

1V —v
THT 1=y,

R

where

201 Fv) $es

{5.23)

(5.24)

[cf. (3.18), (3.19),
(3.32) of Chapter I]

Substitution of (5.23) in (5.10), (5.11), (5.19), and (5.20) yields:

for the symmetrical load,

TI1

=P
=3 o 10 1A _3H
14 V2 (1-», T -7
LT L)
Fee (5.25) .
P
Q°=T.
H YH +H
l/shn,uch%.u,—
V2<1—Vo) i yH  1H
’hTChJT' T - - = -
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for the antisymmetrical load,

_ M t

=5 W TH _ vH 7N -YH_-ny’
2, 1=y LT T Vi) 7 [
ERACT yH YH  yH [ yH YH  ¥H
shom chop= o ope sB= chs o S

S yH _yH , vH
V3= T+

V su
TS RN O 7
! 3 {

Q 2/ H yH | YH H . vH H
¥H ¥ YH ¥ ¥
sh-p= ch=p - V5 l=vy) ‘/"‘hz ST+ 7

2 ¥

1

(5.26)

Consider the case of symmetrical loading, for which curves of the
dimensionless magnitudes g and Q¢are given in Figures 52 and 53. for
v%=0.3 and y=1.0; 1=1.5; y==2.0. The dimensionless reactions g and Q¢
are obtained from:

g=57, Q=200 (5.27)

<y
A

a8 \

=20

EERRNNES

— yeis
07 <
)
0.6 L4
4 10 20 3 40
H
FIGURE 52.

It can be seen that for ratios of f—i above 1.5 to 2.0 the reactions remain

constant for the values of § considered. When “71 exceeds this value,

therefore, the elastic foundation behaves like an elastic semi-infinite plane
(H = o0). It can also be seen that when vy increases, the concentrated
reactions at the beam ends decrease, the foundation behaving more like
Winkler's model.

In order to compare (5.25) with the exact solution given by the theory of
elasticity, we determined the bending moment m, at the center of the beam,
due to the reactions ¢ {(5.10)} and Q% [(5.11)] alone:

o= 4 Qol = Pl B fal (5.28)
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Insertion of (5.23) and (5.24) yields:

l/3sh¥ch§—~;
_ Pt 3+ VE (T shychy+7 (5.29)
=2 shychy—7 :
S (VA B A e
6+ VEI—v) ¥ “shychy+y
with 7 =y &,

In the case of an elastic semi-infinite plane Gf: oo) , (5.29) reduces to:

My = Pylm, (5.30)
where R
m _ 1 Y+ V2 =v)
ST VT
T+ V2 (1 —v)
(5.31)
as [
i‘ }/-Lo //
0.3 yeis
L—"T_
0z y=20
ar 7
/
£
20 / J
[ 10 2.0 30 40
HlL
FIGURE 53.
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———r
FIGURE 54,
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The value of m, given by (5.31) has been plotted in Figure 54 for v,=0.3
as a function of y. It is seen that m, = 0.32 for t=1.5 , which is Gorbunov-
Posadov's result for a rigid beam /26/. With increasing ¢ the value of m,
approaches 0.25 asymptotically, which is the solution when the foundation

modulus is postulated.

The reactions thus obtained for y=1.5 are therefore equal to those ! ' l
obtained in the two-dimensional solution (5.21) for the moments in the .
center of the beam, due to these reactions. Since, for a rigid beam acted
upon by a symmetrical load, ¢ is uniquely determined by P, and!, the bend-

ing-moment diagram, obtained by the method proposed by us, will be similar to
that obtained in the two-dimensional solution given by the theory of elasticity.
As an example, Figures 55 and 56 show curves of M and Q corresponding
to the three most important cases of loading of a rigid beam fo¥ 1=1,5.
Comparison with the exact solution* {broken curves and numbers in
parentheses) shows that the results differ only near the beam ends.

8= & P
Pl & & é . 7
= D m of e
Diagram of 5 g 1agra MePl-b
- 1
o I R B
2 & s
28585
[ 1 ]
" _ Diagramo !
Diagram of § SR Ys ¢ 0-P0 - . . : l
—_ s 8§ 89 - - -
=1 38 J =2
o

FIGUKE 55,

p

 RRETSRXIXRITIIANRNN
Dmgra:;%: l . MDiagmm of by
13 g §§ E = X

6.
261

T8 EY |eo
[::] §S838¢8
i1 ! '
Di
Diagram of § lagam of ¢ 0-%4
@pld sh3mshas
NS =

FIGURE 56. FIGURE 57,

A similar comparison for the case of antisymmetrical loading shows that
the results obtained for y.: 1.5 are very similar {Figure 57).

* See Gorbunov-Posadov Raschet konstruktsii na uprugom osnovanii (Analysis of Structures on Elastic
Foundations). —Gosstroiizdat, Part 1, Chapter 1, §8. 1953,
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4. Allowance for plastic deformations beneath the beam ends

It was assumed until now that the vertical displacements V(x) of the
surface of the elastic foundation are continuous. This necessitated the
assumption of concentrated reactions Q% beneath the beam ends.

Under actual conditions these intense reactions cause plastic deforma-
tions beneath the beam ends, leading to considerable changes in the general l
stress pattern in beam and foundation. The methods of the theory of
elasticity no longer apply to the soil in this case and a special analysis, in
which allowance is made for the elastic-plastic deformations of the foundation,
becomes necessary.

The approximative method proposed can, however, be applied to this case.
Assume that plastic deformations have occurred beneath the ends of a
symmetrically loaded beam, as a result of which V(x) has discontinuities
at x={ and x=—1{, equal to:

¢ =(1—)Co, (5.32)

where g is a coefficient characterizing the settling tendency of the elastic
foundation (Figure 58).

{ A
1 .
G o Al 1 gee?
: N X
PALILILYERRRY
FIGURE 58,

As before, the reactions consist of the uniform reaction ¢ and the
fictitious forces Q¢, where by (5.2)

g = kC,. (5.33) -
According to (5.3) and (5.4): ;

Q% = Qt = 2x1C, (5.34)
From the equilibrium condition of the beam we find:

Py
Co = s szapsy* [cf. (5.9)]  (5.35)
Substitution of (5.35) in (5.33) and (5.34) yields:

-_-%_’.._ - - mm  =m
] aBt *
1425
M (5.36)
Q°=£1£ ‘kl .
1+ 35387 (cf. (5.10), (5.11)]
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When 8 =0, the elastic foundation is not strained beyond the beam ends;
this corresponds to Winkler's model. For g=1, (5.35) becomes identical
with (5.9).

Similar considerations apply to the case of antisymmetrical loading.

§ 6. ELASTIC BEAM OF FINITE LENGTH ! l l

1

The differential equation of the bending of a beam on a single-layer
elastic foundation is (cf. (1.8)):

J
o dV

pL¢
dn* W-}-S‘V-——H. (6.1)

Here v = % and

a
l/ 2EJ (1 — 2
L= Ebv“)' (6.2)

o

where ¢ = beam width,
The coefficients in (6.1) are [cf. (1.9)]:

r’=“_v°§'4)tdy, ' ' e ' i .

° (6.3)

The general solution of the problem can be presented in the form ([cf.
(3.10)):

V() = VoKyy + 9aKve + MoKym + NoKvy — Fy,
(M) = VoKov + 9oKee + MoKon + NKonw — Fo, (6.4 :
M) = VoKmv + PoKuo + MoKnat + NoKunw — Fu, 4) E

N =VoKwv + @oKno + MeKym + NoKunw— Fus

where Kvv, Kvg...., Kvm, Kyn are the influence functions, given in Table 2;
Fy, Fy, Fu, Fy are functions depending on the external load (cf. e.g., (3.11)).

2.

To determine the initial parameters V,, g, Mo, No, it is necessary to - - = -
consider the boundary conditions at the beam ends.

If the beam ends are prevented from moving downward, the boundary
conditions can be written in the usual way:

a) for simply supported ends:

V=0, M=0 (6.5')
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b) for built-in ends:
V=0, ¢=0. (6.5")

If the beam ends are free to move downward, the compatibility conditions
for the beam and the elastic foundation must be taken into account when
establishing the boundary conditions. The vertical displacements V(x) of
the free parts (I) and (II) of the foundation (Figure 59) are determined l l l
except for the constants D, and D, ; the vertical displacements of the
foundation beneath the beam are determined except for four constants
Cy,, C,, C, C, (cf. (2.9)). Six independent conditions (three for each end of
the beam) have therefore to be established in order to determine these
constants,

FIGURE 59.

An obvious condition for each end free of load is:
M=0. (6.6") . ’.' .
The two other conditions can be written as foliows:

Vo=V (6.6")
S=N at x=0 (or x=20),

where V, = vertical displacement of foundation, Vp= vertical displacement

of beam, § = generalized shearing force in free parts (I, II) of foundation, . )
and N = generalized shearing force in the foundation beneath beam (part K
I11).

We note that (6.6'"') corresponds to the conditions for a rigid beam.
Only simply supported beams will be considered henceforth, since these
are of the greatest practical interest while their analysis is the most

complicated.
3
By placing the origin of coordinates at the left end of the beam (Figure 59) - - == ==
we find from (6.6) and (5.3):
My=0, Nyo=S(0)=2atV, (6.7)
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The system (6.4) now becomes:
V(%) = (Kvv+ 22tKva) Vo + Kvo gy — Fv,

9’(7]):<KW+2“1KWN)VD+KW?O_‘FW (6.8)
M () = (Kuv + 20tKun) Vo + Kuopo — Fau, '

N (n) = (Knv + 20tKyn) Vo + KnoPo— Fi. ! ' l

The boundary conditions at the other end of the beam are:
M%) =o, N(T)=—2uv (%), (6.9)

from which the other two initial parameters V, and ¢, are obtained:

i (7) = [ (7) 2, (3)]

2
a; — agay

o ul(F) = [l + 2r, ()]

a} — aay

0= ’

(6.10)

Po = —

The coefficients in (6.10) are:

o= Kuv (T) + 20tKun (). §I-I &
@ = Kns (7). (6.11)
>

ay = Kuy (2—) + datKyy (?'L—‘) + (2ut)? KVN(2T>-

== 188

['] a g

FIGURE 60.

Equations (6.8) and (6.10) represent the required solution when the
bending of a beam of finite length, placed on an elastic foundation and acted
upon by external loads, is considered.

When the beam islong, the origin of coordinates should be placed at the
beam center, and the load should be resolved into symmetrical and
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antisymmetrical components (Figure 60); this increases the accuracy of
the results. The method of solution is similar to that employed above.
In this case the following formulas are obtained:
a) for the symmetrical load:

V(%) = KwV, + KvaM, — Fv,
¢ () = KevVo + Kom My — Fo, ! l '

M (%) = KayVy + KuuMg— Fu, (6.12)

N(n) = KnV,+ KnuMy— Fy,

where

[ bFu (1) —bs [FN(é) + 2ava]

0 b1by — babs ’
! {
M e () =0 [Fu() + 207/ - ow =
o= bibe — baby ’

b) for the antisymmetrical load:

V () = Kveg, + KvwNo— Fy,
@ (1) = Kooy + KewNy— Fo, (6.13)

hY
M (m) = Kmoo + KunNy— F u, v . .\
N (n) = Kneo + KnwNo— Fy, . - ' "
AN

where

_nra(£) —n[rulf) + 200 (1)]

Po = b1be — babs ’

N beF py ({) —bs [FN(%) + 2aIFV(%)]
o= bibs — babs :

The coefficients in (6.12) and (6.13) are: g x I

by = Knu ({) + 2atKym (II) ., bo=Kmv (%) ,
by = Kum ('Il:). b’=KNp(%)+ QGIch(LL), (6.14)

by = Ky (%) + 2atKyv (é) y b= Kng ({) .

Both (6.12) and (6.13) include only loads acting either to the right or to

the left of the origin. - - == -
The equilibrium condition of the beam, the contact condition of equal

vertical displacements of beam and foundation, and the continuity condition

of foundation displacements are all satisfied by (6.8), (6.12), and (6.13).

The statical boundary conditions are, however, only approximately satisfied:

when the bending moments M vanish, the shearing forces Q at the beam
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ends differ from zero in the general case. This is explained by the
properties of the model adopted for the elastic foundation, which is
characterized by two generalized parameters £ and ¢.

Analysis of these results shows that the elastic properties of both beam
and foundation are characterized by a single magnitude:

i
=7, (6.15)

which represents the reduced half-length of the beam.
In the two-dimensional problem of the theory of elasticity (solved, e.g.,

by the method of Gorbunov-Posadov), a magnitude called the index of beam

flexibility is introduced as principal elastic characteristic, being defined

as follows:

nE b2

te —To0d
4t —V)EJ

(6.186)

where ! = half-length of beam, & = width of beam.
By comparing (6.2), (6.15), and (6.16) the following relationship between
» and ¢t is obtained:

=]’/2_'_ 6.17) , , .
=V K- K

Several examples will now be discussed in order to show the effect of )
on the results. It will be assumed that the elastic foundation is a semi-
infinite plane (4 = o), and that ¢(y) is given by (4.16).

The dimensionless reactions 7 and bending moments m, calculated by
(6.12) for two beams, each loaded at the center by a concentrated force P,
are shown in Figures 61 and 62, The elastic characteristics of these beams
are respectively: 2 =1.24 (¢=3,0), and A =1.64 (=7.0). The calculations
were performed for y=1.0 and v=1.5, for v,=0, and H = o0. Curves of q _
and m, plotted on the basis of Gorbunov-Posadov's data /26/ for t =30 ’
and = 7.0, have been drawn for comparison in the same figures (full lines). 1
The actual reactions and bending moments are respectively:

-~

g=¢7, M=mpPlL

It is seen that the concentrated reactions Q¢ at the beam ends vary
inversely with ), as do the bending moments. This variation is more
pronounced when the value of i is less. On the other hand, the more
flexible or longer the beam, i.e., the larger the value of v, the larger are
the reactions near the point of application of the load, leading to a reduction
in the bending moment at the beam center.,

The dimensionless reactions ¢ obtained by Gorbunov-Posadov's method
are almost equal to those obtained by our method for y=1.0 and 1=1.5 along
the entire beam, except near its ends. As a result, satisfactory agreement
is also observed for the corresponding bending-moment diagrams,
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For 1= 1.5, the bending moments for both finite elastic and infinite
beams, determined by our method, are slightly less thanthose obtained when
solving the two-dimensional problem of the theory of elasticity. ’

The dimensionless deflections and bending moments of a rigid beam
(broken lines, numbers in parentheses) and of an elastic beam of reduced

half-lengthx =<0.86 (f=1) , are shown in Figure 63 for Y=1.5, v,=0.3, H = o0,

Comparison of these diagrams shows that (5.23) can be used for beams
when 0< »<0.86. Such beams can be considered to be rigid.

A similar comparison, performed in Figure 64 for an elastic beam
loaded by a concentrated force, and for an infinite beam, represented by
broken lines and numbers in parentheses, shows that the results become
practically identical for » =1.85 (¢ =10): the difference between the
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maximum bending moments is only 5 %%,

) Deflections 2
Deflections §
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ey - i~ 3 :;i\
3R ) 3 28 32 s ]
e B Rmeme—— ¥
2 Bending moments 4 E l Bending moments
E = ]
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— (=1
g3 3 B -l
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FIGURE 63.
d I
Deflections & R T p—

Bending moments @

FIGURE 64,

This enables us to establish the values of x at which transition from the

finite-beam model to that of an infinitely long rigid beam occurs.
When a concentrated force acts, these values are as follows:
(» < 0.86 — rigid beam, _
0.86 <)< 1.85—finite {elastic] beam, -
+>1.85 — infinite beam. >
The boundaries thus defined are identical with those obtained by the

methods of the theory of elasticity, and in particular, by Gorbunov-

Posadov's method.

§ 7. INFLUENCE OF LATERAL LOADING

The method explained above can be applied to many problems connected
with beams on elastic foundations. Such a problem is, e.g., that of a load
applied to the elastic foundation beyond the edges of a rigid beam.

* The comparison was performed for y = 1.5, H = oo, w = 0.3.
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Let a concentrated force G act on the elastic foundation at a distance a
from the beam end (Figure 65). The following expressions are obtained for
the vertical displacements of the surface of the elastic foundation in sections
I, II, I1I, IV (Figure 65) (see sections 3 of Chapter I and 5 of Chapter II):

V= D eatx+n l l ) '
3 9
Vir=Cy+ byx, (7.1)

Vii = Dyeatl~n 4 Dye—ati—n,

Viv = Deatita—n

*
where a = l/z—; .

The solution of this problem thus reduces to determining the six . :
constants D,, D,, D,, D,, G, and §,. ' - ' - .
Since the surface of the elastic foundation is assumed to be continuous,
the following four independent conditions are obtained for the boundaries of
parts I, II, III, and IV:

Vl = VII»
at x=—1
Vii= Vi,
at x=1 =t (7.2)
- V=V, -
at x=l+a SIII—SIV=Gy ‘ l '
where S,;; and Sy are the generalized shearing forces in parts III and

IV respectivelyx,
With the aid of (7.1) and (5.3), conditions (7.2) can be written in the form:

Dy = Cy—8yf,
D! + Da=co+oo[y
Dyg—a 4 Dyas — D, =0,

~ Dy + Dy 4D, = .

(7.3)

® The last equation (7.2) states that S {x) has a discontinuity of magnitude G at x = ! 4-g . It is again
assumed that ¢ (0) =1.
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Solving (7.3) for D,, D,, Ds, D, we find:

Dy =C,— 8/,
G
D,=co+eol—m,

(7.4)
Da= Gﬁa y l ' '
4ate '
G

G
D= (Co+ by + o — —0

We determine C, and 6, from the equilibrium conditions of a beam acted
upon by the external load and the reactions ¢(x) and Q¢ of the elastic
foundation,

The distributed reactions g(x) are, in accordance with (1.4) and (7.1):

q = k(C, + 8,x). (7.5)

The concentrated reactions Q% are by (5.4):

Q4 =S/ (—1)— Sy (—1), ] (7.6)
QE = S“ ([)— S (l)

The generalized shearing forces entering have to be obtained from (5.3)
with the aid of (7.1) and (7.4); substitution of the expressions obtained in

(7.6) yields: T ' B . ) .

Q% =2 (aC, — (1 + &) 8,}, }

Qg=2t[aC°+(l+al)Go|—%. (7.7

The equilibrium conditions of the beam, obtained by separately equating
to zero the sum of the vertical projections of all forces and the sum of all
moments about the beam center, yield:

G B

Pot+ ;:
Cp= mre o
0= TR 2an) *

(7.8)
3 (Mo + 2 1)
S WL S A,
° T 2ARA+ 61 +al)]
Expressions (7.8) differ from (5.9) and (5.18) only by the presence of a -
term in the numerator containing G, through which allowance is made for

the lateral load.
Analysis of (7.7) shows that this lateral load affects the concentrated
reactions at the beam ends, thus altering the stress pattern. The [ — -
influence of the load G decreases rapidly when the distance a is increased.
When this load is distributed instead of being concentrated, allowance can
be made for it in a similar way.
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2

Consider two elastic beams of length 2/, and 2/, respectively, arranged
in line and each acted upon by an external load. The displacements are
shown in Figure 66,

[’

A i 8
o (74
¢:(z) o _0" e
L ’ ’
o 000y | o
woherb raberbr Iy or-

FIGURE &6.

Clockwise rotation will be taken as positive direction for the angles @, 0,
and external moments M, andM,. For each beam a separate coordinate
frame, with origin at the beam center, will be used.

The results of the previous example will be used to determine C., 0, C,
and 6,. The distributed reactions ¢,(x) and g:(x), acting on the first and
second heam respectively, are:

G1(x)=(C, + 01x) &, ]

(7.9)
Ga(x) = (Ca+ 8x) k. |
The concentrated reactions Q4 and Q¢ are:
% = 2t [aCy — (1 + al) ,],
QA [«Cy — (1 + af) 8} ] (7.10)
Q% = 2t[aCy+ (1 + ) 8y), .

&
where a = ]/T .

FIGURE 67.

The solution of this problem thus reduces to the determination of the six
constants: ¢, 6, C,, 8, Q¢ and Q% . Therefore, a system of six algebraic
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equations has to be set up, which is represented in Table 5; the symbols
used in it are identical with those appearing in Figure 66.

The first four equations in the table define the equilibrium conditions of
each beam separately; the last two represent the continuity conditions of
the vertical displacements of the foundation at the point where the two beams

adjoin: :
at x; =14, (xg=—10) :Vy =V, 8 =38, ' l '

The general solution is not given here, since it is much simpler to
perform the calculations in each particular case by direct substitution of
the numerical values in the equations.

Henceforth, only the case of two beams having equal lengths 2/ and each
acted upon at its center by a load P, will be considered (Figure 67).

From Table 5, equations (7.10), and the conditions of symmetry, we

obtain:
( kD :
5 +al+2)P S . owm o wm
Co= &7 4al al '
2k[(T+T +2F+2)
e - aPo
L kY 4al al !
Zh‘(T+T+2F+2)
alPy (7.11)
Q@ =0t = o (T 4al al ’
(7 t3 ot 2)
Q¢ Q¢ al (ka—,:+1)}’n . . - '
A=XB= R aal ol : . - ;
o (G +5 +240+2) ' .
TABLE 5.
Right-
No. C, Cy o 0 Q2 | @2 hand
part
1 2 (kly + at) - —2t (4 + ah) - 1 — Py
*0 !
2 | —Palh R [u +ah) !+ T‘] - Bl = | M
3 - 2 (kly + af) - 2 (1 + aly) - 4 Ps
&2
4 - 2ally - 21y [(1 +alg) i+ T’-] - | —h My
HR - = | |
5 1 —1 4 Iy - - 0
6 — - 2t —2 —1 — 0
85

ITITRRIRITITITITEITIRNI



Let ¢(y) be given by (5.22). The characteristics &, i, and a of the elastic
foundation are then obtained from (5.23) and (5.24). We further assume that
the elastic foundation is a semi-infinite plane (H — oo); in this case:

=B} 7
l(i——v:)z' .
_ Edl 3 l ' l
t—']m_—vo)z—,r. (7.12)
a=1V2(1—-\'o)
=

{—v,

Substitution of (7.12)in (7.11) yields:

Po“‘"’:)

C°=—£.a X
3 S . W W
7'+—3—7V2(1—vo)+'§'(1—"o)
x ,
3 3
T[T’+7V2(i—vo)+-§(l—w)V2(1—vu)+7(i—vo)]

Po(t —v3)
bo= —Fg— X
x 3V2(1—w)

J— 3 —— , 3 '
A1 VIT= 4 g =) VI + 5 (1= w)] ( (7.13)

. =qt= ) o
_ Poa(t— v) VZ(T=w) . ' ' - . . '
161[1'+1 Vidi—w) +7,3;(1—vo> Vil—v)+ 30 -—"o)]

QA=0t=
3
PobZ(i—v,)[T’+T(1_,°)]

— 3 — _ 3
41[1’+1V2(1—v.,) +§;(1—v.,)}’2 t—wv) +5 (’—Vo)]

’

and

3 3 3 ———— v
P, THTIVIO—w+5U—w+ 1V IT =+
(x) =3 3 3 . (7.14)
THIVIT=W + g —w VIT—w) + 5 (1~ w)

The dimensionless bending moments and shearing forces acting on the
left beam, obtained from (7.13) and (7.14) for v=1.5, % =0.3, and auniformly
distributed load p are shown in Figure 68. The actual bending moments and
shearing forces are respectively:

M=pl'm, Q= piQ. (7.15)
The same figure also shows the results obtained from {5.25) by neglecting - _ N
the lateral load (broken lines, numbers in parentheses). It is seenthat this

additional load has a considerable influence, reducing the positive bending
moments and the shearing forces.
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FIGURE 68.

3

The influence of a lateral load can be similarly treated in the case of
elastic beams of finite length 2/. Consider beams having dimensionless

lengths 1, = % and), = 1’__’ , placed in line on anelastic foundation (Figure 69).
1 3

FIGURE 69,

The origin of coordinates for each beam is located at its left end. The

boundary conditions are, in accordance with (6.7): ) ! l !

at 5, =0 a) Mg=0  b) Ni=2atv)
(n=0)
7.16
at n, = 2T’; o) Mi=M'=0; d) Vi=Vi' e) Ni=N'; (7.16)
at 7= 22 f) MP=0; g) N = 4 2atVl!,
where - - W= -

L —17 O V 2Es(1— )
1= T Egb . L Eod :
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The superscripts I and II indicate the corresponding beam,
The kinematic and statical magnitudes corresponding to the first beam are

then determined except for the two parameters Vi and ¢, as are those

corresponding to the second beam, except for the three parameters V',

%l' N;’

Since Vi' and N;' can be expressed through Vi and ¢ (cf. (7.16d, e and
also, below, (7.17), (7.18)) the problem reduces to determining V), ¢!, ol
A system of three algebraic equations can be obtained from (7.16c, f, g), for

the determination of these parameters.

This system is given in Table 6, where the following symbols are used:

Ky = Kiv — 2atKyy,

KN = KNy — 2atKiy,

v = KNy — 2atKy,,
TABLE &
o ‘ | |
Bound ; E
No. c:ﬁ:i:;}; ; p! ? o) Right-hand side
1 ML =0 Kyt + 2atky (d) Kiyg (d1) - Fla(d))
(Kiy (da) + 21Ky py (da)] % . " Fy (d) Ky (d) +
11 1 1 Kyo () Ky (d2) + 1 rl 1
s . My \82) = NV (©2 M 2 - N ¢ MNn G2
2 mi =0 x KMy (dy) + [KLy (ds) + b KLt KL (a Kat, (d2) (d)) Kjly (d2) 4
L ,
+ 2atK},y (da)] Ky (da) ¢ + Fi(dy)
[Kpy (d1) + 201Ky (di)] X | u ) Fy(di) Ky (dy) +
3 1 _ oyl 1 1 Kyg (dh) Ky (de) + 1 1 1
Ngi=2atvy | x Kyl (do) + [Kpyy (dh) + K (de) |+ Fidan) K (dy) +

+ Ky (d1) KL (dy)
+ 2arKL ()| KU (dy) Mo TN i

11 . N
+ FN — 2atF)

The general solution of this system is [cf. (6.4)]:
for the first beam

Vi () = (Kvy + 2¢tKyn) Vo + Kb ope— FY,
¢ (1) = (Kb + 2atKin) Vb + Kioph — FL,
M (n) = (Khv + 20tKkn) VE + Kot — Fle,
N'(n) = (Khy + 2atKhn) Vo + Khoph — Fi;

1453 88
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for the second beam

V() = KWV + Kieg' + KVWNS — FY,
9" (1) = KWVs' + Koegs' -+ KenNG — Fo, (7.18)
M" () = KMvVs' + Koo' + KMwNG' — Fi, ’

N () = KivVs' + Kils' + KiiwNg' — FU. ' l '

It can be shown that, as in the case of rigid beams, the lateral load
reduces the concentrated reactions at the beam ends, thus considerably
altering the stresses in the beam.

§8. BEAM ON AN ELASTIC DOUBLE-LAYER FOUNDATION \

1

Consider a rigid beam of length 2/ and width & lying on a double-layer
foundation and carrying an external load.(Figure 70). Eguations (5.1)
and (5.15) of Chapter I are assumed to hold true for the elastic foundation;
in other words, we are considering an elastic foundation with upper Winkler
layer, whose properties are described by (5.16) and (5.18) of Chapter 1.

;_, e ‘XN N
{ rue

rz/ﬂ/%{j//////// %

» , ]

T gty ey

FIGURE 70.

In contrast to (5.2) of Chapter I, {,(y) is assumed to vary linearly over
the entire height of the foundation (cf. Figure 70)*, From (5.4) and (5.15) of
Chapter I, we obtain:

- - Er
kl == K. k( /11(1—‘\':) N (8.1)
(=0, ty=— Lt

=% £ T F e [cf. (5.7) of Chapter I]

Since the deflections of a rigid beam are equal to zero, the displacement
of the surface of the elastic foundation beneath the beam (part III in
Figure 71) is:

Vi=Cy-+ byx,
° (8.2)
* This derivation remains valid for any other function ¢, (y), since the latter determines only the coefficients
ky and (.
89

IR EEEERREEERRERER



where C, = vertical displacement of beam center, 0, = slope of beam.
From the first equation (5.16) of Chapter I and (8.2) we obtain:

— 2y F" 4 (K 4 ky) F = Cy + 1. (8.3)

13
{ ,/ Mo 4 ]
\ T

I

1 " I/]
LD 777777777777 R

FIGURE 71. T T HENE T Wl

The general integral of this equation is:

F(x)=Cychpx+ Cyshpx + Sed o (8.4)

where

1/ KXk .
B= e (8.5) . _', .

The constants of integration C, and C, are found from the conditions at
the boundaries of the parts shown in Figure 71, which are:

at x=-—1 vi=vill  Si= st 8.6)
at x =1 vit =yl si'=s), (8.7)
where the superscripts I, II, III indicate the corresponding part of the -
foundation.
Proceeding from (5.22) of Chapter I, we obtain:
1 _ agx4{)
Va=De™", (8.8)
V. = D‘e—c.(r—l)'
where o
=) 2
* 20
By virtue of (5.17) of Chapter I, we obtain: -e_= -
81 = 2a,t,D,en x40,
83! = — 2t Dyem b, (8.9)

Si'' = 2K¢t,1C,8sh Bx + C,Bch Bx].
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Substitution of (8.4), (8.8), and (8.9) in the boundary conditions (8.6),
(8.7) yields the following system of four algebraic equations by which the
integration constants can be determined:

—Cachl+ Coshpl 4 7 Dy = L, l I l
—C,shpl+C,chﬁl—%Dl=0.

i Co + 04/ (8.10)
—Clchpl-—C,shﬁl+—K—D,= R h "

—C,shBl—C,chﬁl+;—,’(Dz=0,

By solving (8.10) we obtain C,, C,, D,, and D, as functions of C, and §,. The
vertical displacement C, of the beam center, and the slope 6, are fouud
from the equilibrium conditions of the beam: T T e

2Y=0, M=o

We finally obtain:

1 P,
Ci=~— th Bl Z
{Kky ch BI[X B + BIJ
=~ x 1 thpl\ By % "'.
I'Kk,chBl[—(i—-— 2
Bl a7 )+ 3
_ 8ol
K ComOul) it 4 2 VTF T thpr 4 1] — S0
D, = K+ &, 2B, B, ’
oo ) (8.11)
, K (Cor (Bl +2 VTFRihpl 4 1) — S
Dy = =4 2B,5> :
C, = Ktk B, Po
= IRk T Bl 7
iR
16, = Ktk By Mo '
°= “fiKR, A thery B 2 ' :
wt-5r) 3

where P; = sum of vertical loads, M, = sum of moments about beam center,
considered as positive when acting clockwise, and:

By =1+VT¥xthpl,
B, =V T+X+thpl,

B,=V11++Akthﬁl+l, (8.12) - - -
v K
=4

From (8.11), the generalized displacements V,, V., and the function F
can be found by (5.16) of Chapter I, and (8.2) and (8.4) of this Chapter.
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The reactions of the elastic foundation are obtained from (5.18) of Chapter 1=,
which, after substituting in it (8.4), yields:

q(x)=K[—,—(%(Co+90x)—K(C,chﬁlx+C,shﬁx)J. (8.13)

the beam and the condition of equal vertical displacements of beam and
foundation, but also the statical boundary conditions: thus, the bending
moments and shearing forces at simply supported beam ends, at which no
loads act, are zero. This is due to the fact that the concentrated reactions
Q® existing in a single-layer foundation are absent in the double-layer model.

The solution presented satisfies not only the equilibrium conditions of l l i l

2

The case of symmetrical loading of a rigid beam will now be considered
in more detail. Putting M, =0 in (8.11) we obtain from (8.13):

Po1+V‘+ th Bl — A d;gf
9(x)= YR (8.14)

1+V1+i|hﬂl+)‘ 5

where
=g BV S (8.15) H-K- 1

If ¢.(y) is linear (cf. Figure 70), the coefficients k, and ¢, are given by
(8.1), the substitution of which in (8.15) finally yields:

g0 =12 g0, (8.16)

where

111

. hl. 1_1 (8.17)
) th(’Tl/ 1 )
1+ VTR 'h( I Gi—“o>_A Ly 61 7
F” ]—Vn

Curves of the dimensionless function g¢(x) are given in Figure 72 for

=1, v,=0, and different values ofk—-k—
3

It is seen that in all cases the reactions increase from the center toward

the ends of the beam where they remain finite, varying directly with »;

when \ =0 (k, = oo) the double-layer foundation degenerates into an elastic

:-IN

* When g (r)is known, the bending moments and shearing forces of a rigid beam are obtained by the known
methods of the strength of materials.
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Winkler foundation. On the other hand, when A — oo, the model becomes
similar in its behavior to an elastic semi-infinite plane.

Heunmunoie Bolaesum §(z)

Q4i 06! Q8¢ Lﬂég
I 11
! .
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FIGURE 72,

3

When analyzing an clastic beam of finite length, the differential equation ) . - . ' .
of the bending of the beam [cf. (1.1)],

EWVY =p—gq (8.18)

has to be taken into account together with (5.16) and (5.18) of Chapter I,

which determine the deformations of the elastic double -layer foundation.

Since it is assumed that the beam deflections are equal to the vertical

displacements V, of the surface of the elastic foundation at the same points,

the first equation (5.16) of Chapter I can be inserted into (8.18). From this, )

and from (5.18) of Chapter I, we then obtain: : l l

EJ{—2toFY + (K + ky) F¥j = p— g, (8.19)
— 2Kt,F" + KkoF = q. '

Elimination of g (x) yields:

—EI R P B R PV gnpe g gp - 200, (8.20)
Equation (8.20) is a sixth-order ordinary differential equation with m - = -

constant coefficients and can easily be integrated. The boundary conditions
are given by (8.6) and (8.7). By including the statical conditions M =0 and
Q =0, four independent equations can be established for each beam end;
this number corresponds to the total number of integration constants*,

* The function F (x} is determined for the entire beam length except for six constants which corresponds to the
order of (8.20). Beyond the beam ends F({x) is determined except for two constants (cf. (8.8)).
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After F(x) has been determined from (8.20) and the corresponding
boundary conditions, the beam deflection and the reactions of the elastic
foundation can be obtained from (5.16) and {5.18) of Chapter I; the bending
moments and shearing forces are given by (1.11) and (1.12) of this chapter.
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Chapter HI

BENDING OF A RECTANGULAR PLATE ON AN
ELASTIC SINGLE-LAYER FOUNDATION

§1. STATEMENT OF THE PROBLEM,
DIFFERENTIAL EQUATIONS OF BENDING OF A
PLATE ON A SINGLE-LAYER FOUNDATION B

Consider a rectangular plate on an elastic foundation whose properties :
are described by (7.8) of Chapter I (Figure 73). ,The assumptions usually ™
made in the theory of bending of thin plates will be deemed to apply to this \
case. Friction and adhesion between the plate and the surface of the elastic A
foundation will be neglected. \

(XA

TIT

The differential equation of bending of the plate, referred to cartesian
coordinates, then becomes:

ViV (x, y) — % (1.1)

(v*denotes the Laplace operator) or, in expanded form:

L ML (1.2) -
where w = w(x, y) = vertical displacements of the plate surface, p’ = p"(x, y) =
distributed load on the plate, D= ﬁfw— = flexural rigidity of the plate,
Although (1.2) is known as the equation of bending of thin plates, it can
be applied to the analysis of most rectangular plates. It was shown by
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academician Galerkin /17/ that (1.2) is valid even when the ratio of the plate
thickness to the smallest dimension in plan equals 1:3.

Since the plate lies on an elastic foundation, the distributed load
consists of the given surface forces p’(x, y) and the reactions ¢ (x, y) of the
elastic foundation:

P (x, y) = px ) —qx ). (1.3)
Since the reactions are unknown functions of the coordinates x, y, our ! l l

problem consists in determining their distribution as well as the vertical
displacements w (x, y) of the plate. In addition, the equilibrium conditions of
the plate and the condition of equal vertical displacements of the plate and
the elastic-foundation surface have to be fulfilled.

It was established above (cf. (7.8), Chapter I) that the strains of a single-
layer foundation under the action of a load distributed over its surface are
given by the following differential equation:

— UV (x, y) + kw(x, y) = q(x, N $(0), (1.4) “ - owm o  ww

where

T
Vi=3s t o

is the Laplace operator.

H
k= —Eo Sq;"dz.
—E .
i 09 " l - . ) .
L= oy )

0

are the elastic characteristics of the single-layer foundation.

$(z) = function of transverse distribution of displacements.

The deflections of the plate and the vertical displacements of the surface
of the single-layer foundation are assumed to be equal. In addition, the
load q(x,y) acting on the foundation represents the reaction of the foundation

on the plate. Hence, (1.2) and (1.4) have to be considered simultaneously. ’
Assume that ¢(0)=1. Substitution of [(1.3) and] (1.4) in (1.1) yields: "

V’V*w—?r’V“w—ks‘w:%, (1.5)

where r* and st are the generalized elastic characteristics of plate and
foundation, defined as follows:

H
E, v 1
”=z.—u+—°v.,>_o§¢”(2>d2=ﬁ~ ‘
£ H . (1.6) - -
_ B { g _k N -
s = b
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Also,
E
Egm e, yy= 2, (1.7

2
1—-—\05 i—vs

where E; and v, are respectively the modulus of elasticity and Poisson's
ratio for the material of the foundation (soil).

Differential equation (1.5) differs from that derived from the hypothesis
of Winkler and Zimmermann by the additional term containing r?, which
makes allowance for the shearing stresses in the elastic foundation.

After w(x, y) has been determined from (1.5) and the boundary conditions,
the reactions g¢(x, y) can be found from (1.4), the moments and shearing
forces being given (Figure 74) by the known formulas of the theory of bending

of plates:
Mu=—0<%‘: u%), - S . -
He=He= —H,=—D(l—w) 2%, (1.8)
- —05 (55 +35).

M, '
Mye 2L dy an,
¥ L 9%
f . ay Ny & ay
FIGURE 74.

Following Kirchhoff, the shearing forces N,, N,, and the torque # at the
plate edges are usually replaced by the reduced shearing forces Q. and Q,
which, for a rectangular plate, are:

0w 0w
Q.= — D55 = =1 55z

Pw Fw
Qu=——D[0—y; +(?—P~)'5;z7y‘]-

(1.9i
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§2. REDUCING THE PROBLEM OF THE BENDING OF
A PLATE ON AN ELASTIC FOUNDATION TO
ORDINARY DIFFERENTIAL EQUATIONS

1. General considerations ' l l
The problem of the bending of a plate on an elastic foundation can vnly
be solved in closed form for a relatively small number of boundary
conditions. In most cases the deflections w(x, y) cannot be given as a finite
polynomial in x and y.
Approximations, based on series expansions, are therefore mostly used
to solve problems concerning the bending of plates. One example is the
solution by single or double trigonometric series (the problems of Maurice
Lévy and Navier respectively).
Although simple and convenient for practical calculations, this method
is only applicable to certain particular boundary conditions. The more T o
general method of reduction to ordinary differential equations will according-
ly be used here.
The general variational method of reduction to ordinary differential
equations, as applied to the problem of the bending of a rectangular plate,
is discussed thoroughly in "'Structural Mechanics of Thin-Walled Three -
Dimensional Systems'", by V.Z. Vlasov. Only the application of this method
to the analysis of thin plates on elastic foundations will be dealt with here.
No restrictions are imposed on the boundary conditions at the longitudinal
and lateral edges of the plate, whose thickness may vary exponentially in B ' - . . '
one or both directions.

2. Reducing the two-dimensional problem to
a one-dimensional problem

We shall consider the ¢-axis to lie in the lateral, and the y-axis, in the
longitudinal direction of the plate (Figure 75).
The unknown deflections of the platew(x, y) will be represented as a

finite series: ) H ! l
w(r g) = 3 Wa()x, (0- 2.1)

in which the dimensionless functions 74 (x) determine the lateral distribution
of the deflection of the plate, and are assumed to be known. The unknown
functionsW,(y), which have the dimension of length, can, in accordance with
their physical meaning, be called generalized deflections. '
Different expressions may be chosen for the functions 7, (x), provided
they are linearly independent and satisfy the boundary conditions at the
longitudinal edges of the plate. The simplest example of such a system,
satisfying the boundary conditions: T . - = -—

is a series in sin%, where £ is an integer and assumes all values between
1 anda.
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The introduction of the finite expansion (2.1) is equivalent to reducing
the plate to a system having a finite number of degrees of freedom in the
lateral direction and an infinite number of degrees of freedom in the
longitudinal direction. It is also equivalent to reducing the two-dimensional
problem of the theory of elasticity to a one-dimensional problem, since the
deflections w(x, y) are obtained by determining the n functions of the single

variable W, (y). ! l l
./

FIGURE 176.

To determine the unknown functions W,(y), we consider the equilibrium !
of an elementary slab (composed of elements of plate and foundation)bounded
by the cross sections y = const and y+ dy = const (Figures 75 and 76). In
accordance with the principle of virtual displacements, the equilibrium
conditions will be expressed by equating to zero the total work done by all
external and internal forces acting on this slab over any virtual displacement.
Let the i -th virtual displacement of the plate element be a cylindrical
bending in the vertical plane. The deflections of the upper surface are
determined by one of the functions y,(x), while the corresponding generalized
deflection W,(y) = 1. Since all the virtual displacements of the plate are
defined by the n linearly independent functions y, (x), (i =1...n), n inde- e -—
pendent conditions of equilibrium can be established, from which the »
unknown functions W,(y) (¢ =1...n) may be determined.
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3. Generalized equilibrium conditions of the elementary slab

The elementary slab defined above consists of a compressible layer

belonging to the elastic foundation and of an element lying on it (Figure 76).
To establish the generalized conditions of equilibrium, we consider

separately the forces acting on the respective elements of the plate and of

the elastic foundation. oM ! ' '
In addition to the given external load, moments My, M, E;!dy' and

forces Q,, Q-+ 2—3"«1_1/, due to the remainder of the plate, act on the sections

y=const and y+ dy = const respectively of the plate element. At the corners,
concentrated vertical torces 24 and Q(H + %’;idy) act, which, according to

Kirchhoff, result from replacing the torques by statically equivalent
additional shearing forces.
All these forces, with the positive directions shown in Figure 76, are
external forces relative to the plate element. The internal forces are due e oW -
to the stresses in the longitudinal sections x = const; these stresses can be
reduced to bending moments M, and reduced shearing forces(Q,.
The external forces acting on the element of the elastic foundation are
the normal and shearing stresses acting on the vertical edges y = const and
y+dy=const , The internal forces are due to the normal stresses s,, 3,, and
the shearing stresses <, and 1.
In order to establish the generalized equilibrium conditions for the
system considered, the work done by each of these forces separately will
now be calculated. T ' ' ' '
The work of the internal forces acting on the plate element is equal to
the work done by the bending moments M, and shearing forces Q, in the
corresponding deformations of the element, On the strength of the assump -
tion usually made in the theory of bending of plates, the work done by the
shearing forces Q, will be equal to zero; the work done by the bending
moments is:

{ Muy; ax. (2.2)

where the integral is taken from 0 t‘o b. )
The work done by the external forces acting on the plate element consists <

of:
a) Work done by the given external load

G = {p(x, ) x,(xdr, (2.3)
where the integral contains not only the distributed load p(x, y), but also the -

concentrated shearing forces and moments, and is understood as a Stieltjes
integral. We can therefore rewrite (2,.3) as follows:

6= P, 1, dr+ TP, @) + D me(9)x; @), 2.4) C am - =
where p.(y) and m,(y) are the concentrated shearing loads and moments

respectively, acting along the lines x=1x, whichinclude the reduced shearing
forces Q.(0), Q. (b) and the bending moments M, (0), M,(b).
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b) Work done by the reduced shearing forces-

9Q
Q, and Q, + a—y" dy:

aq,
{22y, try . (2.5)

¢) Work done by the concentrated shearing forces- ' l '

2H and 2(H + "a—’;dy)

—2[ 5] (2.6)

Henceforth, the brackets with an asterisk will denote the difference
between the values of the magnitude inside the brackets at x = 0 and x =10 e mw cwm
respectively.

The work done by the bending moments M, over the virtual displacements
7. (%) (W:(y) = 1) is zero.

In accordance with the assumption made for a single-layer foundation,

u(x, y, 2)=0, v(x, y, 2)=0,

the work done by the internal and external forces acting on the element
of the elastic foundation is represented by the work done by the normal

i [ad
stresses o, and the shearing stresses T, vz, (aty = const), and t,y-f?fdy

(at y+dy = const) in compressive and shearing deformations respectively.
This work will be denoted by R:(y).
The integral equilibrium condition of the slab element is thus:

. 5Q oH _1°
SM,x,ax+S-67”x,dx—2[Wx,] +R+G=0 2.7)
(=123 ..., n)
4. Work done by the external and internal forces B
acting on the elastic foundation R
AN

Consider first the most important case of free longitudinal plate edges.

From the condition of continuity of the vertical displacements w(x, )
over the surface of the entire elastic foundation, we obtain for the region
beyond the plate edges:

n
w(x §) = T Vi) xa (- (2.8)
where W,(y) are the generalized vertical displacements, and the dimension- = - == -
less functions y,, (x) are:
at x<C0 Yor = X (0 €% (2.9)
at x>b Yot = Xy (B2,
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wherea = :;t, k and t = generalized characteristics of the elastic founda-

tion (cf. (1.4)).

This means that the element cut from the elastic foundation behaves
exactly like the plane single-layer model considered earlier: the vertical
displacements of the surface vary exponentially. Each virtual displacement

w(x, y)=1-x,{(x) ' l I

corresponds to a uniquely defined displacement of the surface of the elastic
foundation beyond the plate edges.

The displacements of an elastic single-layer foundation are determined
by (7.2) of Chapter I. Therefore, the virtual displacements of the surface
of the elastic foundation

wi(x, 4) = Loy, (x)

correspond to the virtual displacements inside the elastic foundations:
wilx, g, 2) =Ly () $(2). (2.10)

The work done by the shearing stresses t,, and Ty + %ldy , distributed
along the edges y = const and y + dy = const, over the virtual displacements
given by (2.10) is:

o

deg Ty (04 (2) de. (2.11) :
—0 D % ™ ' e . '

The work done by the internal stresses o, and t, in the deformations
corresponding to the virtual displacements (2.10) is respectively:

+00 M
— (el o, ()¢ () dz,
- (2.12)
— | dx i (0 4 (2) .
—0 0

where, in accordance with (6.4), (6.5), (7.1), and (7.2) of Chapter I and ! l !
(2.1) of this chapter,

Ey

9z =
3
1—v

¥ (2) kz W () %, (1),

= e 4@ 3 Va0, (2.13)

Es < .
Tax = 2(1_.,%)4’(2) ‘gl W () x, (%)

Only the stresses in the foundation directly below the plate can be
calculated by (2.13). In order to determine the normal and shearing
stresses beyond the boundaries of the plate, the functions X (x) and y; (x) in
(2.13) have to be replaced by Xa (%) and yxg, (x) respectively.
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Substitution of (2.13)in (2.11) and (2.12) yields, after integration:

Ri(y) = 23 {21 Sxkxidx + é{lx,.x,]] }WL—
k=i (2.14)

—él{kakxidhL?fSx;x}dx+2at[[x.x,ll}W,,. l l '

where

H
k=2,

1— 2
0o

H
t= | $ @ (2.15)

o

&
“=l/-ﬁ- COoEE T EE W

The integrals in (2.14) are taken from 0 to #. The double brackets
denote the sum of the values, atx=0andx=05, of the magnitude inside the
brackets.

When the longitudinal edges of the plate are built-in or simply supported
(x,(0) =1y, () =0) , and the elastic foundation is not strained beyond the plate
boundaries, (2.14) reduces to:

Riw) = 3 {2§,ax Wy — (k §apn, dx + 2§ g dx) ). (2.16)

A particular case of (2.14) is obtained whenone plate edge is free and the
other built-in.

5. Second method for obtaining the generalized
equilibrium conditions

plate can be taken into account in a different way.

As before it will be assumed that the deflections of the plate are given
by (2.1). The generalized deflections W,(,) will be determined from the
equilibrium conditions for a plate element bounded by the planes y = const,
y+ dy = const (Figure 77). It will be assumed that the plate element is acted
upon by reactions of the elastic foundation, in addition to the external load
and to the forces transmitted from the remainder of the plate,

Let the /-th virtual displacement of the plate element be a cylindrical
bending, the deflections of the element being determined by the functions
7,(x) (W,(y) =1); the generalized equilibrium conditions of the plate element
are then, [cf. (2.7)): - - == -

We shall show now how the strains of the elastic foundation beneath the i : l I

SM,z;dx + S% xﬁx-—?[% XJJ‘+ Ri+ G;=0,
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where G;=G;(y) = work done by external load, and R;= R;(y) = work done
by reactions of the elastic foundation over the virtual displacements:

54‘ (xy y) = hx:(‘)‘

The reactions of the elastic foundation consist, as in the case of a beam
in a state of plane strain, of the distributed reactions g(x, y) and the l l '
fictitious forces Q®(y)* acting at the plate edges (Figure 77). ‘

) /F ”
L
My fZ/H oy dy)

WAy, M
F 2
- 19, ¢ b -
| 0z, or%gﬂ_dy : s (y)
Niud ! !
21 %dy)g !
| : '
01 S S
zl'(a)ﬁéf\\ Zi(x) ',‘;‘ (b}e"“'b’
z -
FIGURE 77, . - ' ’ '
We obtain from (2.1) and (1.4): \
n n n ~
=k Wy, — 2t W, — 2t Wix,
q(% y) lgl L% lgl kX g héx Wl 2.17) \
AN
where £ and ¢ are given by (2.15). .
The work done by the distributed reactions (2.17) over the displacement i E { !
X; is then:

—{qtx Pyde=2 3 t§ xax, dx Wy —
.o (2.18)
— 2B (e S dr + 2§ de— 2t (0 1%) W

By the concentrated forces Q¢ allowance is made for the influence of the
free foundation beyond the plate edges. In other words, these forces result
from the work done by all the forces acting on the element of the foundation C mm - mm -
over the virtual displacement y, of the foundation beyond the plate edges.

* Q¥ (y) are given as forces per unit length.
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We thus obtain:

Qh=—2t 3 {Walx, ©—a1, O + 5%, O W;},

- (2.19)
B=2 T {Wil, ® +ax, ) — 55 0, O) Wi} ! l '

=]

The work done by these reactions over the virtual edge displacements
xi(0)yand ¥ (b respectively is:

2 {2 g+ 2t ) Wa— & I W3} (2.20)
=1

—1Q%y,(0) + Q% (&) = —
k
Finally adding together (2.18) and (2.20), we obtain: - o -
Riw) = 3 {2t §n, dx + Sttt Wi
Py} (2.21)
—{k Dt dx + 26 § i e+ 2at 11,001 ) W,
which coincides with (2,14),

6. Solution of the ordinary differential equation

The forces and moments M,, H, Q, and their derivatives entering in (2.7)

are by (1.8), (1.9), and (2.1):

Me=—D 3 W+ Vi),

H=—D3 (l—p Wy, : ! l

W oD (U—p) Wiy, [s (2.22)

% k=1

Q=— Dug. Wi+ @—p W, X3,

aQ ‘ ..
% =02 W+ C—w W),
=1

Substitution of (2,22} in (2.7) yields:

E& W § g, dx + El W, @2—w { x, dx —
n n -
—2 3 W,(—w [+ 2 Wi L xxide + (2.23)

. .. R‘, G‘.
+ ZWalnxd—g — g =0.
k=1
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Integrating by parts:

D de= g — Sx;x} dx,

(2.24)
Sx,‘x}dx= e} — S XX, dx,
and inserting (2.21), equation (2.23) becomes: ! l '
S aaWl —2 3 (b + 0 W, + 3 e+ ) Wy—Gi =0
kgxa* * lgl( k+P")W"+k§1(Ck+sfk)Wk G (2-25)

(i=1,2,3,...,n)

where
T T - -

an=xD S L, dx,

ba =D {S X dr— 510X+ 6xd* |

cw= 2Dy dx, (2.26)

P = f&xkx,dx + o [l

sh=*k {& X dx + 2 Sx;x;dX+ = [lx.x,ll}
Here D= TZ(!E%M_\ = flexural rigidity of plate; p= Poisson's ratio of plate ' - ' » .
material; g, = 155,,2 . Vo= 1_"1 = elastic constants of foundation material.

§ s

Expressions (2.26) are applicable to a plate whose thickness varies
stepwise in the x direction. The integrals are calculated for each part
whose flexural rigidity D is uniform; the expression in brackets with
asterisk then denotes the difference between the values of (xx -+ x.x) at the
ends of each part. The summation is extended over all such parts.

The coefficients in (2.25) evidently depend only on the functions y, (x) . -
These coefficients are symmetrical: E l l

G =0r, bn=0bx, Cia=Cu, PH=0 =55, (2.27)

in accordance with the reciprocity theorem of Maxwell and Betti.
The free term in (2.25) represents the functions G,(y), obtained from
(2.4) as the generalized load per unit length corresponding to the virtual
displacements y, (x). '
By letting / assume successively different integral values between 1 and
n, we obtain a system of n ordinary differential equations with constant
coefficients for the determination of the n unknown functions W,. By virtue - - == -
of (2.27), this system has a symmetrical structure. All the equations will
be of the fourth order in each unknown function.
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7. Determining the moments and shearing forces

Solving the system (2.25) for given boundary conditions at x=0 and x =%
we obtain all the functions W, (y) ; the function w (x, y)can then be determined

by (2.1).
We can then rewrite (1.8) and (1.9) as follows: ! ' I
M =— Dgl Wi, + Wiy, (a)
My=— Dkgl (Wox, +6W,20), (b)

n
H=Hx=_Hy=_Dk§1(l—l")W;x;' (c)

Ne=— D,E,(W;’h + W), () (2.28)
N,=— D,él(wzx* + Wi, (e) - owm
G=—D2 @—WWx+Wu) ()
U==—DI Wi +@—wWi). @
§3. GENERALIZED INTERNAL FORCES. K - E K

BOUNDARY CONDITIONS AT THE LATERAL PLATE EDGES

As already mentioned above, the functions W,(y) represent the generalized
plate deflections corresponding to the virtual displacements x (x). The
derivative of the generalized deflection therefore defines the generalized
slope ¢ (y) . The geometrical magnitudes W, (v) and ¢;(y) correspond to the
generalized bending moments M, (y) and the generalized shearing forces
N:(y), exactly as in the theory of the bending of beams.

The generalized bending moments M; represent the work done by all the

bending moments M, acting in the section y = const over the corresponding ’ :
. a . . 9
virtual rotations %y‘ =gy, (,=1); the generalized shearing forces N,

represent the work done by the shearing forces N,, the twisting moments H,
and the shearing stresses 1,, acting in the section y = const over the virtual
displacements w, = Wy, (W,=1).

The shearing stresses 1, acting in the section y = const of the elastic
foundation, are, by virtue of {6.5), (7.2) of Chapter I, and (2.1) of this
chapter:

=T o 4O = Taa YO IV, 01, 0 (3.1)

The work of these stresses over any virtual displacement of the elastic
foundation must be calculated over the entire cross section y = const, i.e.,
for —oc< x s 4+o0and 0 z< H.
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The i-th virtual displacement of an arbitrary point M(x, y, 2) of a single-
layer foundation is:

we (%, 4, 2) = Wi(p)x, ()¢ (2)- (3.2)
With W,(y) =1 the virtual work done by the shearing stresses t,, is there-
fore : ! l l
i wax (0 ¢ @ drdz. (3.3)

Substituting (2.9), (2.15) and (3.1) in (3.3), and integrating, we obtain the
following expression for the virtual work done by the shearing stresses
acting in the section y = const:

M=

{2t S ax + £ g } Wi (3.4)

k

I
A

[The integration limits are in fact: x=0 and x=1p ]
By (2.1),[(2.24)], (2.28 b,c, e, ), and (3.4), the generalized moments and
shearing forces acting in the section y = const are:

MJ = ‘i {(2 DSX;X,‘”‘) Minad o) 2 D (Sx;x;dx— [x;xi] ") Wh} (3.5)
(EDSXkXtdx)Wk+ ‘ _V' ’.> .
{e—w 2o (\xiar— g ") + 2t (i dx +

+ e ]} Wi (3.6)

+
M- ||M:

»
]
—-

i=12,...,n),

[where the second term on the right ihcludes the virtual work done by the
o
force i l1.

The boundary conditions for y=0 and y=§ can now be expressed in
integral form with the aid of (3.5) and (3.6).

Since (2.25) is a system of order 4n, the functions W, are determined
except for 4n constants. It is therefore necessary to add 4n boundary
conditions to (2.25) in order to obtain a complete solution. It is seen from
(2.1), (3.5), and (3.6) that 2n boundary conditions can be specified at each
edge y=0, y=1{ . If the plate is built-in, the boundary conditions are given
as generalized displacements; when the edges are free the boundary
conditions are given as generalized forces, and when the edges are simply
supported, the boundary conditions are given partly as forces and partly
as displacements.
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§4. SELECTING THE FUNCTION OF THE LATERAL
DISTRIBUTION OF THE DEFLECTIONS.,
BOUNDARY CONDITIONS AT THE
LONGITUDINAL PLATE EDGES

displacements of the plate, can be selected in different ways provided they
satisfy the geometrical boundary conditions at the longitudinal plate edges
and are linearly independent. Several methods for selecting the functions
Zi, and the corresponding properties of the matrix of (2.25), will now be
considered,

The functions y, (x), which determine the lateral distribution of the ! ' l

1. Eigenfunctions of the transverse vibrations of a beam

The eigenfunctions of the transverse vibrations of a beam having uniform
cross section can be selected as functions xx (¥) , when the boundary condi- - - -
tions for the beam are similar to those at the longitudinal plate edges.
We begin with a short discussion of the theory of eigenfunctions*. The
free vibrations of a single-span massive beam of length b are described
by the differential equation:

xV=1x, (.1)

where X=X (x) is the deflection of the beam axis at x, and p = parameter
characterizing frequency of natural vibrations of beam. B ' _ ' . .
The general integral of (4.1) is:

X(x)=Clsin*;—x+C,cosP{+C,sh';—"-{—C‘ch'%x. (4.2)

The constants C,, C, C, C, and the parameter g are determined from the
boundary conditions at the beam ends x=0 and x=5. The form of the
function X (»n depends therefore on these conditions.

Some particular boundary conditions will be considered.

1. Both beam ends simply supported.

In this case the boundary conditions for X (x) are: ) : { I
at x=0 X(0)=X'(0)=0.}
at x=b X (b) = X" (b) = 0. (4.3)

Substitution of (4.2) yields:

Cz+C4=0.
—C1+CA=O. (4-4)
Cisinp + Cycosp + Cyshp + Cychp = 0,
—Cysinp—Cycosp + Cyshp + €,chp = 0. ;| =

* For a more thorough treatment of this problem, see Vlasov, V.Z. "Structural Mechanics of Thin-Walled
Three-Dimensional Systems”, see also section 2 of Chapter VI,
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The first two equations give C;=C(=0. The remaining two equations
then reduce to:

Cls!np+C,shp=0, ’ (4.5)
—Cysinp 4 Cyshpp = 0.
Since, for a nontrivial solution, all constants cannot vanish simultaneous- l l l
ly, the determinant of (4.5) must be equal to zero. The following trans-

cendental equation is then obtained for u:

sing =0,
which has an infinite number of real roots u,(m = |, 2, 3,.. Jequal to:
x, 2x, 3r, ..., mn. (4.6)

In accordance with (4.6) we obtain a complete system of eigenfunctions:

Xn=sinZ (m=1,223."),

which determine an infinite number of modes of the natural vibrations.

2. Both beam ends built-in. The boundary conditions are in this case:

at x=0 X(0)=X'(0)=0'} (4.7)

at x=b X (@) =X'(b) = 0.

Substitution of (4.2) yields, as before, a system of algebraic equations
in the integration constants C,, C,, Cs, Ci. Equating the determinant of this
system to zero, we obtain:

cospchp =1,

The roots of this equation are: x [ l

. . . . L.m4d
0; 4.730; 7.853; 10.996; .. .; 7 — ™. 4.8)

The eigenfunctions Xn.(x) determined by (4.8) are in this case:

I BmX BmX Em¥
Xm (x) = sin—- —sh -5 —%m (cos—b —ch —b).

where C EN T EE . Em

sinp, —shp,

a‘_cmpm—chpm :
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No further cases will be discussed. Proceeding from (4.2) and the
specified boundary conditions of the problem, the eigenfunctions
Xm(x) can be determined for continuous multi-span beams. In each case
a system of homogeneous equations will be obtained for the determination
of the integration constants. By equating to zero the determinant of this -
system we obtain a transcendental equation for the parameter p , whose
roots define, together with the boundary conditions, all the eigenfunctions ]
corresponding to the problem considered.

Table 7 contains the eigenfunctions of ¢ % for the six basic cases

of boundary conditions of a single-span beam, together with the correspond-
ing transcendental equations and some of their roots.

TABLE 7
Bound = o .. -
°‘"f .ary = = Roots of transcendental equation
conditions 5 . £ )

Beam supports 5 Coefficient S5 general
at at &2 a § = formula
x=0 | xms ] s 3 & ] e ] for Bn

-
i 3 = 3 (n>a)

f—— 3 —

1 0 I X=0|X= _ inw=0| *= . ]
”‘ﬁr-_% x-—o[x-=0| "¢ el P B O I
f [x=0Jx =0 e |sing —sh h 20 41
2 =R TV osaee (sing = Sk jcoschr <) 4 7300 |7 8532110, 9956(14. 1372|120 T
= 0| X'= 0|—@ (cos BE—|cos « — ch = : . : . n _
X'=0x Zchpg) |osHTche ! 2 KE-H K
X*=0|X"=0 -:inhPEE+ i h h 2n 4+ 1
3 = = shpf — [sinp —shyp |cospchy= . 83 995 1372 +1_
X"=0|x"=0{—a(cosnE+|casy —chp| =1 4.7300 |7.8332110.9956/14. 1372 ——=
+ chpg)
X —olx-—o| ZHe g h i 20 — 1
4 =UE T T shes — sinp + ship feosuchu =\ g5y |5 gg41| 7.8548010.09552 =1 _
%m X*= 0]X™=0|—a{cospE— cosp +chpy| =—1 8 4 P
— chpg)
:_-—_% X =0{X =0| sinuf— sin tgp = 66 . 4n 41
. 7.0685(10.2102{13.3520/ 2" * _
3 © IX*=0]X"= 0] —ashpE sh =thu 3.92 "
) 0 6 L 0
X =0{X"=0] sinpf + sinp tgp = 4n + 1
6 3.9266 |7 0685[10.2102{13.352022 T °
1|X*=0[X"=0] 4 ashuf sh =thp 4 "
|

In order to simplify the use of the eigenfunctions, values of X, (x) and of
their first three derivatives, multiplied by constant factors:

= X (B)y 25 X (0), 5 Xm(0),
] M Bm
are given in Tables 5 to 10 of the appendix for nine intermediate sections - - = -
and the two end sections x=0 and x=b of the beam.
The eigenfunctions determined in this way possess some properties
which have very important practical applications. Firstly, they are
orthogonal over the entire length of the beam:

&
{ X (x) Xa (x)dx = 0. (m=+ n)

[}
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The second derivatives of the eigenfunctions are also orthogonal:

b
| Xm0 Xo (1) dx = 0. (m =+ n)

It then follows from (4.1) that all even derivatives of these functions are

orthogonal. ! ' l
The corresponding integrals for m=n are different from zero and

independent of the boundary conditions at x=0; they can be expressed \

through the function and its derivatives at x=#4 only:
b
S X2 (1) dx = 2 (X2 — 2XnXm + (X lems.
[

Returning to the problem of a plate on an elastic foundation, we take as
eigenfunctions X, (¥) the functions of the lateral distribution of the
deflections X,(x).

The solution of (2.25) is simplified when y, = X,. Thus, for the symme-
trical problem (cases 1, 2, and 3 in Table 7), the system (2.25) can be
divided into two independent sub-systems, each containing only even or
only odd terms of (2.1). The system (2.25) cannot be divided when schemes
4, 5, or 6 in Table 7 apply.

Furthermore, by virtue of the orthogonality of the eigenfunctions
and their second derivatives, the coefficients g, and ¢, vanish for i=#.

2. Trigonometric functions

The problem considered is solved most easily when the longitudinal
plate edges are simply supported (case 1 in Table 7). In this case

the eigenfunctions degenerate into the trigonometric functions sinkbﬁ‘ , all

derivatives of which are orthogonal. Hence, since y, = sin ’%Oat x=10and

x=0b, all coefficients (2.26) vanish for is%. System (2.25) then reducesto
separate independent equations of the fourth order in W, (y). -
Trigonometric functions may also be used when the longitudinal plate :
edges are free, or when one edge is simply supported while the other is F l l
free (cases 3 and 6 in Table 7). The elastic line can in this case be
approximated by a series consisting of the first (linear) terms of the
krx
=
The function w(x, y) for a plate with free ends (case 3)is then:
for symmetrical loading

eigenfunctions and of the trigonometric functions sin

w(x, §) = Wo(y) | + Wy (g)sin 3 + Wy (g)sin 22 +..; (4.9)
for antisymmetrical loading

w(x, 9) = Wo ) (1 — F) + Wal)sin 524 W, () sin 27 4. (4.10)
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For a plate simply supported at one of its edges (case 6) we obtain:
©(x, 9) = Wo () 3+ Wi ()sin e + W (y)sin 22 4. (4.11)
When the functions y,(x) are defined by (4.9) or (4.10), and D = const

system (2.25) can be represented in the form of Tables 8 and 9 for sym-
metrical and antisymmetrical loading respectively. ! l l

TABLE 8

Matrix of ordinary differential equations for symmeztrical loading

n
w,y::W.,-i—é—z W.sink"Tx npe R =1,3,5,....n
A=l
. v w | w Free R
" 1 | 3 e v, Displacement
! term
=1
ageD? — a, DY — Xo . .
6Dt — 260, D%+ g D8 — 5 (s $2D° on . ' . - o . omm
v Do 2t D TR L =20, £ ) D) G|
+ S0 < (Duo -+ Pg; 01 o g0 ° g
7 Sos -+ San -—
nX
a“D‘— X1 = sIn ’6_
1 * — 2y + o)) D+ 0 0 G,
+(S';1 + cu) S——
. 3nx
ageD' — Xs = SIn 3=
3 .
. 0 — 2 (bus + pag) D[+ 0 Ga o K- K
+ (s35 + cn) ”
a,, D¢ —
. o : . nmnx
n * 0 0 _Z(brm + Pup) D* + G, X, = sin 5=
. + (Spn + Can)

The only nonzero terms in these matrices are those of the principal
diagonal, the first row, and the first column.

The symbols D¢ and D? in these tables denote respectively the fourth and
second derivative of the function indicated at the head of the column. The
coefficients:

0 0 0
Qnoy Poor Soos Qors - - -+ Cnny San

are obtained from (2.26), by substituting in them the expressions:
for a symmetrical load,

%=l x”=sin'-m{ (at n=1,3,5 7,...)

for an antisymmetrical load,

xn=l—2—:.x,,,==si = (at m=2 4,6,...).
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The free terms in the last column but one of each table represent the
work done by the external load over the corresponding displacement Wy,
whenW, = 1.
These examples show that in order to obtain a complete solution it is
necessary to solve an infinite number of ordinary differential equations.

TABLE 9

Matrix of ordinary differential equations for antisymmetrical loading

n

m
-2 krx R
W(‘-J’)=Wo<|_{)+2 Wysin—p— apn k=2, 4, 6,....m
ham2
f Free-
It W, W, W, L2 ’ term Displacements
T
oDt ~— 2 (bgo + %D‘_z(bol'f'ng) Dy auD* — Dt — Xo b
0 +ng)Dz+ + 0 _2(b°‘+Pg‘)D|+ -2(b0m+Pgm)D2+ Go '8
02 W
* Soo + S04 + 3, ‘ ' '
2mx
QgD — X1 = sin -
2 . — 2(bne 7 0 D + 0 0 G | '
< (enn + 83) | f
- Anx
gDt — Yo o Sin T
4 . . —2(bu+pg) D+ . 0 60 '
+ (Cad + 3, e~ ot ~
;. a"""D‘— mmx
| * . . . =2 + P DE ] G Xy =90

+ (Coym + Spam) |

number of terms in (2.1).

Since, however, the series representing trigonometric functions or
eigenfunctions converge rapidly, it suffices in practice to take a small

Thus, if the load distribution is neariy uniform

in the x -direction, two or three terms in (4.9) and (4.10) are sufficient in
order to obtain satisfactory accuracy. This is also true for the other
methods of plate support.
When only a limited number of terms are taken in (2.1), the bending
moments M, and shearing forces N, and Q, can be determined directly from
the equilibrium conditions instead of from (2.28).

3.

Fulfilling the statical [equilibrium] conditions at
the longitudinal edges

As already stated, the functions y,(x) are selected in order to satisfy the
geometrical boundary conditions at the longitudinal plate edges.
fulfilment of the statical [equilibrium] conditions depends on the type of the
boundary conditions and the form of the functions %, (%), and is, as a rule,
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only approximate; this does not, however, introduce large errors in the
calculations.

The statical [equilibrium] conditions at x=-0 and x=5 are particular
cases of the conditions of equilibrium which, generally speaking, must be
fulfilled at all points. On the other hand, the equilibrium conditions were
included only in an integral form when establishing (2.25), In this solution,
as usual for variational methods, the average deviation fromthe exact l l I
solution and from the strict fulfillment of the equilibrium conditions is
small; at certain points, however, and particularly at the boundaries x =0,
x =10 ; the equilibrium conditions may not be satisfied.

The following examples will make this point clear,

a) In the case of free plate end x=0, functions X,(x), can be selected
as eigenfunctions which satisfy the following boundary conditions:

at x=0 X"(0)= X" =0, X(0)%0, X' (0)+0.

The following expressions are then obtained from (2.28a) and (2.28f):

Mi(0) = —D I pWaxa,
k=]
" ) (4.12)
Q:(0)=—D % (2— ) Wixe

These equations are identical with the statical boundary conditions only
for certain values of M, and Q,; in particular, they are not identical with . _ ' . .
the homogeneous boundary conditions:

M A0) =0, Q:(0)=0 (4.13)

Hence, the statical boundary conditions at the free ends are only approxi-
mately satisfied in the general case, the accuracy depending on the number
of terms taken in the series expansions,

b) When the plate is supported on hinges at x =0 , the eigenfunctions

taust satisfy the condition: -
2(0) =0, x"(0) = 0. E !

It then follows from (2.28a) that:
M. (0)=0. (4.14)

The homogeneous boundary condition (4.14) is thus identically satisfied
in this case. If an external moment is applied at x =0, the resulting non-
homogeneous boundary condition will not be satisfied, irrespective of the
number of terms taken in the expansion. This contradiction is, however,
purely formal, since in a section an infinitesimal distance from the boundary
section we shall obtain a value for M, which is very close to the actual value
by taking a sufficient number of terms in the series expansion.

It will be shown in section 5 how the statical [boundary] conditions at the
longitudinal edges can be approximated with a minimum number of terms,
by means of a different selection or an extension of the system of functions

74 (X)
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§5. SELECTING THE FUNCTIONS OF THE LATERAL
DISTRIBUTION OF THE DEFLECTIONS BY THE
STATICAL-EQUILIBRIUM METHOD

Eigenfunctions or trigonometric functions are not the only possible
choice for the functions y, (x}). They can also be obtained by means of the
statical-equilibrium method.

We consider the plate element of width dy as an ordinary beam, its
elastic line being determined by the boundary conditions. Different elastic
lines can be obtained by varying the point of application of a concentrated
force acting on this beam; these lines, which are third-order curves, are
then taken as functions y, (x) (Figure 78).

P! 1 p )

I
/
A

/4

Tty TR
T L I 11
L. — 2 J Z;(x)

FIGURE 78, FIGURE 79.

In the same way we can apply a distributed load to the beam. By
assuming different laws of variation with x of this load, we can obtain
different forms of the functions x, from the differential equation:

p
= E/

and the boundary conditions. A certain function y, will correspond to each
type of loading. With a uniformly distributed load, of differing intensity in
different parts of the beam (positive or negative) (Figure 79), the deflections
%, of each part are represented by fourth-order parabolas when the rigidity
EJof each part is uniform. Since the functions X, (x) and their derivatives
may be expressed differently in different parts of the beam, we shall
consider the integrals on the right sides of (2.26) as the sum of the integrals
taken over all these parts.

This method is more general than the method of eigenfunctions. This
follows from the following property of the eigenfunctions:

X! (%) = kx (x).
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In the particular case when the load varies like the ordinates of the
elastic line, the eigenfunctions themselves will represent the elastic
line.

Further, when a shearing force Q(x) acts at the free end x =0, or when
a moment M, is applied at a free or hinged end, the elastic lines of the
beam, duc toaforce Q.(0) =1 and moment M,(0) = | respectively, can be
included in functions x,(x). A better approximation to the exact solution at, ! ' l
and near, the free end x =0 is thus obtained than by taking a finite number
of terms in the expansions of the eigenfunctions.

This method is also simpler than the method of eigenfunctions, used
when analyzing complex structures, such as continuous plates and plates
of variable thickness whose rigidities vary exponentially in the x direction.

An elementary strip of width dy of such a structure can, depending on
the cross sectinn of this structure, be considered either as a stepped or as
a continuous beam. By applying an external load to such a beam, we obtain
the functions y, (x) by the known methods of the theory of structures.

- . -
I —— i 8
A N R
Az REIEERERE
é S N & ey
I |11ﬁ)
4 o-—== IFIRER :
j -------- * ey u( . - ' ) .
Zy(z)
FIGURE 80.

Different functionsy,(x), approximating the deflections w(x) for y = const,
are obtained by varying the external load. Figure 80 shows the functions
X, (¥) obtained as deflections of a continuous beam under the action of three
types of loads, approximating the deflections of a continuous plate built-in
along the edge x =0 and having rigid supports parallel to the y axis at

X=u, X=d + 4, and x=a; + a, -+ aj. - H l !

§ 6. PLATE SIMPLY SUPPORTED AT OPPOSITE ENDS
1

Consider a rectangular plate on an elastic foundation, simply supported
along the longitudinal edges (Figure 81).
The functions of the lateral distribution of the deflections are assumed to

be: - - = -

nnx

X, (%) =sin 5 6.1)

Because of the orthogonality of these functions and their derivatives, we
find that all coefficients (2.26) having different subscripts vanish, while
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those with equal subscripts become:

_ ﬁ _ pynint ) nint
ann—‘oz y bnn—Dzb, Lnn:DTba-
o _ , b o b 21 ntnt ( 6. 2)
pm=tg,  Sa=ky[l L
System (2.25) thus reduces to n independent equations: . l l l
annW:lv —2 (bnn + P?m) Wr.x + (Cnn + 5:n) w/n = Gl‘- (6 3)
p)
A il

Xz}
e

FIGURE 81.

The subscript n will henceforth be omitted. It should be kept in mind
that the coefficients (6.2) and the function W correspond to a certain value
of nin (2.1).

2 -
It is convenient to write (6.3) in dimensionless coordinates. Introducing {
a new variable n = 11 and noting that:
dW _ 1 dw aw 1w
T dn rr etc.

we can rewrite (6.3) in the form:

WY 23 4 W = _’a‘_a. (6.4)
| - .. [ ___{
where
=2t
o (6.5)
=
118
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Substitution of (6.2) in (6.5) yields:

2 _ 202 P ! [ 2
=t 4 ()

I e (6.6)
s=nig 4 [ TR

D
- £

{ = plate length, p = plate width:

a1 2
- 2t

Introducting the notations.

6= gy - 6.7)

we obtain:

2,2 2
rf=r+r,

It is seen that (6.4) has the same form as the differential equation of the
bending of a beam (1.8) of Chapter II, differing only in the values of the
constants r? and s*. It follows that methods similar to those used for two- -
dimensional analysis of beams can be applied to this problem (cf. sections ' - ' ) '
2, 3, 6, of Chapter II).

§ 7. SOLVING THE DIFFERENTIAL EQUATION OF
THE BENDING OF A PLATE BY THE METHOD
OF INITIAL PARAMETERS

is most simply solved by the method of initial parameters.

When an arbitrary external load is applied to the plate, equation (6.4) -
The general solution is then: E

W () = KwwW, + Kwspo - KwuMo -~ KwnNo— Fu,
CP(TD = Kaw'wo + Kw% + KoMMo + KaNNo— Fv,

M) = KnuwWo + Kusfo + KMo + KunNo — Fu, (7.1)
N () = KnwWo + Kvepo - KemMo + KvwNo — Fa,
where Kww, Kuwg, ..., Kaa = influence functions; W, @, My, N, = generalized
deflection, generalized slope, generalized bending moment, generalized R — -

shearing force respectively (at y = 0); Fw, ..., Fy = load functions.
In order to determine the influence functions in (7.1} we have to find
the solution of the homogeneous equation corresponding to (6.4), which is:

W (n) = 1Py + Co P2 + C3®; + C Py, (7.2)
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where C,, G, ..., C( = integration constants; ®,, ..., ®, = functions depending
on the roots of the auxiliary equation, i.e., on the coefficients r¢ and s*.
The case:
s>r.

is that most frequently met.
The functions ¢,, ..., ®, are in this case (cf. Table 3, p. 51): ! I l

®, = shay cos By, ®, = chancos B, (1.3
®, = chansin f, ®, = shamnsin fx, ’

;=@’ ?=]/ST". (7.3")

Since W is a function of the dimensionless coordinate 9= % , the
generalized slope ¢ is:

a
&3

o= Ly (7.4)
We then obtain from (3.5), (3.6), and (6.1) the generalized bending
moment M and the generalized shearing force ¥ :

M=—f(w—pZw),

"‘.-ln

¥ = fe—p 2w, 7.9

a

where i = Poisson's ratio for material of plate; a, h, and (¢ are givenby (6.2).
Substituting (6.2) and (6.7) in (7.5), we obtain:

M= — (W — W),

_ a e 2 9w (7.6)
N=—5{W —[2—wn+2 W}

We then obtain from (7.2), (7.3), (7.4), and (7.6):

W =C,®, + Co®, L Cy®; + Cy Dy, : ! I
lp = Cy (a®y — BD,) + Cy(a®, — BDy) + Cy (a Dy + o)+

+ Cy (ady + BD,y)
EM=—C{{(1—p) 7} + r1 D, — 2By} — C, {I(1 —wy 1} +
+ 1ol @y — 20} — Cy {{(1 — p) 1} + r3] @5 + (7.7)
+ 2aB0,} — Co{i(1 — ) ri 4 15; D, + 235Dy}

% N=Clafs?—pri| @+ B[s* +pri| D) +
+ Cafafs® — urf) @y +E|-"'+l"’nms}—ca{ﬁ—[5'+W;"I‘Dz—' - - s -
—alst—prd| @) — C, {BIs + urt) O, — a [T —purd) Dy} .
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For v =0 these expressions become:

u'7n =Gy,
lg, = oaC, - §Ca~
* 2 .
= M= — Co (1 —p) -+ rd) — 208C,, (7.8)

— No = Cia[s*— pri] — Cf [s? + purl).
Solving (7.8) for C,, Cy, C,, C, yields:

Ci = =5 [+ urd flge + B 2 Ny

1 2;551 1 0 a 0l
Cz = Wm
1

_ . (7.9)
Co= goza | " — i) adg, —a T No).

2
Ci= —-TE?{I(I — Wi+ bl Wot S-M,}

where @ and  are given by (7.3'), ands, r;, and r, by (6.6) and (6.7).

TABLE 10,
w, [ My Ny
[ 2 I
N Ky = 5== (2880, — [(1 — ) r? 24 urt) 50, .k —_—
W, Kow Zab 2 — [( P: 11 | Kwe = Py B,[(S + pr} ) 8D, + Kym= P o, KWh-zaaBsg -
+ ] @) + (s* — prf) D, X (B®; — ady)
Kow = —— [(s* 4+ pr?) & Ko, = — (2850, - !
o W= 20aB [(s* + priy 5w, — w = ozp ; Kom= ‘Ea—;[ﬁ x Kon = K
— (st = urd) aly) +( — )t 4 21Dy X (ady + BO)
. 2 2
. K My 2aﬁ 3 = [BUs® + pr)X
—— (5t a2 {2 — 2
M, Knw = g O = X[ +w) i+ 3+ Kym = Kiq Kun =K
2 + (st —pr} [P+ 2 @y +
+ 2rg]y O 1
+al(s—pr}) [t —p) el
. + 13l —(s* + pr}) [s* — r#]} )
Knw & 7= 2-51, {Blest + (2~ wrdr+
Nol 4 =) rf+ 3] (st + wrh)] @y + Kyo=Kuyw Kym =Kow Ky =Kpy

rafist—rY (s* 4 prh) —
|

|1 =)} 2] (s — prd)) g}

By substituting (7.9) in (7.7) the solution of the homogeneous equation
corresponding to (6.4) can be expressed through the initial parameters and
influence functions (the functions Fy, ..., Fy do not appear in the expressions
obtained). The influence functions are given in Table 10,
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In order to take into account the external load, represented by the right-
side of (6.4), we subtract from the expressions (7.7) terms corresponding to
the functions Fy, ..., Fx, which depend on the applied load and its distribution
over the plate. This dependence was discussed in section 3 of Chapter II.
One example of the application of this method will be given here.

Let a load as shown in Figure 82 act on the plate. It is seen that in
part 0 < n <t the homogeneous differential equation is applicable so that l ' l

all unknowns are determined by the initial parameters

W (n) = Kww () Wot Kwe (1) 9o+ Kwn (1) Mo+ Kuww (n) No,
¢ () = Kow (1) Wo + Koo (1) ¢ + Kom () Mo + Kon (1) Mo,
M) = Knw(m) Wot Kne (0) 80 + Kmm (1) Mo+ Kuw () No,
N(m) = Knn () Wot Kne () 90 + Knu () My + Kw () Ny,

(7.10)

For t, <7 <, the following expressions have to be subtracted from the

respective equations (7.10): o -
Fyw =GiKwn(n— 1), Fu=GKun(n—1), } (7.11)
Fo = GKen (n— 1) Fn =G Kan(n—t) ’
where
Gy = 2 Pox {0) = Puz(es) + Pax (ca),
and y(c) = value of X (x)at the point of application of the concentrated force. ’ ' . ) '

For t,< v <t, the load functions are:

Fw=0,Kyn(n—1,)+ GKwn (n—ts),
Fo = GKen (m—11) + GyKay (n— 1), (7.12)
Fu = G\ Kuny (n— 1) + GoKun (1 —ta),
Fy = GKnn (n— 1)) 4 GsKan (n— 12},

Gy = Pyy (cy). » E l l
AN

where

FIGURE 82,
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For f; <4< | the load functions are:

Fy = GlK\l”A’ (’f)— 4+ GsKWN ("l — ) +
+ {6y () Kwnn — 0y,

»
Fo=GKow (— 1) + GsKen (m—1,) + l ' '
n

+SG. () Kon (n— 1) dt,

° (7.13)
Fu= GKuy(m— 1) + GKun (n— b)) +
n
+ SG. () Kun (n—1t)dt,
0
Fy = G Kuyn (n—1)) + GaK,VN (71— y) +
-+ SG‘ (Y Kan(n—18dt,
1]
where - e -

b
Go=(p(x, My (xdr.

[}

§8. DETERMINATION OF INITIAL PARAMETERS,
CALCULATION OF BENDING MOMENTS
AND SHEARING FORCES

Since the origin can be in any plate cross section, two of the four . . l
initial parameters W,, ¢,, My, N, in (7.1) are usually determined directly
from the boundary conditions (cf. sections 3, 6 of Chapter II). The two other
parameters are determined, irrespective of the applied external load, by
solving simultaneously two equations written for a different cross section
(n = const) of the plate. This will be illustrated by several examples.

Simply supported lateral plate edges

The load applied along the n axis will be divided into symmetrical and : ! l
antisymmetrical components. The origin of coordinates lies in the center
section of the plate (Figure 83).

The boundary conditions for symmetrical loading (Figure 83, a), are:

=% -0 % =0, N,=0. 8.1)
the general solution then becomes:

W (1) = WoKww (1) + MoKwa (1) — Fw (%), )

? (M) = WoKow (1) + MoKom (m) — Fo(x), - =
M(n) = WoKmw () + MoKuna () — Fu{n), (8.2)

N () = WoKyw (m) + MoKnm(n) — Fu (1)
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where the functions Fw,, .., Fy correspond to the load on only one half of
the plate (%> 0). The parameters W, and M, are determined from the
boundary conditions at the lateral edge:

at n=4(1=—3): W=0 M=0. (8.3)
Substitution of (8.3) in (8.2) yields: l l l
W (3) = WoKww () + MoKwu () —Fuw () = 0. | 6.4)
o. |

1
z
M (3) = Vi (3) + Mok (1) —Fu(3)

FIGURE 83.

The solution of system (8.4) is:

(%)Kuu(i) FM,L>K\VM )

Wo=
T wa %)KMM > KWM( ) ) 6.5)
o ) Eeelz) e Kw() '
K\VW(";_>KMM< ) KWM( )KM\V (7)
For antisymmetrical loading (Figure 83,b), the boundary conditions at )
n=0 are:
(8.6)

at n=2=0: W,=0, M.=0.

The general solution for this case is:

W (n) = paKwe (0) + NoKww () — Fw (),

& () = $aKop (M) + NoKon () — Fe (M), (8.7)
M (1) = 9ok mo () + NoKun () — Fu (m),
N () = 9oKno (M) + NoKuw () — Fn(0),

- HE - Ex [

where the functions Fy (w)...., F¥(%) again correspond to the load on only one

half of the plate.
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The boundary conditions (8.3) yield:

W (%) = ﬁ?oKwe (\%) i N(IKWN <%>_F\Y/ (%‘) = O,

(8.8)

M () = soKme (3) + NoKun (3) — Fu (1) =0, l l '
whence
. Fw(/%)KMVG)—Uf(2>KWN(%\
’ KW@(_;" KMA (%)—KW’V(%‘)KM;»(%) (B 9)
r,«.{(—i‘xl"wo % —Fu <i>KM¢('_17 )
N, = 1 1

Built-in lateral plate edges

In this case (Figure 84), the boundary conditions at % =0 for symmetrical
and antisymmetrical loading are given by (8.1) and (8.6) respectively, The
solution of the problem is given by (8.2) for symmetrical and (8.7) for
antisymmetrical loading.

wy;;ﬂnwwu!:‘-‘E'u;.i&%u#w

% g T e

!
118

The boundary conditions at the built-in lateral plate edges are:

n=%(n=—;) W=0 ¢=0. (8.10)

The initial parameters are determined from (8.10) and (8.2) or (8.7):
for symmetrical loading:

_ FuKoy— FKegp

O KyyKom —Kymiop ' (8.11)
M FeKow—FuKey

°7 KywKoy —KunKow’
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for antisymmetrical loading
FWKGN _ F@KWN

Po= KWvaN_KWNKW ’ 12
FKwo— FuKes (8.12)

No= R, ' -
¢ KWOKGN_KWNKGO l l '

KoMn KWMy ey Kov, Kch FW" Fw

where

are the values of the corresponding functions at v = % .

Free lateral plate edges

The boundary conditions at the free plate edges are (Figure 85):

(z)=¥s.
N ($)=5s, (8.13)
u(z)=o

where W = vertical displacement of foundation at 7= ‘i =% , S¢ = generalized
shearing force exerted by foundation in this section.

FIGURE 85.

The first condition (8.13) is purely geometrical and expresses the
equality of the vertical depressions of plate and foundation surface. The
second and third conditions are statical equilibrium conditions, similar to
the corresponding conditions for the free end of a beam of finite length on
an elastic single-layer foundation (cf. section 6 of Chapter II).
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The vertical displacements of the free foundation surface (|n]|>%) can
be approximated by an exponential function (Figure 85):

1 4(4«—%)
wi =W, (y)x(x)=wf(7)x(x)e , (8.14) ! l l
where a = % . and y(x) is given by (6.1). The first boundary condition
(8.13) is then satisfied by (8.14).
The generalized shearing force St in the free foundation, determined by

the work done by the shearing stresses %y, over the corresponding virtual

displacements, is given by (3.4). Since in this case x (x) differs from zero
only when 0< x < b, (3.4) reduces to:

n . 4
Sp=2t 3 W; {x,x dx. (8.15) - W
ko H

Substituting (6.1) in (8.15) and taking (8.14) into account, we obtain for
y>+

S¢ = —athW; (%)e‘“(”‘ ¥, (8.16)

The values of this expression at y= ! (7.: 1) is:

Since

we can write (8.13) as follows:

S IRTE § §

For symmetrical loading, the general solution is as before (cf. (8.2):

W (n) = WKww (1) + MoKw (n) — Fu (v),
?(m) = WKew ) + M Kom (M) —Fe ("l)v
M) = WoKuw (1) + MKum(n) — Fu (w),
N () = W Knw (0) + MKyu (m) — Fy ().

(8.18)

Substitution of (8.17) in (8.18) yields:

_ (KNM+aleWM)FM—KMM(FN+aleW)
* 7 Kyw Ky + albKyp) — Ky Kyw+atbKyy)
Mo Kuaw i+ albF o) — Ky + albKyy) F oy (8.19)
" Knuw Kyp + 0Ky p) —Kp Ky + albRg )

127 ' ' l'

FTTTRRTIRITTITEIIINI



For antisymmetrical loading we obtain:

W (1) = @uKwe (1) + NoKuww () — Fu (1),
?(n)=90K00 (7])+N0KwN ("])—Fo('ﬂ)y 20
M(n) = 35Kno (1) -+ NoKnin () — Fau (), (8.20)

N () = 9,Kne () + NoKyn () — Fn(m). l l '

Substitution of (8.17) in (8.20) yields:

| (Kyw + 1K) Fag— Ky (Fy + atb Fy)
%0 = Rue K + albKgy) — Ky Ky + al0Kyy)

Ko (Fy + ath F i) — (Kyq + albKy ) Fyq
Ko Ky + 210Ky ) — Kyny(Kyg + atbKy,) |

(8.21)
N =

The values of Kwn (%) . Kwe(n) Fw,(m) Fu()in(8.19)and(8.21)aretaken for

7= % <y= %) As before:

H
_ Eo , 'Y
TR S.,wdz’ 1_4(i+vo)§“’d’ (8.22)

where

Different boundary conditions at the lateral edges

If the boundary conditions at the two lateral edges differ, the x axis is
placed along one of these edges (Figure 86). The initial parameters can
then be determined in exactly the same way as for a symmetrical plate.
From (8.17), we obtain for the free edge 7n=0:

My=0, N,=atbW,. (8.23) { ! l

FIGURE 86.
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The general solution is then:

W () = (Kww 4 atbKwn) W, 4 Kwep, — Fuw,

¢ (1) = (Kow + atbKon) Wy + Koo ¢, — Fo, ]
M (n) = (Kuw + atbKmun) Wy + Kmo®y — F s ]
N (n) = (Kym + atbKuw) Wo + Knvopo— Fu-

(8.24)

The values of W, and ¢, can now be determined from the boundary condi-
tions at =1 (y=1! . Thus, if this end is simply supported the boundary
conditions become:

at 4= 1I: W=0 M=0. (8.25)

From (8.24) and (8.25) we then obtain:

- KMGFW—KW‘QFM

T Ko Ky + 16Ky ) — Ky o Ky + albKyy)® (8.26)
(Kyw + atbKyy) Fy— (Kyy + atbKyy) Fy

0= Kotg Kuw + 816Ky ) — K g RKpgw+ 616Ky *

W,

where the functions Kue, Kwe, ..., Fw, Fu are taken at n=1 (y=1) . In this
case the functions Fy, Fx correspond to the load on the entire plate(0< 4 <1).

Calculating the bending moments and shearing forces
When the generalized plate deflection W (y) has been determined, the
bending moments and shearing forces can be found from (2.28). Noting that
W (7)is a function of %= yT , and taking (6.1) into account, we obtain for each

term of (2.1):

Me=—D[4 W (m)— ("—f)’ W (1,)] sin 2%

= =D = (¥ ], i I 1

_ _ — 1—)»'-2 3 1"_):

H=H,=—=H,=—D-T+tI2 W (g)cos T, (8.27)
1 . )

N, =—D[,—.”—:W (n)—("T") W(n)]COS'f—x-
| R— 1 L .

Ny =D W m—+(5) W @]sin %

§ 9. CYLINDRICAL BENDING AND TORSION OF A NARROW
PLATE, THREE-DIMENSIONAL BEAM ANALYSIS - - . -

1

Consider a narrow rectangular plate loaded symmetrically with respect
to the y axis (Figure 87).
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If we assume that the cross section ofthisplate (which in the general
case is of varying thickness) is not deformed, only the translational

displacement
Xo=1. (9.1 )
remains from all the possible displacements X, of an elementary strip
of width dy=1. The coefficients (2.26) entering in (2.25) then become:
Ay = ) DMbT' boo = Cog = 0, (9.2)
o=t (b+), s% = ko+4at,
where .
"
Dp = it

Ta—m

is the flexural rigidity of the plate for a part of length b, of the cross section
(Figure 88).

FIGURE 88, ; E l l
E

EJ
w2 == (9.3)

Since
1 —pt

we obtain

Qyy =

where J is the total moment of inertia of the cross section relative to the
x axis.

Substituting (9.2) and (9.3). in (2.25), we obtain:

wN 9w L sw = (9.4)
G —py
- EJ ’
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where
o 1—p? 1
rf=—f t(b—{— T)'
P (9.5)
st = %7 (kb+ 4dat).
In this case, the value of G is that of the actual load, as can be seen ! ' l
from (2.4) and (9.1). ‘

The differential equation (9.4) of the cylindrical bending of a plate has
the same form as the equation of the bending of a beam in the two-dimen-
sional problem ((1.8) of Chapter II); it differs from it in that Poisson's
ratio p enters in (9.4), The values of the coefficients st and r* are also
different. Through the terms

T LI P
o e

entering in these coefficients, allowance is made for the fictitious reactions
Q® distributed over the longitudinal plate edges, i.e., for the three-dimen-
sional state of stress in the elastic foundation.

We then obtain from (3.5) and (3.6):

1 —pt
EJ
1 —p?

(9.6)
N=—

M=—_E _w- }

Wt 2t6(1+ 7’5) w.

E-KF K
We can now integrate (9.4) by the methods of sections 2 and 3 of
Chapter II. When the generalized deflection of the plate has been determined,
the actual bending moments M, and shearing forces N, are obtained from
(2.28b, e), which in this case reduce to:

M,=—DW*, N,=-—DW". (9.7)
It is seen from (9.7) that the bending moments M, and shearing forces N,

in each cross section are proportional to the flexural rigidities D,, -
(Figure 89). { l I

2

Consider now the same plate acted upon by an antisymmetrical load
(Figure 89). Putting

x1=x x(x)=1 (9.8)

where x,(x) has the dimension of length, the generalized deflection becomes:

W (y) ==&y
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which is a dimensionless magnitude, being the angle of twist of the plate:

8 =198(y).

By (2.4) and (9.8), the generalized load is:

G=Sp(x.y)xdx+2PcXc=m(y) (9.9)

and represents the twisting moment m(y).

.... 2srrrrs770s
(TN

o(z.y)
| 1IN

'~

My, Ny
|

~4

P D

FIGURE 89,

The coefficients of (2.25) are again obtained from (2.26);

ayy = ZD"‘ Sx’dx =7 fj“, [

by = (1 —wW) N Dpbm = EJ ,
1+p

n =0,

b3 7 3
oY, = Wk’ + E)‘

kb? 12 6
=T (1+ o + 2

where

[]
o= ar?

3 (9.10)

k and ¢ = constants characterizing the compressive and shearing strains
respectively of the elastic foundation, J = total moment of inertia of plate
cross section relative to x axis; ¢ = radius of inertia of rigidity diagram

(Figure 89):
2 1 LDpb, (125 + %)
P - W zL)Ir'lb"'l
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[where ¢, is the distance between the origin and the centroid of that part
of the cross section whose rigidity is p, ].
For a plate of uniform thickness:

bl
2 _ 7
L VI

Equation (2.25) then becomes: l ' l

anﬂw—Q(bu +P?l)0”+s?le_m=0' (9.12)

The generalized bending moment M and shearing force N are, by (3.5)

and (3.6):
EJ "
M=_1—Plp19, (9.13)
EJ w13 37,
N=—_i'_—p‘929 +'6_[l+ﬁ_]0‘ (9.14)
- -
where p? is defined by (9.11).
The actual bending moments M,, torques H, and shearing forces N, are
by (2.28):
M, = — Dxt",
H=—D{—pb, (9.15)
Ny, = — Dxb".
The distribution of M,and N, over the cross section y=const is thus -
similar to that of y;, =x multiplied by the flexural rigidity D; while the . - ' l

twisting moments are directly proportional to the flexural rigidities D
(Figure 89).

Together with (9.13) and (9.14), (9.12) determines the deformation of the
plate, characterized by the presence of bending moments M, in addition to
the twisting moments H.

The generalized moment (9.13) represents in this case a bimoment, i.e.,
a system of normal stresses acting in the section y =const, statically
equivalenttoazero force. The generalized shearing force determines the
total twisting moment acting in the section y =const , due both to the -
shearing forces N, and to the reactions of the elastic foundation; these are :
respectively given by the first and the second term of the right side of (9.14).

3

We can apply (9.4) to the three-dimensional problem of the bending of

a beam by putting u=0, and considering EJ as the rigidity of the beam.

The free term G then represents the load per unit length,
Exactly as in the two-dimensional problem (cf. Chapter II), the beams

can be classified as long, short, or rigid, depending on their rigidity. R — -
Long beams acted upon by concentrated forces and moments can be

analyzed by the method developed in section 4 of Chapter II. In the three-

dimensional problems the generalized shearing force N entering in the

boundary conditions is determined by the second equation (9.6), while r* and

st are given by (9.5).
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Short beams acted upon by aribrary external loads are most simply
analyzed by the method of initial parameters (section 3 of Chapter II, and
section 7 of this chapter). When solving (9.4), the influence functions must
be obtained from (9.5) and (9.6}, The initial parameters are determined
from the boundary conditions, given in generalized form, which, for free

beam ends, correspond to (8.13). '
In the case of rigid beams we can proceed directly from the equilibrium l

conditions of a beam acted upon by the known external load and by the
reactions of the elastic foundation (cf. section 5 of Chapter II). Thus, for
a symmetrical load, we obtain:

W (y) =C,. (S.18)

The reactions of the elastic foundation consist of the reactions g
distributed over the surface supporting the beam, the reactions Qf distributed
along the longitudinal edges and the concentrated reactions 7% applied
at the beam ends (Figure 90). The concentrated reaction T* are introduced -
in order to make allowance for the effect of the deformation of the elastic
foundation beyond the beam ends (y <0, y > /) on the stresses in the beam.

FIGURE 90,

From (2.17), (2.19), (9.1), and (9.16), we obtain:

g=kCy Q¥ =2atC,. (9.17)
The concentrated reactions T® are obtained by assuming that for y <0 { , l !
and y >/, the vertical displacements of the surface of the elastic foundation

decrease exponentially. Thus, for y <0 we have (Figure 91):

tol o

at x<{—

L
w(x, y) = Cuea (”2 ) ey,
b b
at ——<<x < =
20N \ (9.18)
w(x, y): Che.’”'

at x>§

b
WX, y) = Cee (=) ey,
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We assume that the work done by the reactions T® over the displacement
C, = | is equal to the work done by all the internal forces in the elastic
foundation in the region y < 0 over the virtual displacements (9.18) when
C,=1. We thus define the fictitious force T® as the virtual work done by
the normal and shearing stresses s,, ~,,, t,, in the elastic foundation in the

region y < 0. We then obtain:
T® = C, (2atb L 3¢). (9.19) l I '

Strictly speaking, the concentrated reactions T? consist of the reactions
Q! distributed over the lateral edges of the beam and the concentrated
reactions R” at the corners (cf. section 10). However, since the beam is
by definition rigid in the lateral direction, we can introduce the resultant
concentrated force 7%,

FIGURE 91.

The equilibrium condition of the beam is obtained by equating to zero the
vertical projection of all forces acting on the beam. Taking (9.17) and
(9.19) into account, we obtain:

[Rbl + 4atl 4 4ath + 68] Cy = Py,

whence .
P v
Co = O F 2Ty 61" (9.20) E l l
<

where P, = resultant vertical load acting on beam; = beam length; &= beam
width.
When C, has been obtained, the reactions of the foundation are found
‘ from (9.17) and (9.19); the bending moments and shearing forces are then \
determined by the known methods of the strength of materials. N
The analysis of a rigid beam acted upon by an antisymmetrical load is
performed similarly. If the origin of coordinates is placed at the beam
center, the vertical displacements are:

Wy) = by,
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where 6 is the slope of the beam, whose value can be determined by
equating to zero the sum of all moments about the origin, acting on the
beam:

M, =0

(cf. section 5 of Chapter II). ! l '

4

Consider a symmetrically loaded rigid beam. Assume that:

¢(z)=s]1—i. (9.21)
L - - -
Substitution of (9.20) in (9.17) and (9.19) yields:
q=& !
Q==
QZ = P, 1 R
b al[i+%<1+%)+uflb] (9.22)
T¢_p° [i+?27] l '. .
a1[1+725(1+.5’-)+5%5]

When ¢(2) is given by (9.21), the coefficient « = l/ % entering in (9.22)
(cf. (5.23), (5.24) of Chapter II) becomes:

H H
11/ 2" sn Lo I+ IE 9.23
1=T]/1—v“ sh_’r_T_-—ﬂ " (9.23)
b b

If the single-layer foundation is an elastic semi-infinite space (%»oo),

we obtain:
g="1u 1
b 2 1T—v, b 3 b
[1+T ) (1+T>+2—T,'T 1—"o)]
foy Pa s i )
by ]/ 2 2 4 /1=y b 3 9.24
1y ﬁ[“’? 2“(1+—~+271 T =) (9.24) - o= =
i 11—y,
& 1+ 2y 2
To=Py— 2 2 /1
=z v
T Vi—vo[“ﬁ 71+ )t - '°’]
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Figures 92 and 93 show the dimensionless bending moments M for two
cases of loading, obtained from (9.24) for y=1.5;v,=0.3; -i—: 5, and bi =10.
Results obtained by Gorbunov-Posadov for the two- and three-dimensional

rigid-beam problem (—,‘,— =10), are also given:

P
HH]HHI]HIHHIHHL "
o 3-dimensional analysis ] — ”/
{5-27 e 0005
—— 4~/ 20
~
& 2 D /
[
£ A w8
E>; ) g.; 4 - e -
s r/ aoee
E 4
< P
. I~ 2-dimensional analysis aoss
7
/7/ aasy
FIGURE 92. o
P
t2
/—aa
% Qo2
Ly Pad Qg
b ! 7~ “

rd

e 06
g / V/\S-dimensional analysis
E AL { —o.08 -
- (49 |
B //’ . 20
£ 2/ | i
Z, 1 L.s
i % b r
Y N
7 os
e 2-dimensional analysis
} } a6
| e
FIGURE 93,
The actual bending moments are:
M =A_dpl', . R - Em -

for a uniformly distributed load, and

M=MPIL.
for a concentrated load.
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It is seen that the respective curves obtained by the two- and the three-
dimensional analysis differ considerably: the maximum moment obtained

by the two-dimensional analysis (for IT = 10 and a uniformly distributed
load) is almost 3.5 times the maximum moment obtained by the three-
dimensional analysis. |
It is also seen that the bending moments vary inversely with 4-: the l ' '
wider the beam, the smaller the difference between the results obtained

by two- and three-dimensional analysis.
A comparison of the results obtained by the method proposed and by

Gorbunov-Posadov (for-% = 10) shows that the difference between the

maximum bending moments is relatively small (about 15% for a uniformly
distributed load, and about 1.5% for a concentrated load).

§10. APPROXIMATE ANALYSIS OF A PLATE WITH FREE
EDGES IN THE CASE OF SYMMETRICAL LOADING

1
Let a symmetrical load p(x, y) be applied to a rectangular plate with free .
edges on a single-layer elastic foundation (Figure 94). The origin of
coordinates is at the center of the plate., The differential equation of the " ' _ ' . '
bending of a plate on a single-layer elastic foundation is:

DV — 2tV + kw =p(x, y), [cf. (1.5)] (10.1)

where w(x, y) is the unknown deflection function of the plate, and

H H
— _E 2 —_E (e
k_(i_v:)§¢ dz, "4(1+v.,)§"‘ dz [cf. (1.6)).  (10.2)
If p(x, y)is distributed nearly uniformly over the plate a simple approxi- B y
mate solution can be obtained by writing: e
w(x y)=Co+C1cos% +C,cos%+cacos%cos%, (10.3)

where C, C,, C,, C, are constants having the dimension of length.
The first term in (10.3) determines the translational displacement of
the entire plate, the second and third terms represent the cylindrical
bending of the plate in the x and y directions respectively, while the fourth
term defines the three-dimensional bending,
The coefficients C; in (10.3) are determined by Bubnov and Galerkin's
variational method based on the equilibrium conditions, i.e., equating the S EE S =R . =
total work done by all external and internal forces acting on the plate over
each virtual displacement to zero:

wy =1, zﬁ,=cos—¥,
N (10.4)
w, = CO0s 75 Wy = COs %'COS b7
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FIGURE 94,

2. Determining the reactions of the elastic foundation

An analysis of (10.1) shows that the first term depends on the internal
forces in the plate, while the other terms depend on the reactions of the
elastic foundation, distributed over the surface supporting the plate and
caused by the compressive and shearing strains in the elastic foundation.

In addition to these forces and to the distributed load p(x, y), reactions
Q*, distributed along its edges act on the plate. These reactions are
introduced to make allowance for the three -dimensional deformation of the
elastic foundation beyond the plate edges. In the case of rectangular or
polygon-shaped plates, concentrated reactions R® arise at the plate corners ’ ' a ' . .
(Figure 95). In order to determine the reactions Q¢ and R¢ we shall assume
that the vertical displacements w; of the elastic-foundation surface beyond
the plate edges obey the following law (Figure 96)%*:

in the positive direction of the x axis

wi(x, g} =wi(y)e=t—b (10.5)

in the positive direction of the x axis

®;(x, ) =wy(x)eew-n, (10.6)

where a = ]/ ZL w,{y) and w,(x) are respectively the vertical displacements E ! l

of the longitudinal and lateral plate edges. The following law is also assumed
for the vertical displacements of the foundation in the regionx > 5, y >

wi (%, §) = wee e - gaw—n (10.7)

where w, is the vertical displacement of the plate corner.

It was shown in section 2 of this chapter that if the distribution of the
vertical displacements of the foundation beyond the plate edges is given by
(10.5), the fictitious reactions Q} at the longitudinal plate edges will be
given by (2.19), which can be written in the form:

¢ — 9w ___‘-(ﬁ ]
Q —2‘["‘"’1 +(ax), 3a \ap Jip (10.8)
® These expressions are only approximate, since in the three-dimensional problem the vertical displacements

of the foundation beyond the plate edges obey a more complex law (see for instance section 7 of Chapter I).
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where the derivatives of w(x, y) are taken at x = ¢ ¢,

The fictitous reactions Q¢ distributed over the lateral plate edges are
obtained similarly. Defining these reactions as the work done by all forces
in a strip of unit width, cut from the elastic foundation, over the virtual
displacement of the elastic foundation beyond the plate edges, we obtain:

Q= [aw,, +(6:) ZL(%)’,], (10.9) l l '

where the derivatives of w(x, y)are taken at y =+ /.

/ i 7
b

rrsrrers |

.umu il
S

- &(z-8) , afy-i}

FIGURE 96.

The concentrated fictitious reactions R® are determined by the vertical
displacements of the elastic foundation beyond the plate edges in the regions:

< —b, y<—0), (x<—b, y>D, ¥2b, y<—U), (x>, y>1).

N\
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These reactions are defined as the work done by all the internal forces in
the elastic foundation in the corresponding regions:

Ré = (10.10)

oo
L
&

where ¢ is given by (2.15) and w. is the vertical displacement of the corre -
sponding plate corner.

FIGURE 97,

Indeed, for x>b ,[y>], the vertical displacements ws (x, y) of the
surface of the elastic foundation are given by (10.7). The virtual displace-
ments of the elastic foundation are therefore:

w(x, 4 D =wi(x, Y =1-e2cbeawby(y). [when w,=1] (10.11)

The internal forces in the elastic foundation are the stresses Gz,

Taxe Tzyy o
— Eo ’ )
czﬁi_vg(p (z)wf (xl y)v } l [
E dwg (x, y) :
W=y YO — 5 (10.12)
E Owp (x, )
S g YO — [cf. (2.13)]

The work done by these stresses over the virtual displacements (10.11)
for x>b, y>! is:

wooH —_ -
R0=§\§(a,@f¢'+z,,"";—i¢+r,,"’";fy ¢)drdyde, [cf. (2.11), (2.12)] (10.13)
bio

where

E)f(x’ y) = g—a {(x—b) g—a =0
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Substituting (10.12) in (10.13) and integrating we obtain (10.10).

The reactions R¢ given by (10.10) are relatively small and their influence
on the strains of the plate is insignificant. Furthermore, plastic deforma-
tion occurs in practice near the plate corners. The reactions R?® can
therefore be neglected.

3. Variational equilibrium conditions

The following four algebraic equations in the four integration constants
appearing in (10.3) are obtained by forming the expressions for the work
done by all external and internal forces in the plate over the virtual dis-
placements (10.4):

Sg[kw—p]dxdy +2 SQfdx + 28Q?dy+ 4R% =0,
a4 Pw
“[Dﬁ-—?tﬁ—k kw — ]cos—dxdy—&
+2Schos —dx =0,

SS[Day‘ % y*’“"’” ”]“’s 2rdxay + (10.14)

+28Q1cos dy =0,

Sg[ (glu“ +2 ax'ay! + ‘;‘; —2t (ax’ _‘?;T"’> +

+ kw — p] cos—cos—dxdy_ 0,

where w is given by (10.3); p=p(x, y) is the known external load and

Q$. Q¥, R® are given by (10.8), (10.9), and (10.10) respectively. The
integrals in (10.14) are definite and have the following limits: — 6 < x <5,
— (€ )< 1 When concentrated external loads are present, these integrals
are to be understood as Stieltjes integrals.

The first equation (10.14) defines the work done by all forces external
with respect to the plate over the vertical displacement w,=1. In the term
containing k allowance is made for the compressive strains in the elastic
foundation.

The second equation (10.14) defines the work done by all forces during
the cylindrical bending of the plate in the ; plane. By the terms containing
D and ¢ allowance is made for the work done by the bending moments M, ,
and by the shearing strains in the elastic foundation respectively.

Similarly, the third equation defines the work done by all forces during
cylindrical bending of the plate in the y: plane. In this equation, the term
containing D corresponds to the work done by the bending moments M,

The last equation (10.14) corresponds to three-dimensional bending of the
plate, similar tothe bending of a plate simply supported along the edges.

In this case, the work done by the internal forces consists of the work done
by the bending moments M, and M,, and the twisting moments H ,

Substitution of (10.3), (10.8), (10.9), and (10.10) in (10.14) yields the

system of four algebraic equations (10.15) from which the coefficients
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Co Ci. Gy, C, can be obtained:

TABLE 11
Co ol Cy Cs Free | Virtual displace~
term ments

Roo k1o kyo koo Go ”,'5\;.

w,
* i ny i G .

O (10.15)

;’ k4 - - |

* ® frs Nas Ga w
>~
A

w,

. . . Nga G, @

Here
3

km=4[zbk+2at(1+b)+7f]-

kio = 216k + 2atb), (10.16)

kao = — [bk + 2atl),

koo = 3 10k; - E ! !

1 ¢

n,,=2[lbk+"7'%t+f—ébi.0+2“‘b+RTH]‘
= 2 1ok,

4 nt ] nt !
A = 2 [k + 55t + 355 D), (10.17)

z 4 -

M= 2kt F g+ g D42t + B

4 =t b = b
,,,,=T[1bk+77t+75-,—.0]. - eomm

P ol 2
Py = 16k + 5 (+ + T+ D+ 5+ ),
and
Ens
D=gmgi—m
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is the flexural rigidity of the plate, while £ andtare given by (10.2).

It is seen that the coefficients (10.16) determine the work done by the
reactions of the elastic foundation, while the coefficients (10.17) determine
the work done by the reactions and the internal forces in the plate. These
coefficients are symmetrical:

kxo = K1y ksp = ko, kyy = ks, !
(10.18) ]

Ryy =Ry,  Mys =g, Ny = Nag,

in accordance with Maxwell and Betti's reciprocity theorem,

The matrix of (10.15) is symmetrical by virtue of (10.18), which
considerably simplifies the determination of the unknown constants when
more than four terms are taken in (10.3).

The free terms on the right sides of (10.15) (Table 11) represent the
work done by the known external load over the corresponding displacements
(10.4), and are obtained in the form:

61=S§p(x, y) w; dx dy. (10.19)

4.

System (10.15) could have been obtained without introducing the fictitious
reactions Qf, Q¢ R¢, had we followed the procedure in section 2 in deriving )
the generalized equilibrium conditions of an elementary strip of width 7, in l - ' . l
which we considered the work done by all internal forces, including those
acting in the elastic foundation beyond the plate edges. The final result
would have been the same, since the fictitious forces Q¢, Q¢, R® were defined
as the work done by all the internal forces acting in the elastic foundation
beyond the plate edges, and were only introduced to simplify the expressions.

5

After the constants C,, C,, C;, Cs have been determined from (10.15), the . ;
plate deflections can be obtained from (10.3), the bending moments and 3
shearing forces being given by (1.8). Substitution of (10.3) in (1.8) yields:

=3 b? =y X
M, = Dm[p- FCzCOSZ—l + C] Cos b7y -

3
- (] —f—p%)Cacos;—:cos 52—5;'—]

(10.20)
L
M, = D:—I,,[T,-C,cos% + y.Clcos% 4=
b
+ (T,— + p) Cscos ;—: cos %]
m o= -
From (10.15) we obtain as particular cases approximate solutions for \

a plate simply supported along its entire contour, or only along either :
its lateral or its longitudinal edges. In this case we have to substitute .

y=C=C,=0, C,=C, =0, or C,=C,=0 respectively in (10.3),
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If a higher accuracy is desired, or if the external load has a pronounced
nonuniform distribution, a larger number of terms must be taken in (10.3)
(cf. section 12). We must then set up a system of algebraic equations
similar to (10.15), each equation of which defines the work done by all
external and internal forces acting on the plate over the corresponding

displacements. ' l '
§11, EXAMPLES

1

Consider a rectangular plate, for which we assume that:

where ¢ = coefficient depending on elastic properties of foundation; & = plate

half -width.
The generalized characteristics of the elastic foundation are in this case:

[cf. (5.23) and (5.24) of Chapter II] \
T —v) <ha Jbﬂ

tH tH YH

hi=chi-—1-
Eqgb shp b b

t = L . . .

Sy +v) it (11.2) \
b

yH YH vH

as= lV 2 shipehy 4+
) 1—v YH YH ~<H'
Sh_b fh—D 3

where

1= (11.3)

( £;and v, are, as before, the modulus of elasticity and Poisson's ratio
for the elastic foundation respectively).
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Substituting (11.2) in (10.16) and (10.17), and multiplying (10.15) by =%

we obtain:
!
lzo.=4[—;-Tm +T(1+ )Ve(l—'vo)m,m,+
+ 3 I——v,m,]
8 1 1
bo= 2[5 m+ T VET—v)mim,),
8 ! 1
k,‘):T[%ng—f--‘—Tl’ 6(l—v°)m,m,]
16 ‘
ki = 75 i
—olr L Piowi Ly
""_2[2 v ™t bm’+16r(b)+
{ =3 (1 —v,)? my
— VeI —v)ymm ——°——-]
Taretmmmt g e
1 !
LTI
4 { H_ TR
nn=7[% M + 5 u v., mt+%(7)]-
_ y x! 1—vob =t b
"22—2[7 me + 3¢ 5 mt’*‘m—l'ﬁ'
| — 1 (i—-vo)’ mn,
‘f’T} 6(1 "o)lb mrma+32 Vel = ,"_T]v
_ 4Ty ®t 1 —v, b = b
mo =[5 m 5 T T )
- l.’_ x’i—vo x 3N\ b
""'_[2 LS T (1+b') +ie (1 +5) T]-
where
sh—HchTH+TH
my = +H s
sh'T
ot
my = T
sh’Y
4 sh i +—
o= V““b"
YH YH
P —%
and
_ mE%
T Dp(I—v)

is the "flexibility index" of the plate, *

* A similar value for r is used by Gorbunov-Posadov /25, 26/.
y
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The free terms in (10.15) are by (10.19):

G = Eb SSP(X' y)dxdy,
—
G,='E°"°Sgp(x, ) cos dxdy,
Gs=i—°:SSp(X.y) COS dXd!/'
1 —!
G= Enb“p(x. )cos—c05—dxdy

2. Approximative analysis for a uniformly distributed load

(11.8)

Consider a rectangular plate acted upon by a uniformly distributed load

of intensity p (Figure 98). We assume that:

FIGURE 98.

Substitution of (11.9) in (11.4) and (11.5) yields:
koo = 9.58, ny,; =310.4, ng = 23.50,
kyo=4.51, ng =2.44, nyg = 14.22,

keo = 5.23, ngy = 197.8; ngy = 241.1.
k,o = 2.44;

The load terms (11.8) become for p =const:

i—vo

Go=4—7-p!,
8 i—
Gi=~— E..vn”"
1—
Ga_% av"Pl,

16 1 — )
Gy~ Ec"pl-
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The following formulas are obtained for Co, Cy, C,. Cy by Substituting
(11.10) and (11.11) in (10.15) and solving:

12
Co == 408-10 _ 0 5,
E,

1— vg
C,=237-103 E pl, 1
0
g (11.12)
C,= 17,4103 °pl,
E,
1 — 2
Cy=0,4-10° 05
Hence,
w(x,y) = [408 +2,37cos 35 + 17,4 cos 3¢ —
nx ny pt(d _":] 108
—0,4cos-2—1—cosw—]*fo 1073, (11.13)
Dimensionless bending moment My
for section y=0
b
a0 —
ass —-=L a0s . .
1 ) ' ' .
D g — - -
o1 por r-ll an
o1 I I o015
FIGURE 99.
Dimensionless bending moment M,
for section z=0
j {
i 1y
0.0 ]
I o n
0.02 3 —] 0.00
—
o o T 1o
006 = et aoe
ao8l_ o6t
FIGURE 100.

Figures 99 and 100 show the dimensionless bending moments M, and M, ,
at y=0and x=0 respectively, determined from (10.20) and (11.12) fory =0,
The actual bending moments are:

o= Mpb, M, = M,pl*. m - as =

Bending moments, obtained for =5 by this method, as well as by
Gorbunov-Posadov's method for a rigid plate (broken line) are also shown, *

* See Gorbunov-Posadov, M.I. Raschet konstruktsii na unrugom osnovanii (Analyzing Structures on Elastic
Foundations), p. 457. 1953,
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In view of the approximative character of our method, and taking into
account that according to Gorbunov-Posadov, plates are rigid when

r< —,
V3

the agreement between the results obtained by the two methods can be l ' l
considered as satisfactory. ‘

3. Approximative analysis of the foundation slab of a spillway dam N

Figure 101 shows a section of a spillway dam of light-weight design.
The foundation of this section is a rectangular concrete slab of constant
rigidity having piers at its lateral edges. One of the most critical stages is
the period when the slab and piers have already been erected, but the
spillway sections are not yet in place. This case will now be considered.

FIGURE 101,

Since the rigidity of the piers in their planes is very large, the lateral
plate edges can be considered as unbendable. The joint between the slab
and the piers can be considered as a hinged support. Applying (10.3) to the
slab deflections, we must put C, =0. We then obtain Table 12 from (10.15).

TABLE 12 !
Co C, Cs Virtual displace-

Free term
ments

wy
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The coefficients in Table 12 are given, as before, by (11.4), {11.5).
Assuming that a load p is uniformly distributed over the entire slab and a
load g is uniformly distributed along the lateral edges (Figure 102), we

obtain:
—_ gt
=4(pl+g)’~—"°,
G,__,,1‘~Vo (11.14) l ' l
1_
=Bl

After the constants C,, C,, C; have been determined from the equations
in Table 12, we obtain for the slab deflections:

w(x, y)= C.,+C2c03 -+ Cycos =X = cos%; (11.15)
The bending moments are therefore by (10.20):

rt

My=D s [P e C2C057 —r( ® l,)C,cos 55 COS —%J

(11.16)
M, Débzl *C. cos o+ ( +[L)C3COS 35 €0s ';jj
4. Taking into account additional loads transmitted by : ' ’ ' B '

the adjacent sections

Consider now the case when a system of slabs, loaded symmetrically
and arranged in a row, lies on a soil foundation. We thus consider not a
separate section, but the dam as a whole {Figure 103, a). If the base of
each section is an absolutely rigid plate, no shearing forces will act in the
elastic foundation at the boundaries between the different sections. The
concentrated reactions Q¢ at the lateral plate edges will therefore vanish,
as can be seen from (10.9).

/ Z/aNaRanN
HRE - == -
2b
Yy
FIGURE 102.
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If each plate lying on the elastic foundation has a finite but sufficiently
large rigidity, the shearing forces acting in the elastic foundation at the
boundaries of the different sections will be small, so that the concentrated
reactions Qf may be neglected. In this case we shall be able to disregard the
influence exerted by the adjacent sections, and analyze such plates according
to the scheme in Figure 103, b,

FIGURE 103, - | _§ © -

By expressing the deflection of each plate in the form (10.3), we obtain,
as before, the system of algebraic equations (10.15) (Table 11). Since,
however, Qf and R® are zero, the coefficients of this system are:

b= 4[L 5+ VET—vmm].
k =.B._ l[_m R ’ » L
10 g[zr; ) | (11.17) I-X K
ko= [F5m + 3 VBT mime].
b= 3 £
=2 [Fym o+ 5t m o+ 5 (5]
16 v [
P =T ™
4 24 ! 3
n,l:;[%—:,mmre-,ﬂ—mms,(.,)’].
=2 (3 m

+F T T+ |

= i—V’ M b (11.18)
+= Vl—__vo,,m‘md-'sz -Va(i—vo)"‘_’_]
4
"

_T__l_ n‘i—v, b
[2 R T

4
b

7 mt+m—l.

n=H—m+ﬂJ:"mO+%3+
b
+ 15 (1+b')T]
where my, m;, m, and r are given by (11.6) and (11.7). R — -

The free terms are, as before:

{1—v =
Gi= ——4 \\P(x. Y)w. dxdy.
=5 (11.19)
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If we assume that the lateral plate edges do not bend, due to the presence
of perfectly rigid piers, the deflections will be given by (11.15). The
constants C,, C, C, are determined, as before, by the system of algebraic
equations in Table 12, the coefficients being given by (11.17) and (11.18).
By making allowance for the additional loads transmitted from the
adjacent sections, marked reduction of the positive, and an increase in the
negative, bending moments M, may result, the general deformation pattern l ' l
changing considerably.

§12. GENERAL CASE OF LOADING OF
A PLATE HAVING FREE EDGES

1. Method of solution

Consider the general case of loading of a rectangular plate lying freely
on an elastic foundation. Let the external load consist of concentrated
vertical forces P and of forces p(x, y) distributed over the plate.

To solve this problem we have to find the deflections w(x, y)from (10.1)
for given boundary conditions. Whenthe plate edges are neither built-in nor
loaded, the statical boundary conditions are [by (1.8) and (1.9)]:

b Fw
at X=i§ Mx=_D(BF+p.a_y')=O'

(12.1) : ' _ l l

Q=—D[5m +e—w Tm]= 0.
i
at y=cy M,= —D(S% +u35) =0,

(12.2)

Q=—D[F+@—was] =t

where Qf, .Q?, determining the strain of the elastic foundation beyond the
plate edges, are given by (10.8) and (10.9) respectively. )
The problem will be solved by Bubnov and Galerkin's variational method, E !
in which the deflection function w(x, y) is represented as a series each term
of which satisfies the boundary conditions:

w(x, y)= chmnq‘mn (x, Y), (12.3)

where ¢m, (x, y) are known functions, and C,, are constants which have to
be determined,
The functions ¢m» can be selected arbitrarily, provided they are linearly
independent and satisfy the geometrical boundary conditions of the problem. -m T E =
Rigorous fulfilment of the statical boundary conditions is not required, since,
when setting up the Lagrange equations, the equilibrium conditions are
approximately satisfied at all points of the plate.
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We represent the functions ¢., as trigonometric functions, together
with linear terms defining the translational displacements of the entire
plate. We thus satisfy the geometrical boundary conditions, since at the

plate edges w=-0, dw 0, andalso, for u =0, the first of each statical
g o F p

condition (12.1) and (12.2). The remaining statical conditions are fulfilled l ' '
only approximately, ]
Proceeding from Lagrange's principle of virtual displacements, we can
establish a system of algebraic equations for determining the constant
coefficients C,, in (12.3); in each equation the work done by all external and
internal forces acting on the plate over the virtual displacement ¢, is equated

to zero:
o C{gg DV, — 2V + kpmn — plgis dx dy +
1 1
+ §1Qmn (94 Q¥ (N 9ur ()} = 0 12.4) - ow =
(¢e=1,2 3,..., m k=1,23,..., n),

where ¢ma (s), .(s) are the values of the corregponding functions at the
contour,
The double integral in (12.4) defines the work done by the internal forces
acting inthe plate (bending and twisting moments), the work done by the
shearing and compressive stresses in the elastic foundation beneath the
plate, and the work done by the external load. The contour integral defines ) ' . . '
the work done by the shearing forces acting on the plate edges over their
virtual displacements. The first term represents the work done by
Kirchhoff's reduced shearing forces (cf. (1.9)), which appear at the plate
edges because the static-equilibrium conditions (12.1), (12.2) are only
approximately satisfied. The second term represents the work done by the
reactions (10.8), (10.9), acting at the plate edges and determining the
deformation of the elastic foundation beyond them.
As already stated, the concentrated reactions R® acting at the plate
corners (givenby(10.10)) caninpractice be neglected, sothat the work done )
by them is not taken into account in (12.4). 4
The integrals in (12.4) are taken over the entire area and the entire 3
contour of the plate respectively. In the presence of concentrated external
loads, these integrals are to be understood as Stieltjes integrals. Thus,
for a finite number of concentrated forces, the integrals should be replaced
by the sums of the products of each force by the function ¢ at its point of
action,
We can rewrite (12.4) in canonical form:

600,00 Coa + 500.10 Clo +...4+ aon).rru'tcmn = AN.
81000Co0 + 81020C10 + . .+ 810,maCima = Ayq,

................... (12_5)

amn,oocoo + 5mn.1ocm + ...+ amn,mn Cmn = Amn .
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where
Sinmn = Sg (DV2Vgm, — 2V s + kPma) @in dx dy+
+ & (0m (9) + Q2 ()] un (5) . (12.6)

These coefficients are symmetrical (5, m: = 8mnu) by virtue of Maxwell and l l l
Betti's reciprocity theorem; the matrix of (12.5) is therefore symmetrical.
The free terms in (12.5) are:

B ={p(x, ) pudxdy (12.7)

and represent the work done by the external load over each virtual displace-
ment,

In the solution of practical problems it is convenient to resolve the
external load into four symmetrical and antisymmetrical components. For
example, Figure 104 represents the resolution of a concentrated force
applied at x=a, y=c,

e
a

FIGURE 104, - H l

The calculations are considerably reduced when each load component is
analyzed separately.

2. Symmetrical load

When the load is symmetrical with respect to both axes (Figure 104, b),
(12.3) becomes:

w (x, y)=C00-|—ECmocosT:—x—.l—ZCmcos";'—y-i»zzcm,,cos%cos"%y (12.8)
1 1 11

(mon=1,357 ... (2%k—1).
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By forming the expressions for the work done by all forces acting on the
plate over each virtual displacement, we obtain the coefficients (12.6).
Whenthese are inserted into (12.5), we can solve this system for the unknown
constants Cu, Cmo, Cons Con.

Table 13 presents the matrix of the algebraic equations when nine terms
{(m=3, n=3)are taken in (12.8), corresponding to nine possible displace-
ments of the plate: tran..ational displacement of the entire plate, four dis-
placements characterizing cylindrical bending in the x: and y: planes
respectively, andfourdisplacements similar to the deflection of a plate
simply supported along the contour.

[t can be seen that the matrix is symmetrical about the principal diagonal.
It is therefore necessary to obtain 29 dimensionless coefficients.

The magnitudes «, B, &, t and D entering in these coefficients are
determined by the formulas:

a=) £, 8=1,
Eo H
k=7_3 S ¢ dz,
H (12.9)
t=4(1i°v.,)§ $taz
D=$"_’P,’.

Here ! and b =length and width of plate respectively; p =flexural rigidity of
plate; % and ¢ = generalized characteristics of elastic foundation; ¢ =¢(2) =

= function describing the distribution of displacements over the depth of the
elastic foundation;

and E=— o= (12.10)

The free terms are:

A,.=ﬁggp(x. Y)pudxdy. (12.11)

When concentrated loads are present, the integrals in (12,11) are to be
understood as Stieltjes integrals,

3. Load symmetrical with respect to one, and antisymmetrical
with respect to the other axis

If the external load is symmetrical with respect to the x axis and anti-
symmetrical with respect to the y axis (Figure 104, c), we can write:

m n
w(x, y) = Cooi;+2c,.osin "%‘-{—%ZCM cosﬁ?—i-
1 1

i n n (12.12)
+ 23 Cn sin 5= cos 7=
31
(m=2,4,6,...; n=1,3,5,..).
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The first term defines the rotation of the entire plate about the y axis.
The single series defines the cylindrical bending in thexz plane, and the
deformation of the longitudinal plate edges respectively. The double series
defines the displacements corresponding to a plate, simply supported along
its contour. Inserting (12.12)into (12.6) all the coefficients of the solving
system (12.5) can be found. Exactly as for symmetrical loading, we :
restrict ourselves to nine terms in (12.12) (m=2;4,n=1;3). The system l ' l
of nine algebraic equations thus obtained is presented in Table 14. The
free terms in these equations represent the work done by the known external
load over the corresponding virtual displacements and are obtained from
(12.11). The magnitudes a, B, £ and D are given by (12.9),
In the similar case of a load, symmetrical with respect to the y axis and
antisymmetrical with respect to the x axis (Figure 104,d), we can write:

mnx

w(x, y)=Cm,2—,y+gl‘—’Z Crmo cos == +
1

- o -
+ Cnnsin#-fzzcmcos %sin# (12.13)
2 12
(m=1, 3,5,...; n=2 4, 6,...).

The matrix of the algebraic equations for this case {m=1; 3, n=2; 4) is
represented in Table 15,

4. Antisymmetrical load {

When the load is antisymmetrical with respect to both axes (Figure 104,e), |
we can write: \

mnx

m
4x, .
w (x, y)=Coo,—,,y+27”Z Crmo sin 5~ +
2

n m n
ijsz sin #4— chmnsinmsinﬂ (12.14)
2 2 2

[ { - .
v, n=2,4,6, 8,..). E ' l

The first term defines the deformation of the entire plate, in which the
edges remain straight. The single series defines the deformations of the
plate edges. The double series defines the displacements corresponding to
a plate, simply supported along its contour,

The coefficients in (12.5) are again obtained from (12.6), the free terms
being given by (12.7), The matrix obtained when only the first nine terms
are taken in (12.14) is given in Table 16. The elastic characteristics are
determined, as before, by (12.9), and the free terms by (12.11). Tables
13 through 16 permit approximate analysis of a rectangular plate acted . - —
upon by an arbitrary external load.

It can be seen that in the general case we have to solve four system of
algebraic equations, each containing nine unknowns and having the same
structure as the system of canonical equations of the theory of frames. The
Gauss method is recommended for this,
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After the deflections of the plate have been determined from (12.8),
(12.12), (12.13), and (12.14), the bending moments and shearing forces are
determined from (1.8) and (1.9). The accuracy of the solution obtained
depends on the type of loading and on the number of terms taken in (12.8),
(12.12), (12.13), and (12.14). Since trigonometric series converge rapidly in :
the case of nearly uniformly distributed loads, only nine terms were taken in l l I
each series, This approximation is thus satisfactory in practice if the
external load is distributed over part of the plate, When greater accuracy
is required, the obtained solutions can be extended on the basis of (12.5)
and (12.6). If, on the other hand, a lesser accuracy is sufficient, a smaller
number of terms can be taken as, for example, in (10.3),
The functions ¢n. can also be expressed in different ways, provided the
boundary conditions of the problem are satisfied. For example, a high
accuracy can be obtained with a small number of terms in (12.3), when the
functions ¢m, are formed by means of the eigenfunctions of the transverse

vibrations of a beam (Table 7) p. 111. Various polynomials may also e v o me
be chosen as functions ¢m, *,

13. GENERAL EQUATIONS FOR THICK PLATES
ON ELASTIC SINGLE-LAYER FOUNDATIONS

Consider the three-dimensional deformation of a thick plate on a single -
layer foundation (Figure 105).

FIGURE 105.

In accordance with the general variational method, the unknown displace-
ments of plate and foundation are assumed to be:

u(x, y, 2) =u; (x, v) @, (2). ‘

v, ¥ 2) =, (x, y)e, (2),

(13.1)
(5 Y, 2 =00, 9 () + 06, 9)gae), |

* Some problems of the analysis of rectangular plates on elastic foundations are discussed by Kosab’yan in /45/,
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where
ur(x, y), vi(x, 9), w(x, ¥), walx, y)

are unknown functions of xand y,
and

() = h—2z
at z<h w @) =5 ' l l
h—z

1 = —a, 2 {2) = 1;
W@ =" 4 15.2)

2) =0,
at 2> h %1 (2) R
H

$h(@)=0, ¢(29)=

FIGURE 106.

It is seen from (13.2) that ¢, (z) and ¢, (z) define the deformation of a plate
on an absolutely rigid foundation. It is assumed that the surface of the . .
foundation is perfectly smooth: no friction or adhesion exists between the ’ ' - . . .
plate and the foundation. In contrast to thin plates, vertical compression
is taken into account by introducing the function ¢, (2).
The function ¢,(2) permits us to make allowance for the elasticity of the
foundation: it defines the latter as a single-layer model subjected to both
normal stresses o, (characteristic of the Winkler foundation) and shearing
stresses ., t,. For z>#h, the function ¢,(z) may be defined in any other \
way such as a decreasing exponential function or a hyperbolic-sine function <
(see (11.1)). \
The solution given is approximate from the viewpoint of the rigorous - A
mathematical theory of elasticity. The system considered has a finite :
number of degrees of freedom in the z direction; the horizontal displace-
ments of the elastic foundation are neglected. The solution is, nevertheless,
considerably more accurate than that obtained by analyzing a plate on an
elastic Winkler foundation, both as regards the strains in the plate itself,
as well as those in the elastic foundation.
To determine the unknown functions u, (x, ), vi(x, y), Wi (x, ), w2 (x, ¥) ,
consider the generalized equilibrium conditions of an elementary column
cut from the plate and the elastic foundation (Figure 105). The equilibrium
conditions are obtained by equating to zero the work done by all external

and internal forces acting on this column over each virtual displacement: . mm - =m -
wix, y, =@,  ulx Y D=9,
w (x, ¥, 2) =9 (2, walx, ¥ 2V =¢e (2)
for (13.3)
ul(xv y)——-l, vl(x| y)=]-
wl(x y)=1| w!(xr y):l
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In the general case these equilibrium conditions can be
in the form of (6.6) of Chapter I, Substituting (13.1) and (13.3), we obtain:

for dx-—‘-dy=]

S% F1 dz—-Srn qﬁdz«}SaT'” %1 dz +Sp<p‘dz= 0,

oy
0'ry

Ouy .
0—!/ P dz g"yz?l d2+

The integrals in equations (13.4) are taken over the entire height of the
elementary column: 0 ¢ 2 s<h+ H. The stresses o, % Oz Tazy Tyz, Tay
determined by substituting (13.1) in (6.2) of Chapter I, and assuming that
the elementary column consists of two layers, whose elastic characteristics

are £ and v forz< 4, and Ey and v, for z> 4.

We assume that no body forces act on plate and elastic foundation, and

S - S 3 Pudz +gg(p,dz =0,
Sa;%‘?: dZ—-Sc,f#;dz +Sa;;’”' ¢y dz +S g4, dz =0,
j | |

. o,
oy, dz 4 Ty":};,dz + S q¢$2dz=0.

expressed

(13.4)

that a vertical surface load ¢(x, y)is applied to the plate. In this case the

load terms in (13.4) are:

Spwdz:Ov qu?de:O,

Jabidz= g0 = 0. {gadz = g4 0) = 0.

(13.5)

Substituting (6.2) of Chapter I in (13.4) and taking (13.5) into account,

we obtain:

au%‘*‘au’;v%_bu’;v“x+‘7u‘%di!:;;—
—Cui;v%"cu%—‘v ‘3:;1 =0,
an%%‘ au"%v%‘l' 311%_1’111_;-\'01—
—Cui;v?’y‘ 01:1;"%:0,

(12;\'011—‘@11) % + ({ ; “oyy— "dn)%

*“12;“’11%4‘1—;1’11%*5111”14‘

‘*‘12"’12%’*12;“’12%—512“’2'* 1_Ev’q=0.
[T(ii—hv)c" — {‘f_v:dn %‘:: + [Tiv)fn—ﬁdn]%?‘k
+ 2(1i»v) ’”%+ 2(1iv) ’125:9_:2_
Tt [ e ey v e

0w, E,

E E 0
+lzmprat T | G s+ = 0,

1—\4:
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where

E, v, Ey, v, =

y=ux Y, nn=u(x, ),

w,=w, (x, ¥), w=uwy(x, y);

From (13.2), we obtain for the coefficients in (13.6):

Substitution of (13.7) in (13.6) yields the system of differential equations

hl
az =S<P?d2 =17

on = (%)’dz =

dy ={ougidz =0

da =Sq:1¢;dz= 0

su—w)dz-T

Siz2 = S‘I’x% dz=

G dz =,

14‘2
dz = h,

=s
)
=§

h4-H

§ =

modulus of elasticity and Poisson's ratio for the plate and the
elastic foundation, respectively; ¢ = g(x, y)= vertical load acting on the plate.

(13.7)

given in Table 17 where the symbols D,, D,, Di, D, represent differential
operators and indicate that the function written at the top of the column is
to be differentiated once or twice by x or y respectively.
This system of four differential equations in the four unknown functions
u,, vy, W, w, describes the problem of the bending of a thick plate on an
elastic foundation completely, When these functions have been determined,

the displacements and stresses in the plate and the elastic foundation can be

obtained from (13.1) of this chapter and (6.2) of Chapter I respectively.

TABLE 17
2 U u wy ws Load term
1—v
2, Ype_
(Dt 0 14y, 3—v 6(1—v) 0
603 —v) 2 Dy o D: w o Dx
-5
1—v
3
5 14y, 7 Di+D,— 3(1—v) 6(1—v) 0
3 D 6(1 —v) D, m D,
-tz
1 1
= D4 = D3 —
1 1 3T 3% 2(1 + v
3 —30 -2D 2 (D3 + D)) ~ T En
T(—vh
1 Eo 1l +v Hy o
Yt ET4w )0t
4 _ 1 JEt1+vHy, 214w
b, —b, w0+ U tTET S, W)“.u— T
GEol4v 1
T “E1+v HAh
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Chapter IV

AXISYMMETRICAL DEFORMATION OF CIRCULAR PLATES
ON ELASTIC SINGLE-LAYER FOUNDATIONS

§1. STATEMENT OF THE PROBLEM. BASIC
DIFFERENTIAL RELATIONSHIPS

1

Consider a circular plate of uniform thickness 4 resting on an elastic
foundation possessing two characteristics (Figure 107). Let the external
load be applied symmetrically relative to the plate center, so that the plate
is subjected to an axisymmetrical deformation. Polar coordinates ®, p
will be used, the origin of coordinates being placed at the plate center, and
the distance from the center to a given point denoted by p. The differential
equation of bending of a plate resting on an elastic single ~layer foundation -
{cf. (1.5) of Chapter III) is in polar coordinates: ’ l - . ’ .

V:V:W—?r’VZW-}-s‘W =7‘;-, (1.1)
where

[}

H (1.2)
st=_Eo S 2 (2) dz, :

) . .
- | ‘ ' l
En®

and D= A= - flexural rigidity of plate.

H
r’:ﬁgqﬂ(z)dal

h.—ﬂ——a—-.—i—-—|
=],
0
H
' - - m= -
(198
‘L /4
FIGURE 107.
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By virtue of the axial symmetry, the plate deflections W — W (p) are
independent of the polar angle g, and the Laplacian of W becomes:

vy _ dWip) | 1 dW(p)
Vi = T 0, (1.3)
The problem stated is thus completely described by (1.1) and the l l l

corresponding boundary conditions. Equation (1.1) differs from the equation
of bending of a circular plate on an elastic Winkler foundation by the term:

—2rVY

through which allowance is made for the work done by the shearing stresses
acting in the single-layer foundation.

2
In the case of axisymmetrical bending, radial bending moments M, and
shearing forces @, appear in the cylindrical plate sections g = const (Figure

108). In the radial sections 6 = const only bending moments M, act. The
radial and peripheral moments and shearing forces are:

M= —D(Gr ++5) = —p[viw — L=¢d¥]

p dp. P dp
Mo~ —D(p G +5 %)= — D[pviw + 152 97], a.4) E-§ X
i (E L) o |

Shearing forces Q, acting on areas having positive outer normals are
considered as positive if their direction coincides with the positive direction
of the z axis. Bending moments M, and M, causing tension in the lower part
of the plate are considered as positive.

FIGURE 108, FIGURE 109,

We now introduce the generalized shearing force (per unit length) which
for p< R defines the shearing stresses in the plate and elastic foundation,
acting in the cylindrical sections p=const, {(cf. (1.10) of Chapter II):

d dw _
N,.—.—D(d—PV}W—?r’W), (1.5)
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where p E H
e — []
rt=p _W§¢’(z)d7.
The sign of the forces ¥, is determined as for the forces @,.
The generalized shearing force acting in the foundation beyond the plate

edge (p > R) will be denoted by S, in order to distinguish it from N,. Its
value is by (1.5) (cf. (3.10) of Chapter I):

aw
Sp=2t$. (1.6) \

Consider thus a plate with a free edge on which no forces act (Figure 109).

The boundary conditions for p=R are: N\
Me(R) =0, Wi(R)=W,(R), N;(R)=S,(R), 1.7
where W and W, are the vertical displacements of plate and surface of elastic
L _§ D __{ -

foundation for p < R and p> R respectively.

The last two conditions (1.7) describe the continuity of the deformed
surface of the elastic foundation; throughthem allowance is made for strains
of the elastic foundation beyond the plate edge.

Substitution of (1.5) and (1.6) in the last condition (1.7) yields:

d o2 4w dw.
—D G VaW 2T =2
In virtue of (1.4), this boundary condition can be written:

_ d iy _ o, (dWs  dW
mw__oﬁmm_m@#_ﬂj (1.8)
A fictitious contour force Q®= Q,(R) thus appears at a free plate edge
on which no forces act, due to the coherence of the single-layer foundation
and to its capacity for taking up shearing stresses,
We can rewrite (1.8) in the following form*:

Q®=S,,— S, (1.9)
where S, and S,, are the generalized shearing forces in the elastic foundation, v
obtained for sectionsp R—e and p= R + ¢jrespectively, whenes—0. 1

§2; GENERAL INTEGRAL OF THE DIFFERENTIAL
EQUATION FOR A CIRCULAR PLATE ON
A SINGLE-LAYER FOUNDATION

1

We replace p by the dimensionless coordinate E=LL°, where:

L=Z, 2.1)

* The fictitious forces Q¥ were similarly defined in the analysis of beams (see section 5, Chapter II).
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H
and &= %S ¢'*(2)dz defines the compressive strain of the soil, D =
Yo
= flexural rigidity of plate.
We can now write (1.1) in the form:

4
ViV —2rtviw 4w = 20 (2.2)
where
754 Eol ¢
r3=T°=W°:°)D.S¢'(z)dz, (2.3)
1]
and
ar 1 d ¢
V:=E+?d—ﬁ' 2.4)
2

When no surface load acts, (2.2) reduces to the homogeneous equation:
VIViW — 2rViW + W = 0. (2.5)
This can be reduced to an equivalent system of two second-order differential

equations. Let W =W ¢) be a particular solution of (2.5) satisfying at the
same time the differential equation

VEW AW =0, (2.6)

where )\ is a constant to be determined.
It follows from (2.6) that

VW = —w, } (2.7)

VIVIW =W,

Substitution of these expressions in (2.5) yields the following equation
for:

My 241 =0. (2.8)

Its roots are

==+ Vi,
: (2.9)
hy=—rp— (r)t—1.
For actual soils
0«1, (2.10)
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The case r;= 0 is limiting; it characterizes the absence of shearing
forces in the elastic foundation (f = 0).
The roots of (2.8) are therefore conjugate complex numbers:

)‘l=a=—ax+b1iyl
== —a,—b, | e ! l '
where

a=r, b=Vi_ (e

The complex numbers (2.11) may have the following values (Figure 110):

(2.12) \

In accordance with Viéte's theorem, their modulus is equal to the free term
in (2.8), i.e., to unity:

le|=1 [a|=1. (2.13)
4
g
5 _@~ B
0'° ’ . - . ’ '
t 2 1z
sl X
g,
&
FIGURE 110.
Proceeding from (2.6), we find that the following two independent second- ‘
order differential equations correspond to the conjugate complex roots (2.11): S
&V, | 14w
dE’1+~E—d_El+aW1=O' ] (2 14)
32w 14w = :
@@= |
3
The general integral of (2.2) can now be written in the form: - - = -
W=W+W,+ W, (2.15)

where W, and W, satisfy the first and the second equations (2.14) respectively
and W, is a particular integral of the nonhomogeneous equation (2.2).
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AN

By introducing the new variables:

u=Vyat, v=Vg

we can transform (2.14) into zero-order Bessel equations:

(2.16)

t

4w, 14w
W+77.7'+W1=0»}

BV, | 1 dF, (2.17)

@ T e T W= 0.

v

The solution of (2.17) can be represented in the following form= :

Wl (E) = ByJ, (VE‘E) + BfoJl) (VEE)- }

Ws () = Bolo (Vab) + BHP (V ab), (2.18)

where .

J,(Vat) and Jo Vap
are zero-order Bessel functions of the first kind in V at and V—&_E; and:

HY (Vag and HP (Vay)

are zero-order Hankel functions of the first and second kind respectively,
also in Vatand Vat.

Using (2.18), we can write (2.15) in the following final form: ) ' : l B l
V=BV ab)+ B.H (Vat) + 2.19)
+ BoJo(V a8+ BHSV ag)+W,.
For the solution of practical problems it is convenient to write:
a=¢e®=cosp+ ising, }
V5=e—iv=c05cp—isin<p, (2.20)

where
¢ = 5-arga

and the modulus of the complex numbers Vg and Vz is equal to unity in
accordance with (2.13).
It can be seen from (2.12) and (2.20) that the functions:

tof .-

Jo(V'ae), HP (Vay), J,Vay, H(Vay

are determined in the regions:
T>e> 7, —3<e<—7. (2.21)

In the particular case t=0, (r;=0), these functions are determined

along a line forming an angle ¢ = % with the axis of real magnitudes.

* For a thorough treatment of the theory of Bessel functions, see /4/.
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Since the functions
Jo(Vad), HY (Vaw), Jo(Vag), HP Vay

are complex while the plate-deflection function W must be real, the
constants C,, C,, G, C, must be complex. In order to express the solution
through real functions, we write (2.19) in a different form:

W = Cytto (§) + Covo (8) + Csf (8) + Cugo (8) + W), (2.22)

where, as before, W, is a particular integral of the nonhomogeneous
equation (2.2), and

uo(®) = Redy (Vap) = LeVB +hoVan)
LoVag) — 4 Vat) C m m =
24 ’

. 2.23
H® (Vag) + HE (Vag) (2.23) .
2 A

v @) = Im J,(Vag) =

fo () = Re HY (Vab) =

= HO(Var) —Hp (Ve
@ =ImHY Vay= LT O

It is seen from (2.23) that u,(§) and f,(¢) represent the real, v,() and N,
g0 (%), the imaginary parts of the zero-order Bessel and Hankel functions. . . . i
Since these functions are real, the constants C,, C, ;. C, will also be ) . - ' -
real. The behavior of functions u, (¢} and v, () resembles that of the functions
e*cosk, esint appearing in the theory of beams on elastic Winkler
foundations: they remainfinite when £{—0, and tend to infinity when { > oo .

At 0, the function f, () has a singularity of the type £ Int; the function
g, () becomes infinite whent— 0. Both functions tend to zero whent— oo ,
resembling the functions ef%cosk, e%sink .

5
The following expressions are obtained for the slopes, bending moments, F [ '
and shearing forces in the plate by substituting (2.22) into (1.4) and using the
known rules of differentiation of cylindrical functions:
dw
N [ RN NO R NONR NO R
Mo= S {C M O — (1 — 1) By O+ €3 (M () —
[

— (L — ) My (®)] 4 Cs [Ma ) — (1 — ) My ()] +
+CM O — ( — W M @) — [vi— 5 2w},

My= 7 {CilaMy @ + (1 =) ML O+ Ca[eMa (O +

+ (1— ) My ®) + Cs [uM; (8) + (1 — ) My (8] +
+ClaM ©+ (1— WM @] — [uvE + 125 2w,

Q= = 2C1Q ®) + CxQs O+ CoQs B + CiQu O +VEWs .

(2.24) - o -
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where
8 () = uy () cos ¢ — v, (&) sing,
8 ()) = u; (})sing 4 v, (E) cos g,
8 (8) = f1(E) cosp— g, (B) sin g,
B8 =f1(6) sing + gy (§) cos p;
M, (€) = 1y (§) cos 29 — v, (8) sin 29,
M (§) = u, () sin 29 + v, (£) cos 2g,
My (§) = f, (§) cos 29 — g, (£) sin 2¢,
M, () = f, (®)sin2p + 8o () cos 2¢;
My(®) = ¢ (4 () cosp— o, @ sinel,
M) = % [4y (&) sing + v, (§) cos g),
M) = % [f1(8) cosp — g, () sin ¢,
M) = % [f1 () sing + g, (E) cos ¢];
Q1 (8) = u; (8) cos 3p — v, (§) sin 3¢,
Q2 (€) = u1 (}) sin 3p + v, (¢) cos 3g,
Qs (}) = f1 ¢ cos 3 — g, (¢) sin 3,
Qu(B) = f1 (&) sin 39 + g, (8) cos 3¢,
and

!
9= garga;

the complex number a is given by (2.11),
The functions u, (§), v, (¢, and f,(§), g (¢) represent the real and the

imaginary parts of the first-order Bessel and Hankel functions respectively,

and are determined from the functions

LVah), 1, (Vay), HWV &), HY Va)

in a manner similar to (2.23).

6

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

Expressions (2.22) and (2.24) are the general solution to the problem of

the axisymmetrical deformation of a circular plate on a single-layer

foundation. The integration constants C,, C,;, C,, C. must be determined

from the boundary conditions. Establishing the latter presents no difficulty

in the usual cases of plate support (simple support or built-in edge).
for a simple support along the edge,

v= (£)-s

. (8) =0
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for a built-in edge

R
W =(z)=0,
dw _ (2.31)
(W)npu E-é_ 0.
If the plate is freely supported on the elastic foundation, the coherence ! ' l

of the soil and the possibility of strains appearing in it beyond the region
of load application necessitate a consideration of an infinite region lying
beyond the plate edge. As was shown in section 1 of this chapter, this is
expressed through a fictitious shearing force @ acting along the plate edge,
which has to be taken into account in the boundary conditions.

§ 3. ABSOLUTELY RIGID PLATE e e o wm

Consider a circular plate under the action of an axisymmetrical load
whose resultant is P,. Let the plate be so rigid that its deformations can
be neglected; it canthenbe considered as a circular punch whose displacement
is W, =C, (Figure 111).

FIGURE 111.

The states of strain and stress of the elastic foundation beyond the plate
edges (R p<oo) are determined in the general case by (7.8) of Chapter I.
When no surface loads act within the region considered, this equation

reduces to the homogeneous equation: K ! !
W, + 14w, ’W, =0, (3.1)

@ Ty ¢

where a2 = l/g, and W,=W,(p) is a function characterizing the vertical
displacements of the foundation beyond the plate edges.
The solution of (3.1) (cf. section 7 of Chapter I) is:
Wy = CyJy (2p) + CoK, (ap). (3.2)

The problem is thus reduced to determining the integration constants ¢,
and C,, as well as the vertical displacement of the plate C,, from the
boundary and equilibrium conditions of the plate.

Since the deformed surface of the elastic foundation is assumed to be
continuous, while the vertical displacements of the foundation are equal
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to zero at infinity, the boundary conditions are:

at p= R: W’ = CD;
(3.3)
at p—oo: Ws— 0.
Taking into account the behavior of the function /,(ap) at infinity, the ! l '
second condition yields:
C,=0. (3.4)
The first condition gives then:
—_— c“
Cl_ Ko(aR) . (3-5)
To determine C,, the equilibrium condition of the system (plate +elastic
foundation) will now be formulated by equating to zero the total work done S -
by all external and internal forces acting on the system over the virtual
displacement:
w(p2) = 1-¢(2),
We obtain:

H gr oo
ol (z)pdpd9d2+§§ §°rn¢'(’)Pdeedz]+ (3.6)
+ P (0) =0, . - l ' .

where o, and o, are the normal stresses appearing in the elastic foundation
beneath the plate and beyond its edges respectively. According to (6.4) of
Chapter I, these stresses are:

Sy

(i

E »
9z, = 4 _ovg Coq’ (Z), \
Eo , (3.7) h
Gz = ] W!(P)q‘ (Z) \*;
1—vy ~
Substitution of these expressions in (3.6) yields, after integrating between z ! l

the limits shown:

K,(aR)
kC, [uRz + 2R ] =P,

or finally:

Py

G le[i g KitaR) J (3.8)
= + 2 2RKe (@R)

where, as before:

~ _Eo ¢ r2
k= B (yrae (3.9)
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The reactions of the elastic foundation can be obtained from (7.8) of
Chapter I by putting W,=C, :

q=kC,= P

Ki(@R) | 3.10
nR’[1+2m] ( )

In addition to the distributed reactions (3.10), fictitious reactions Qs,
whose dimensions are kg/cm or t/m, act along the contour of the circular
plate (Figure 112), These are due to the strains of the elastic foundation
beyond the plate edges and correspond to the infinitely large pressures
beneath the edges of the circular punch, found by the exact methods of the
theory of elasticity.

The fictitious reactions Q% can be determined from (1.8), putting W,=C,:

Q¢=2,('%) . {(3.11)
Substitution of (3.2), (3.4), (3.5), and (3.8) leads to the following final

expression for Q°:

Ki(aR)

b __ P
= R[i s oK,(aR) ] aRK, (aR) * (3.12)
RV +23RK, (@R)

The reactions of the elastic foundation, obtained from (3.10) ana (3.12),
satisfy the static-equilibrium condition of the plate 3Z=0. It is easily seen
that:

*R%q + 2tRQ® = P,. (3.13)

This solution is true for any function ¢(z), with the same accuracy as

that with which:
k
a=V 5 (3.14)

has been obtained. In many practical problems it is convenient to select
¢(2) in the linear form (2.7) of Chapter I, or in the form:

h L =2

¢<z)=’—1’_;_. (3.15)
sh I3

where # = thickness of compressible soil layer, R = plate radius, and T
= dimensionless coefficient depending on the elastic properties of the
foundation. When ¢(z) is given by (3.15), the integral characteristics of
the elastic foundation are [cf. (7.11) of Chapter I]:

- Eo
_U—QH%’
EoH

t=m 't (3-16)

1]/ [
=g i—v.,(P“’
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where [cf. Chapter I, (7.12)):

=7 (3.17)
=T ' .
i sh?
LT 2
fe = ﬂ‘/ 1 sh R ch R + R
*7 R 3 1" H
sh Tc}‘—R__ R
Reactions, according to Winkler
wx
AN
wx N yeiS
60 ~—
5 401 y=10
) -— 3
20%)
AEERERRENN %
¢ ¢ AT 20 0 40 50 &
FIGURE 112, FIGURE 113.

Curves of g as a function of the reduced thickness H are easily plotted,

R

using (3.10), (3.16), and (3.17), as in Figure 113 for v, = 0.4 and 7 = 1.0,

T =1.5,

In this diagram the ordinate defines the ratio (in %) between 4 and

the corresponding values of the reactive pressure as given by Winkler. It
is seen that for a single-layer foundation acting like the base of a press,

g is less than the value according to Winkler,
forces Q* acting along the contour, which characterize the state of strain of

This is due to the fictitious

the single-layer foundation beyond the plate edges; they are equivalent to

the infinite stresses obtained in the exact solution of the theory of elasticity:

These curves also show that ¢ becomes practically constant for

“

’Ri> 2.5, so that, for R > 2.5, the foundation can be considered as a semi-

infinite elastic space (H = «). For %—< 1.0, on the other hand, the single-

layer foundation approximates Winkler's model in its behavior, the
distributed reactions ¢ increase while the concentrated reactions Q*

decrease,

After the reactions of the elastic foundation have been found, the bending

moments and shearing forces acting on the rigid plate can be determined
by the ordinary methods applied to symmetrically loaded circular plates.
In this case the external load consists of the given actual load and the

reactions of the elastic foundation.

The following expressions are thus obtained for the radial bending
moments at the plate center, induced by the distributed reactions ¢ and
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the concentrated reaction Q%:

M, (0) = gR*M,(0),  Mq (0) = PRAq (0), (3.18)

where, using the same notations as in (3.10) and (3.12):

Ki(aR) l ! ' l
},

— B+ ;
M,, o) aRKo(aR)

S T Ki@Ry
8[”’2 aRK, (aR)
MQ(0)=—¥"] ’

Ki(aR)
8[’ +2 iRK, (@R)

(3.19)

Curves of M,(0) and Mgy (0) as functions of g, obtained from these formulas,

have been plotted in Figure 114 for the function ¢(2) given by (3.15). The

elastic characteristics of the foundation are defined by (3.16) and (3.17). : - -—
The following numerical values were used: v% =0.4, w=1,, v=1.0 and
7=1.5.

It is seen that the radial bending moments at the plate center increase
with the depth of the elastic layer, tending toward a finite value; for 1=1.5

and g> 2.0 the solution presented is practically identical with the solution

given by the theory of the semi-infinite elastic space; for y=1.0 the
difference is about 20 to 25%.,

#0) |
010 b i.w
o[ TSy of el
elastic space
g6
e // pe15
004 vy
002
0.00

a0 0 20 30 40 50 B
e J
FIGURE 114, :
AN

§ 4. ANNULAR PUNCH

Consider an annular punch subjected to an axisymmetrical load P,
distributed along the circumference of the circle p=R (Figur‘e 115), whose
resultant is:

Py = 2rRP.

The inner and outer radii of the annulus will be denoted by R, andR,
respectively. The following notations will be used for the vertical displace-
ments of the elastic-foundation surface: W, (¢) = vertical digsplacement
inside annulus, W, = C, = vertical displacement beneath annulus , Wia(p) = ver-
tical displacement outside annulus.
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The homogeneous differential equation (3.2) holds true for 0 p<R, and
R, p < oo; the vertical displacements in these regions are thus:

W1 (p) = Cilo (ap) + CaKo (ap), (4.1)
W3 (p) = Calo (ap) + CoKo (ap). :

The boundary conditions are: ' ' ' '

. dW,
atp=0: W" 0;
atp=R1: W1=Co;
(4.2)
atp=R': Wg'—‘—Co;
atp—soo: We=0, - o _
The constants C,, C,, C,, C, are, by (4.1) and (4.2):
C,
Cy= o c
lo(aRy)’ = o
C= C?s(‘i—. 2)). G Ko (aRy)* (4.3)

The vertical displacements of the surface of the elastic foundation are,

therefore: E ' - ' : .

W10 = e Lo (o),
Wa ) =Co, .4)
W3 6) = gt Ko (os).

We determine C, by the equilibrium conditions of the system considered,
applying Lagrange's principle of virtual displacements. We obtain by - } ! !

analogy with (3.6):

-|

HerR
oud (2)pdpdddz+ | § § od (2)pdpd8az +
o 0R

i

-+

o il

(4.5)
0.9’ (2) pdp dd dz] + Pod, (0) = 0.

O ety

!

BB

The expression in brackets appears with the minus sign since it re-
presents the work done by the internal forces:

Substituting the values of the normal stresses, given by expressions - mm - = -
similar to (3.7), and integrating, we obtain:

P
Co E— I (] .
1{aRy) Ki(aRy)
k [n (Ri - R:) + 2"R:’o (aRy) aR,y + 2”R;Ko (aRy) GR:] (4'6 )
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FIGURE 115, FIGURE 116. ' ' '

Using (4.4) and (4.6), the reactions of the elastic foundation are, by
(7.8) of Chapter I and (1.9) of this chapter:

q= il -
A (RE—RY |1 42 1 11 (aRy) + R} Ki (aRy) ’
z ! R} — R}aRy(aRy) Rf — R} @RsKq (aRy)
11(aR,)
Q° = PoRs aR T, (aRD)
[ R2 R? ’ - .
RI_rY | 142 1 {1(aR,) 2 Ki(aRy) - W -
TR—RY | M aRilo(@R) + RI_ R? R, (@Ry)
K.(aR.)
o PoRa G R R (@Rl
¢= Rl _h@Ry) R _Ki@Ry \]
2 1 108K, 2 1{AKy
"‘Rg_Rl’[ ’”( RI— R1 RiIo(aRy) * RI_ RbaRaKa(aRD )]

Here, QF and Q? are fictitious forces acting along the inner and outer punch
contours respectively (Figure 116). B . ' . .

5. INFINITE PLATE UNDER THE ACTION OF
A CONCENTRATED FORCE

Consider an infinite plate loaded by a concentrated force P (Figure 117).
The origin of coordinates is located at the point of application of the force,
The problem is then one of axisymmetrical loading, and can be described

by the homogeneous differential equation: B
DyigiW — 2tg2W 4 kW = 0. (5.1) : ! l
As was shown in section 2, the solution of (5.1} can be represented in
the form:
W = Cutto @) + Covo (B) + Cofo () + Cego (), [cf. (2.22)] (5:2) \
where . \
¢~ f andro= /2. - =

The solution thus reduces to determining the integration constants C,Cy.,
C(h Cl ¢
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All forces and displacements must tend to zero when t— oo . Since the
functions u,(§) and v, () tend to infinity when t » o0, then

Ci=Cy=0. (5.3)

FIGURE 117. FIGURE 118,

The plate deflection must remain finite at the origin (¢=0). Since the
function f,(§) remains finite when §—. 0, while g,(§) tends to infinity, the
coefficient of g,(§) must be zero: C,=0.

It therefore follows that:

W = Cifo (B). (5.4)

To determine the constant C,, consider the equilibrium condition of an
infinitesimal cylinder (p—0) cut out of the plate and the elastic foundation
at the origin of coordinates (Figure 118). Applying the variational principle,
we obtain:

2
{Nopd8+ P =0, (5.5)
[
where ¥, = generalized shearing force, given by (1.5).
The generalized equilibrium condition (5.5) could also have been written . z ! l

in the form:
m

{ Qpat P =0, (5.6)

H
since, for reasons of symmetry, we have:
atp=0 &=0 (5.7)
The last equation (2.24) yields for the shearing force:
Q= —3CQ0. (5.8) S -
Substituting (5.8) in (5.6) and integrating, we obtain:

pLy 5.9
G = 4Dsin 29 (5.9)
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From (5.4) and (2.24), we finally obtain the displacements, moments,
and forces for an infinite plate:

L2
V= 4DsinZe fo @),
av _ _ PL,
rie 4Dsm2¢ 8, (€),
M, = 4sin2p My &) — (1 — ) My ®)1, (5.10)
0= smzg BMa @) + (1 —0) Py ),

P

= T 4lgsinZe Q@)

The functions 6, M;, My, Qs are given by (2.25) through (2.28), or, in
expanded form, by the following series:

b =(1-%) z—luﬁ%(%)mhcosﬂm-kl)?__

2 g - (—H" ENam 4+,

(-]
£ . 1 (— "
+27=8‘“29°+?m2ﬂm1(m+1)z x

X (E)"isin2im 4 Do (1+ 5+ ..+ ),
Mn(E)=(l—2$) ﬁ (—Z’”ﬂi)—),m(%>’msin2(m+l)¢_
—3(nf o) 2 G (3) sin2(m + g —
_2 21‘(—,"})’,"' (3)"sin2(m + 1)g(1 + 4+
+.’5+...+,%), (5.11)
My =(1— ) E ml((jn{lm (3)"cos2(m+ Do

—3(ng+e) mznoﬁ’:i,—,,(%)“ sin2(m + 1)g +
sin2e | 1 (— )™
+ T+?MZ mmED <
% (é)msin2(m+ l)q:(l +7+ . +,-n1—),

Q.(E)=(1—";,‘-’) % ‘(‘,,,})’." (3)"*" cos2(m+ 29—

~Hnd 9 3 A (G sn2en o

. £ . 1 2 (—i)m
_”_Esmmp——z—”sm‘iq:-{» :mz- P R
x(3)" sinzm+ 0 (1 - 4.+ 1),
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Taking a finite number of terms in (5.11), it is possible to determine,
with sufficient accuracy, the displacements, moments, and forces in the
most highly loaded sections (for p — 0).

At p=45° i.e., if no shearing forces act in the elastic foundation, the
solution obtained coincides with Hertz's solution for an infinite plate on an

elastic Winkler foundation. ! ' l

§ 6. ELASTIC PLATE OF FINITE DIMENSIONS

The general solution for a circular plate on an elastic foundation was
given in section 2 of this chapter. We shall now give some examples which
clarify the general theory.

For practical calculations, tables of Bessel functions of the first kind,
of a complex argument, and tables of the functions:

| _SERN -
8,8, 6 (%), Mi(B), Ma(®), My (), M, (5),
which define the states of strain and stress of the plate, are given in
Table 12 of the appendix. The tables have been compiled for 45° ¢ < 65°,
and give the various functions for:
§=£=10,005 0,10; 0,15;...; 1,0,
When the dimensions and physical properties of the plates are such that ' . ) .

the argument ¢ of the corresponding functions is not contained in the tables,
reference has to be made to /4/ and /86/. After the Bessel functions have
been determined, the functions:

By (8), 6, (), ..., Mo (5),

are obtained from (2.25) through (2.28).
In addition, series defining all the required magnitudes are given in the
examples below in order to permit calculations for:

R .
. R E ! l
without having recourse to tables.

1. Circular plate under the action of a uniformly distributed load.

Consider a circular plate of radius R, subjected to a uniformly distributed
load p,lying on an elastic single -layer foundation (Figure 119),

FIGURE 119,
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The differential equation of bending is:

- pLY
GiviW, — 2r0iW, + W, = 3, (6.1)

. ‘
112 ! l l

rg:Tv L[l:I/ %- (6.2)

The following homogeneous differential equation holds true beyond the
plate edges:

where ¢ — Ll , and
0

viWs—agW, =0, (6.3)
where
- e -
2 2793 kL;
a,n=aLu=2—t (6.4)
and
e 14
V§=d—+‘g-§- (6.5)
The general solution of (6.1) and (6.3) is:
Wl=Cluu(5)+C:Uo(E)+Cafo(E)+C@u(e)+%, (6.6) - . _ I '

Wa = Colg (a6f) -+ CoKo (ak), (6.7)

where -p- = particular integral of the nonhomogeneous differential equation

(6.1); I,(xo8), K,(agf) = modified zero-order Bessel functions of the first and
second kind, of the argument a¢; C,,...,C, = integration constants.

To determine these six integration constants, the following six independent
boundary conditions are used:

at p=0 €=0; ‘%‘:“'=0' SQoPd9=0: (6.8) { ! !
° AN

at =R (i=F): M, =0,
4V, aw . (6.9)
Q=2(F =) WiR=W.(R); N
at p—oo (E—oc): Wa(p) =0. (6.10) N
Conditions (6.8) state that the slope and the shearing force vanish at the e — -

plate center; condition (6.10), states that the vertical displacements of the
elastic foundation vanish at infinity. Expressions (6.9) are the boundary
conditions at the free plate edge py = R ; the second condition (6.3) accounts
for the effect of the free foundation beyond the plate edges on the stresses
in the plate (cf. (1.8)).
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Recalling the considerations which led to (3.4), (5.4), [and (5.9)], we

obtain:

Ci=Ci=C; =0,

(6.11)

The plate deflections W, and the vertical displacements W, of the free

foundation surface are then:

Wy = Cuuo (§) + Covo §) + 2.
Wy = CoK, (oof).

From the third condition (6.9) we obtain:

Catho (Bg) + Cron (Bg) + £
8= Ko (akp) ’

where £, = f—
0

(6.12)
(6.13)

(6.14)

The remaining two constants C; and C; can be determined from the first
two conditions (6.9), rewritten with the aid of (1.4) in the following form:

2 1—pndw, _
veW, — - @& = 0,
d . ALy raw, 4w
ZVeWi=—3° [—da'——dg’] .

Substituting (6.12) and (6.13) in (6.15) and using the rules of diffe
of cylindrical functions, we obtain:

mC, + m,C, = 0,
MGy + n,Cy = G,
where:

my = My (Er) — (1 —u) M, (2g),

my =M, (Er) — (I — ) M, (r),
6, (Eg) Ky (aofg)

’11=Q1(ER)+ a: —uo(R)m).

= Qs (5R) + ‘%"’—vom)&%ﬁ’),
: :

6. — 2 Ki(esia)

PR as (a0 )

The solution of system (6.16) is:

G,m
Ci=——r"
My — mef,
C,= Gym

myny — myny
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The displacements, moments, and forces in the circular plate are then:

Wy = Citn ) + Cato® + 5,
T = — LICH ®) + CH (),
M, = f—z[C.Ll(E)+C=L-(E)1- (6.19)
My = %[Clx G) + CoLy (B), l ' l
Q=— ’L’—g[clol ® + C:Q: (B

where

\_‘ (=" (E)m cos 2mg,

w @)= 2 “mhr\3T
m=20
E\tm .
vo(E)—— (m,) (7) sin 2mgp, - - -
m=4aq
1) E\em +1
hEO= 3 Wm—HF( S cos2m + g
(—1™ sEem+r
6, (8) = 2 ml(m+i)l( ) sin2(m+ 1) ¢,
o (=1, om
ME= 2 —("'“7‘(%) cos2(m + 1) o,
=0
D (DT g )
My () = =i \g) sin2(m+ e, 7 i
’ Z"’ i (2) [ (6.20) K- K

="

M () = 1‘ Z ml(m+l)l ) cos2(m+ l)e,

(2
M. =i2 ml((;:)-i)l (2" sin2(m + 1ys,
)yt

Q) = 2 ml(m+i)l( COS?(m+2)cp,

Q) = 2 m!(mﬂ,.(E)’”'sinz(mww. :
L,(.)—Ml(a—u—u)gl(ey ! l !
La(®) = My (9)— (1 — ) Ma B,

Li®=pM@®+(1—w M, @),
L® = uM: (O + (1 — ) Ma 6.

2. Circular plate under the action of a uniformly
distributed edge load

If a circular plate is subjected to the action of an edge load Py(Figure 120)

expression (6.1) reduces to a homogeneous differential equation. The ’ - -
general solution of the problem considered is therefore:
Wy = Ciato (§) -+ Cavy (§) + Cafo (§) + Cago (8),
= Calo (aef) + Coko (aaf). (6.21)
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The boundary conditions are given, as in the first example, by (6.8)
through (6.10), only the second condition (6.9) being replaced by:
dWVs d

P=R Q=2(T—T)+ps (6.22)

FIGURE 120,

By analogy with (6.11) and (6.14), we obtain:

c c
Co=Ci=Cy=0, Co= _m__l)gkf)“_‘m . (6.23)

The plate deflections W, and the vertical displacements W, of the free
foundation surface (p> R) are then:

Wy = Cyug () + Covy (§), W = CeKp (2F). (6.24)

From (6.22) and the first condition (6.9), we obtain:

§ 4
(6.25)
d_g 207w, awy | Peld
&Y+ (F—F) + 5 =0
Substitution of (6.24) in (6.25) leads to a system of two algebraic
equations in the constants €, and C,:
m,Cy, + m,C, = 0, n,C1+nzCQ=ka, (6.26)
where m,, my, n;, n, are determined from (6.17), while x ! l
p,L2
Gp, = — 5. (6.27)

The integration constants C, and C, are thus again given by (6.18), with
G, replaced by Gp,. The plate deflections are determined from the first
equation (6.24), while the slopes, bending moments, and shearing forces
are given by (6.19).

3. Circular plate under the action of moments
distributed along the edge

Consider the plate shown in Figure 121, [t can be seen that all the
results obtained before also apply in this case. In fact, the general solution
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for 0 i<t and (k&< oo can be written in the form (6.21), whence, as
above:

Cy=Cy=Cs=0,
_ Cuaa(ig) + Cavo (3p) (6.28)

Ce= Ko (aofp) ’ l l l

The integrations constants €, and ¢, are determined from the boundary

conditions:
_ _ _ _ dw, dW,
P=R (=t M=mM, Q=2(2-7). (6.29)
From (1.4) and (6.21), taking (6.28) into account, we obtain:
mCy+ myCy = Gy, nCy+nCy =0, (6.30)
- e -
o #
o
7}
Puc. 121.
The coefficients in (6.3) are obtained, as before, from (6.17), while: " l - . '
ML}
Gy=— 5 (6.31)
Thus, the constants C, and ¢, are:
mMaG py mG y
G= Mg — Ay C=— My — mymy (6.32)
- - == -
183

N

“»

TYITRRITRITIITIEIIINI



Chapter V

AXISYMMETRICAL DEFORMATION OF A SHALLOW SPHERICAL
SHELL ON A SINGLE-LAYER ELASTIC FOUNDATION

§ 1. BASIC DIFFERENTIAL EQUATIONS OF THE
THEORY OF SHALLOW SPHERICAL SHELLS

1

A shallow shell is a thin-walled three -dimensional structure whose
height is small in comparison with its dimensions in plan. A shell is called
shallow if the ratio of its height to its smallest dimension in plan /., is less
than Y.

Since for -/ < % the shell curvatures are very small, we can apply

lmin
Euclidian plane geometry to the middle surface of a shallow shell. This }
assumption is equivalent to replacing the first fundamental form [also known - ' - ' : .
as ground form] of the shallow-shell surface by the rorresponding funda-
mental form for a plane. This also means that the Gauss curvature:
1

K:k'k’=TR,’

is very small for shallow shells and can be approximated to zero.
An additional assumption, made when considering the general equations
of equilibrium of a shallow shell, is that only the principal moment terms,
whichdonot containasfactors surface curvatures and curvature derivatives, B
need be taken into account. All other moment terms are neglected as being E l
very small and having an insignificant effect on the internal forces and
bending moments of the shell*,

2

Consider a shallow shell having the form of a spherical surface of radius
R (Figure 122). Let p and ¢ be the polar coordinates measured in the plane
of the shell base. It will be assumed that the projection of the shell apex
on this plane coincides with the origin of the p, 8 coordinate system. On . mE - = -
the strength of the geometrical hypotheses underlying the general theory of
shallow shells, all points of the middle surface of the shell will be defined
by the coordinates , and g .

* The general theory of shallow shells was first expounded by V.Z, Viasov, For a detailed treatment of this
theory, see /8/.
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Let the shell considered be subjected only to the action of a normal load
Z, positive when directed along the outer normal (Figure 122). In this case
all statical and geometrical equations characterizing the states of stress

and strain of the shallow spherical shell can be reduced to the following
system of two differential equations:

R
= VIVIO — Vi =0, |
Eh (1.1) ! l '

%vw+owww—2=a

where w =w(p, §) = radial displacement of shell (positive if directed

along the outer normal), and ® =®(, 6) = stress function determining
membrane forces acting in shell:

1 90 i a0

p o oY aer ¢
o - - - -
No =55 1.2) : -
1 #*0 1 40
S=—vaHmtEan
2,

O

Y4

‘ K l l
FIGURE 122,

The symbol v in (1.1} denotes the second -order differential operator:

1ra [ 1
v=lElw) rm)- (1.3)
The magnitudes # and D represent the shell thickness and its flexural
rigidity respectively:

Eh
D= ma—m- (1.4)
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N

The first equation (1.1) has a geometrical meaning: it expresses the
condition of continuity of the deformations; the second equation has a statical
meaning: it characterizes the equilibrium condition of the shell in the \
radial direction.

We introduce the scalar function F=F (p, 0), which satisfies the following

relationships:
w = VIVF, ! l l

o =Ly, (1.5)

The first equation (1.1) is then satisfied identically. Substituting (1.5) in
the second equation (1.1) yields:

DVVivrYeF + Bl vever _z 0. (1.6)

Dv*v*w+ﬁ—’,'w-2=o. (1.7

The radial displacements w of a spherical shell are thus determined by
a fourth-order differential equation having the same form as the equation
of bending of a plate on an elastic Winkler foundation whose foundation
modulus is

b= LR

3 -

i KE-T K
Hence, with respect to the strains due to the deflectionsw, complete

analogy exists between a shallow spherical shell and a circular plate on an

elastic foundation, suitably supported along the edge. Exactly as in the

case of bending of a circular plate, the additional curvatures x,, », and the

twist t are:

*w
%= G
{1 o'w ., 1 ow
%= e (1.8) :
ot Ow 1w >
T Rk
3

The internal forces and moments acting in sections p=rconst, 6 = const .
of a shallow spherical shell can be divided into two groups: the normal
{membrane) forces N,, Ny, S, corresponding to deformation without bending,
and the bending moments M,;, My, torques #, and shearing forces Q,, Q, due
to bending. The positive directions of these forces and moments for . mm - -
surfaces with positive outer normals are shown in Figure 123,
As already mentioned, the first group of forces is determined by the
stress function @ = @ (p, §) with the aid of (1.2). The second group is
determined by the displacement function w=w(p, 6) . By virtue of the analogy
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noted above, these forces and moments are calculated in the same way as
in the case of bending of a circular plate:

M = — D (xg + px,),

M, = —D (%, + ping),
H=D(1_P‘)'- ]

(1.9) ! ' '

Q=—D2L v,
% | (1.10)

i 9
QB=—DTWV’W,I

where v, xy, = are defined by (1.8), and V* by (1.3).

FIGURE 123, FIGURE 124,

We determine the tangential displacements u(p, 8) and v(p, ) in the
directions of the tangents to the curves p =const, 8=const respectively
(Figure 124), from the relationships between the membrane forces N, No, S

and the strains: . : ! !
Eh Eh Ehn
N‘,=m(ep+}b&‘e). Ne=m(E +es), S (1.11)

RETEETA

where ¢, g, v are the tensile (compressive) and shearing strain respectively,
determined by the displacements u, v, and w as follows:

+% (1.12)
v
®

When the stress function ¢ and the displacement function w have been

determined from (1.1), and then e, ¢, , and w from (1.2) and (1.11), « and
v can be found from (1.12).
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§ 2. DIFFERENTIAL EQUATIONS OF A SPHERICAL SHELL
ON AN ELASTIC SINGLE-LAYER FOUNDATION

Let a shallow spherical shell lie on an elastic foundation whose pro-
perties are described by the differential equation:

2(Vw —kw+ g =0, (2.1) l l l

where v? is defined by (1.3), & and ¢/ are the generalized characteristics of
the elastic foundation, and ¢ is the load per unit area, acting onthe foundation.

Since the radial displacements w of the shell and of the elastic foundation
are equal along the entire area of contact (Figure 125), (1.7) and (2.1) can
be considered simultaneously:

DVViw + St w—2Z =0, 2Vw—kw+ g=0. (2.2)
The external load on the shell consists of the known forces p and the - -—
foundation reactions g [all referred to unit areal:
Z=p—g; (2.3)
eliminating g from (2.2), we obtain:
DV*Viw— 2V + (k + ) w=p. (2.4)
This equation has the same form as the equation of bending of a thin plate " l _ ' . .

on a single-layer foundation (cf. for instance (1.1) of Chapter 1V), differing
from it only in the coefficient of w. This coefficient is larger by FEh/R? than
the corresponding coefficient in (1.1) of Chapter IV,

9p.8)
FIGURE 125,

The problem of bending of a spherical shell on a single-layer elastic

foundation is thus similar to the corresponding problem of a circular plate,

discussed in Chapter IV, o OEN - EN
To determine the stresses and displacements when the membrane

problem is considered (in which bending stresses are neglected), we use

the first equation (1,1):

£ VIO = Vi, (2.5)
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This is a nonhomogeneous biharmonic equation, the function w being
assumed known (it can be determined from (2.4)). Having determined the
function ® from (2.5) and the corresponding boundary conditions, the normal
forces, moments, strains, and displacements of the spherical shell can
be found from (1.2), (1.11), (1.12).

If the problem is axisymmetrical, all derivatives with respect to 6 vanish
in the equations determining the states of stress and strain of the shell,
The Laplacian then reduces to:

d? 1 d
Vg:‘#*_’+TE' (2.8)

while (1.9) and (1.10) become (taking (1.8) into account):

M, = — D[V'W —Mﬂ],

Poa
-~ — (—p)dw v :
My= —D[uviw + LoB1 4R ], @7 -
d
Qo = DT,;‘ VzW.
Qe=H=0,
Equation (1.2) and (1.12) respectively take the form:
1 4o ) .
P= g Ny = & S=0 (2.8)
ep=:—:+%. so=%+% ©=0, (2.9) ' "> l
where W =W (g), ®=®(p), depend on only.
§ 3. GENERAL SOLUTION FOR AXISYMMETRICAL
DEFORMATIONS
1. Bending of shells : ! I
Exactly as in bending of a plate, we replace p by the dimensionless
coordinate § — LP— , where
L]
4 D\R‘
L=V it @G.1)
Equation (2.4) then becomes:
(] -
VEVIW —2Viw 4w = 20 (3.2) -ee-————
where
2
- (3.3)
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4 i1 d
Vi—mt T E (3.4)

By analogy with the integral of (2.2) of Chapter IV, the general integral
of (3.2) can be presented in the form:

W = Ciuo ) + Cavy () + Cofo (6) + Cigo (§) + Wo. (3.5)

where

uo (§), vo (&), fo (B), o (B)

are respectively the real and imaginary parts of the zero-order Bessel and
Hankel functions, and W, is a particular integral of (3.2). On the basis of
the general solution of (3.2), all statical and kinematic magnitudes referring
to the state of bending stress of the shell are determined from (2.24) of
Chapter IV, with L, defined by (3.1).

2. Deformation without bending of shells

We determine the stress function ® =®(g) with the aid of (2.5). Replacing
the variable p by the dimensionless coordinate t=p/L,, where L, is defined
by (3.1), (2.5) becomes:

EhL?
VIViO = - Viw. (3.6)

The function W = W ¢) is defined by (3.5), and the Laplacian by {3.4).
The general solution of (3.6) is then:

EhL3

®=R

(@, + Dy), 3.7

where @, = @, () is the general solution of the homogeneous biharmonic
equation corresponding to (3.6) and ®w = @y (}) is a particular integral of
the nonhomogeneous equation:

VIVIOy = VEW. (3.8)

The solution of the homogeneous biharmonic equation is for the axi-
symmetrical case is:

@, = Cs + Cof* + C&* Ink + Gy Ink, (3.9)
where C;, C,, C,, C, are constants.
The particular integral of the nonhomogeneous biharmonic equation (3.8)
is:

Dy = — [Ci1 () + Ca9a (B) + Caps (§) + Cugu ()] + Dy, (3.10)
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where @, is a particular integral corresponding to the particular integral
W, of (3.5) and:

#1(E) = uo (§) cos 29 + o, (§) sin 29,

#2(8) = — u, (£) sin 20 + v, (E) cos 2, (3.11)
s (€) = fo () c05 29 4- g, (&) sin 29, ' ! l '
P0(8) = — fo (8 sin 2¢ + g, (¥) cos 2¢, ‘

Here as before:

p=arg(Ja) = %arg a,

where a is a complex number defined by (2.11) of Chapter IV in accordance
with expressions (3.3) and (3.1) of this chapter,

It is easily seen by direct substitution that (3.10) does in fact satisfy the
nonhomogeneous equation (3.8).

In accordance with (3.9) and (3.10), the general integral of (3.6) is
therefore:

L2
R" [=Ci91 (&) — Cap2 (§) — Caps (8) — Cogu (8) +
+ Gy + Ck? + CEInk + CyInk + O,

= Eh
(3.12)

Substituting this in (2.8) yields the following expressions for the normal
forces:

Mo = Z[Cm @ + Cm® + Com® + Cone ) +

(3.13)
2+ G0+ 208 + Gk + 1222,
No = Z-{Caluo € — m O+ Calo () — my (9] +
+Cs [0 €) = na ) + C. [g0 () — ne (8] + 2C, + (3.14)
+Cr(3 + 2]115)—Ca_g1—+ %} ’
where E ! !
) = i B eosg + v, @ singl,
ny (§) = % [—u; () sing 4- v, (§) cos g,
{3.15)

na(®) = 1/ ©) cosg + g1 @) singl

me®) = £ [— i @sing + g @ cosg,

and u,, v, f,, g, are respectively the real and imaginary parts of the first-
order Bessel and Hankel functions.

To obtain the deformations of the shell, we rewrite (2.9) in dimensionless
coordinates:

g, =

(3.16)

x| 9 xjg

+
+

rl- ;I-
~| = g,g

'
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From these expressions and from (1.11) we obtain:

Not No= 2+ o) = [ (% + 1)+ 7 (3.17)

On the other hand, (2.8), written in dimensionless coordinates, and

(3.7) lead to: ! l '
2 (3.18)

1
Not No= V10 = 2 01(@, + O0).
0

Since, by (3.8):
Vio, = W, (3.19)

we can rewrite (3.18) in the form:

No+ No= 22 (910, + W). (3.20) - o m

Equating the right sides of (3,17) and (3.20) yields:

Eh o2 Eh { rdu , u\ , 2W
Ve @+ W) = —1—p[L_o<d_ET-E_)T—R_]‘ (3.21)
or
du u L . D ' -
.E-f—?:—ﬁo-[(l—p.)V:ou (l+ }L)W] (3.22) I _ ' ) .

This equation establishes the relationship between the unknown tangential
displacement 4 and the known functions ®, and W. Substitution of (3.9) and
(3.5) in (3.22) yields finally:

ST E = (1 =G+ 4C, (it 1) —

— (0 ) [Cutty () + Cao () + Cofo (6) + Cagy (&) + W11. 3.23)
The general solution of (3.23) is: - { ! '
u= % {_ (114w [C,x, (€ + Caxs & + Caxa B) + Caxa (®) +
(3.24)

+ At ]+ (L~ W20+ Cr (B INE+ D] + ) ,

where
Lo(i +p) 1
Ay Rk T

is the integral of the homogeneous equation corresponding to (3.23), de-
termined up to the constant factor i-%“‘*‘) ; u, is a particular integral

corresponding to the function w,; and:

x1 (8 = u, E)cosp + vy () sing,

Y2 (B) — —u; ) sing + vy () cos g, (3.25)
xa(€) = fr () cosp + g, () sing, ’
(& = —f1 () sing + g, (f) cos p.
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Due to the summation of (3.13) and (3.14), the constant C; no longer
appears in (3.23). On the other hand, a new constant A, appears in (3.24)
It is seen that these two constants are identical by substituting the solution:

b — Lalld i g L (3.26)
into the following equation, obtained from (1.11) and (3.16): l l '
= Eh [ de e L4
Np_i—P’[Lo(dE+l‘Lg)+(l+y')R]- (3.27)

The first term of this equation, which only depends on u,, then becomes:

Ne=Ela L (3.28)
Comparing this with [the coefficient of —;,— ] in (3.13) we find that: o w -
A, = C,.

The analysis of a shallow spherical shell thus reduces to determining
eight integration constants whose number corresponds to the order of the
initial system of differential equations (1.1). The first four (C;, C,, Cy, CJ)
determine the bending of the shell, while the last four (C,, C, C;, Cs) determine
its deformation without bending.

The constant C; does not influence the states of stress and strain of the -
shell, and it can therefore be disregarded. The logarithmic terms in (3.13), ' - . .
(3.14), (3.24), must also vanish, since the logarithm is multivalued for
doubly-connected regions which the shell may form, and does not therefore
fulfill the requirement of uniqueness. Hence, the constant C; must be zero.

There remain thus six unknown constants. To determine them, three
boundary conditions are required for each edge of the shell. Of each group
of three, two will determine the bending deformation, and one the deforma -
tion without bending.

The boundary conditions corresponding to the bending deformation can
be given in displacements W, W' (geometrical conditions), in forces and :
moments M,, Q, (statical conditions), or partly in forces and partly in .
displacements {mixed conditions).

The boundary conditions corresponding to the deformation without bending N
are determined either from the tangential displacements u or the value of
the normal forces N,.

§ 4. SHALLOW SPHERICAL SHELL SUBJECTED TO
A UNIFORMLY DISTRIBUTED LOAD

1

Consider a shallow spherical shell on an elastic foundation, subjected to
a uniformly distributed load p (Figure 126). Letthe shell edges be free, so
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that the elastic foundation can be deformed beyond the limits of the structure.
In accordance with (3.5), the normal displacements of the shell are:

W1 = Citto (6) + Cavg (&) + Cafo (8) + Cugo &) + W, (4.1)

W,= Eh + kR?

is a particular integral of (3.2).
The following differential equation holds true for the region beyond the
limits of the structure: [cf. (6.3) of Chapter IV]

where

ViV, —a3W, =0, (4.2)
The general integral of this equation can be represented in the form: - o -
W, =B, {xof) + B.K, (oxoE), (4.3)
where
k12 ‘
s=atll= o, L=} . (4.4)
Here, B,, and B, are integration constants, while I (x8) and K,(agf) are .
modified zero-order Bessel and Hankel functions of the argument g . : ' - . - '

FIGURE 126, K x '

The solution contains therefore six integration constants which are
determined from the following boundary conditions (cf. the case of acircular
plate, (6.8) through (6.10) of Chapter IV):

at =0 (£=0) : a) £1=0, b) { Qoo =0;

at ¢ =R, <E=—%:—/: c) M,,=0,\d)Q,,=2t\dd;‘;"—‘L—‘f')cosﬁv (4.5) - - == -
€) W, (Rg) = W;(Ro);

at p—soo (—o0) : f) Wy(p)=0.
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The fourth boundary condition of (4.5) differs from the corresponding
condition in (6.9) of Chapter IV by the coefficient cosg, where g is half the

central angle subtended by the shell. The reason for this is that the

fictitious shearing force acting on the shell is equal to the projection of the
fictitious shearing force acting on a circular plate, onto the normal to the

middie surface of the shell at the edge.
Conditions a), b), and f) yield:

Cy=C(=B, =0,
so that the normal displacements of the shell are:
. . pR?
W, = Cuuo (8) + Covo (8) + EhT RRE -

Condition e) yields:

Cuso (8g) + Cato () + 2R
B, = Ky (askg)
where
. R,
SR = To .

Substitution of expressions (2.7) for M, and Q, in conditions ¢} and d)

yields:
fe R . D 1—p dW,] _
at o= R, I —°) : - [vé\%— -5 T:'] =0

d o, , 2LlErdw, 4w, _
d—Evi-Wl—‘LT[TE—__dE—]COSp#O'

(4.6)

(4.7)

(4.8)

(4.9

Substitution of (4.3), (4.6), (4.7), and (4.8) leads to the following two

simultaneous equations in C, and C, :
a,Cy +asCy =0, byCy - b,C, = G,,

where

ay =M (&g) — (1 —p) Ml (8g),
Gy = My (Rr) — (I — 1) M2 (Eg),

£

ALY Ky (aoZg) agcosB
b= [@un) + 552 [ ) cos B, G RS ),

723 Ki1{aofg) docos B
b= {0+ 2 [0, G cosp—o, ) "o I

pR? Ky (“nER)

o= Fr+ 7R Ko (aula)
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AhAAA
The functions:

Mlv MZv _Mla MZs le QZ! 01» 0,

appearing in (4.11) are given by (2.25) through (2.28) or series (6.20) of
Chapter IV (see also (6.16) and (6.17) of Chapter IV.)
The solution of (4.10) i

Ci=— Gpax G,a

abi—ant O ah—an (4.13)

The slopes, moments, and shearing forces of the shell are then by (4.7)
[cf. (6.19) of Chapter IV]:

Wi=— 1 (C8 (&) + C:B B,
M,=§:[c,Ll ® + CuLa (), - o =
My = ’ng (C.Ly () + CoLa (), (4.14)
Q= —f—glclo. ® + C2Q: ©)-
2
Consider the state of plane stress of the shallow shell. By virtue of ' - . .

(4.7), the stress function @ defined by (3.12) takes the form:

EhL?
o=

B[O ®O—Cam @ + o+ C +

- (4.15)
+CEInt4-Celnt 4+ Eh+leij

The functions ¢, (§), $,(}) are given here by (3.11) or by the corresponding

series: R
ma—2‘(m.),(§)”"cos2(m—l)cp. E ! !
(4.16)

w )= Z((,,,.). ()" sin2(m—1)s.

As already stated, the constants C, and C, in (4.15) vanish; we thus

obtain:
EhL? 32
® = [~ Can®—Cra@+CE 4 Colnt + 2R & (4.17)
- 3 - = -
From (3.13) and (3.14) follows:
1

No=Z[Cm @ +Cm® + 2+ Co gt R (4.18)

No= Z{Cilu @ —m @1+ Ciloy @ —m @)+ 26— Cofe+ 4 52R) (4.19)
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where n,(f), and n,(}) are defined by (3.15), or by the corresponding series:

co
1N (=) g
n; (E) = ?m=um (T) cos 2”‘1?,

- (4.20)
1 —1)" m
n@) =z > ml—((m-_:_*w(é)z sin 2me.
m=0
Hence, (3.24) becomes:
u= =+ WO + Cara ® + Cog +
1 s 4.21
+3 R+ 260 — ), “.21)
where y, (¢), v, ) are defined by (3.25), or by the series:
1), X2 (8) Y
. < (=)™ gm+1
@)= Z_ _ﬂll(m‘ii)!(é) cos 2mep, ]
m=e (4.22)

oo

—1)y" tm+1
x2(8) = p o—m (-g—) sin 2mgp. I

The constants C, and C, in (4.17), (4.18), (4.19), and (4.21) are obiained
from (4.14), while the constants C, and C, have to be determined from the
boundary conditions for the tangential strains, which are:

at p=0 (:=0) : u=0

o , . (4.23)
at p= R, (\E:L&:): N,:—Q‘hsil1f5=—‘l‘_—"'IWg——W,]sinﬁ.

The first condition states that the tangential displacements vanish at the
shell apex; this is a consequence of the axial symmetry. By the second
condition allowance is made for the existence along the shell contour of
fictitious forces:

N® = — @®sinp, (4.24)

equal in magnitude to the projection of the fictitious shearing forces acting
on a circular plate, onto the tangent to the middle surface of the shell at the
contour. The minus sign results from the convention according to which
a negative value of N* corresponds to a positive shearing force at the
contour,

The first condition (4.23) yields:

Co=0. (4.25)
The second condition yields:
Co=L[R¥ ¢ c 1 _pR (4.26)
o=7| 2 —CmER) —ConCr)— 7 g am | .
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where
N = — i—isin B x
Catto (Eg) + Cavg (Eg) + —PR2__
8 [C,el (ER) + by (3) — ReTaat e 20K (she) (4.27)

§ 5. SHALLOW SPHERICAL SHELL SUBJECTED
TO A CONTOUR LOAD

1

Let a shell on an elastic foundation be subjected to a vertical contour
load P, [per unit length) (Figure 127),

- . { -
The differential equation (3.2), is homogeneous in this case; its solution
is:
Wi = Cattg (§) -+ Cyo (§) + Cofo (8) + Coo (B)- (5.1)
For the region beyond the limits of the shell (Ry<p< o0) we have:
W, = Bilo (agk) + BaKo (@of)- (5.2)
The constants in (5.1) and (5.2) are determined from the boundary : ' - . ) '
conditions which can be formulated as in (4.5) with the exception of condition
d), which is replaced by the following, having the same physical meaning:
_ /t R _ dw,  dw
at p=R, (1=FRo) Q,_[Qt (W’—T‘)-I-P.]cosﬁ, (5.3)
where P, is the vertical load per unit length of the contour. - E l I
FIGURE 127, T Em - == —

Conditions a, b, e, and f of (4.5) yield:

Ci=Ci=B,=0,
B.— Ciug (Ep) + Cavg (Ep) (5.4)
L Ko (akp) :
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Using (4.9), (5.1), (5.2), and (5.4), the following two simultaneous
equations in C, and (, are obtained from conditions c¢) and d):

01C1+a2C2:0v } (5-5)
€y + b,Cy = Gp.

Their solution is:

Gpay Gpal
- Mmby — agby ' C2 T ayby — 230y ? (5'6)

Cy =

where a,, a,, b, b, are defined by (4.11), while:

P L3
Gp = —%’cosﬁ. (5.7)
The normal displacements are thus:
Wy =Cup @ + Covo (§). (5.8)

The slopes moments, and shearing forces are given by (4.14), the constants
C, and C, being obtained from (5.8).
The normal forces are in the case considered [cf. (3.13) and (3.14)]:

Mo =Blcm®+om®+ 26+ G
Eh
R

5.9
No = E2C, Ty () — g ()] + Caloo () — na () + 2, — Co 4. (©-9)
the tangential displacements being {cf. (3.24)]:
u=2{= 0+ Cu®+Ca® + g+ 20 —wY. (5.10)
The boundary conditions are:
u(0)=0, N,(R)=N®— P,sinp, (5.11)

where N® is the fictitious normal contour force given by (4.24). In the case
considered [(cf. 4.27)]:

Ciuo () + Cavy (& .
N —— T [C8 ) + e i) — ~'"°—-—7WE:;’—"’%KI(aoeR)]sm B (5.12)

The first and second boundary conditions (5.11) yield respectively:

Cy= 0. (5.13)
¢ — P, sinB
Com 3[R oy ) — Cama )| (5.14)
199
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2

If a horizontal load N, is applied to [unit length of ) the shell contour
(Figure 128), the problem is solved in exactly the same way, the only
difference being in the boundary condition (5.3), which become:

Q,(Ro)=21("’;—’P"_"d;':')cosp—)v.sinp. (5.15) ' l '

Ro
" M

r4
FIGURE 128,

The integration constants C; and ¢, are again determined by (5.6), the
load term Gp being now:

N,LS
Gy = —5%sing. (5.18)

The forces are obtained from (5.9) and the displacements from (5.10).
The corresponding boundary conditions are:

u(0)=0, N, (R)=N®—Nycosp, (5.17)

which yield the following values for the integration constants Ce and C, :

o= N

®—N R (5.18) N
Ci= % [ﬂ'#)_—cnnx (ER)—Cz"a(ER)] . } ; l l

Here N? is the fictitious contour force, determined by (5.12).

3

Let the shell be subjected to moments M, applied to [unit length of] its
contour (Figure 129),

It is easily seen that the solution can in this case also be presented in
the form of (5.1) and (5.2). The boundary conditions are given by (4.5), with
the exception of condition ¢) which is to be replaced by:

My (R,) = M. (5.19)
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We obtain:

Ciio (Ep) + Cavo (8p) (5.20)
By= ———— % |

Ca =Cs= B, =0,
- Ko (adkg)

The following two simultaneous equations are obtained in ¢, and ¢, : l l '

a,Cy + a,Cy = Gy, }

.21
bxcx + sza =0, (5 )

The magnitudes a,, a,, b,, and 5, are defined by (4.11), while:
M, L3 2
Gu=—5>. (5.22)
The solution of (5.21) is:

G pbs
ayby — agh,

GMbl
arbs —agh; -

C, = y Cyg=—

(5.23)

FIGURE 129,

The forces and displacements are in this case again given by (5.9) and

(5.10), with C,=0 and: ' : l l'
]
c, 1[RN ]

= 3| T — Cini (Gr) — Cony (8R) (5.24)

§ 6. APPROXIMATIVE ANALYSIS OF A SHALLOW SPHERICAL
SHELL ON AN ELASTIC FOUNDATION

1

Taking into account its small deformability in relation to that of the
elastic foundation, we shall consider the shallow shell as a rigid punch,
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The reactions of the elastic foundation are then determined by (3.10) and
(3.12) of Chapter IV, valid for a circular punch of radius R, (Figure 130, a):

- Po
q_nR;[1+2 LAy (6.1)

K.(GRQ) aR,
b _ Po Ki(aR,)
Q _NRo[i +2_¥Ki(aRo) ] Ko(aRe)aRy "’ (6.2) ! ' l

Ko(aRo)aR,

where P, is the resultant of the given vertical load.

The analysis of a shell on an elastic foundation thus reduces to deter-
mining the strains and stresses in the shell subjected to a given external load
and to the reactions ¢ and Q® of the elastic foundation, all these forces being
in equilibrium. For a uniformly distributed external load p, the system is
shown in Figure 130, b, where:

pP=p—q, (6.3)
and R
QQ: 21:0Ru =p2Ro' (6'4)
v

) i.—-l' \

¢ [

a
re
' I -
FIGURE 130. H l l

2

It was shown in section 1 that the problem of a shallow spherical shell
subjected to a vertical distributed load p* reduces to integrating the two
differential equations [cf. (1.1}, (1.7)):

DV'V'W+§$W—P'=0‘ - - m -
R (6.5)
FGVVO—y'W =0,

the first of which yields the displacement function W, and the second the
stress function .
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We introduce the dimensionless coordinates:

where

. Ill
L=y & (6.6)

We can then rewrite (6.5) as follows:

203 p°Ly
VEVEW + W = D ’ (6.7)
102 ERLY _,
VEVE(D = R V:W. (6.8) . e Eppe— ~ -
where
£ 14
3
The homogeneous equation obtained from (6.7) for p*=0 can be reduced . .
to an equivalent system of two second-order equations: : ' - . ’ '
o+~ 27 4w =,
o (6.10)
oW 1 dw )

The general integral of this system is:
W=AdoGV )+ Ado G V=0 + AHL ¢ V) + AHP ¢V =T, (6.11)

where J,(¢V i) and J,tV—1) are zero-order Bessel functions of the first ! l l
kind, of the arguments (¢)/7) and (¢ V=iy; HPEVT) and HY ¢ Y—i) are
respectively zero-order Hankel functions of the first and second kind, of
the same arguments.
The only difference between (6.11) and (2.19) of Chapter IV is in the
arguments of the functions considered. Integral (6.11) is a particular case
of the more general solution (2.19) of Chapter IV, since the straight lines
along which the Bessel and Hankel functions in (6.11) are determined make
angles of 45° with the real axis in the complex plane:

¢=arg Vi =45°, } (6.12) -e- -
p=argl —i = — 45°, )
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4

It is convenient to express (6.11) through real functions:

W = Cuta (©) + Cavo () + Caf &) + Catto (4, (6.13)
where l l l
WO =RLTD. O RO, | (6.14)"
%@®=Imdo (V70 g =ImHY (V=7).

The following relationships are obtained from (2.20) of Chapter IV and
(6.12) of this chapter :

Vi, =0 Vivg=—u, V,=g, Vig,=—f,. (6.15)
The general integral of the nonhomogeneous equation (6.7) is then:
W = Ciug (8) + Ca00 (8) + Cafy () + Cugy (5) + W, (6.16)

where W, is a particular integral of (6.7).
For instance, if p’=const we can put:

pR

W=t (6.17)
From the boundary conditions a) and b) of (4.5) we obtain: . - ' ) .
C;=Ci=0. (6.18)
Substitution of (6.17) and (6.18) in (6.16) yields:
W = Cytg (§) + Cs0, (§) + 2. (6.19)

We then obtain for p®=const from (2.7), using (6.15) and (6.19):

'3_1: = 1-1Cu, @) + Cu0} @), K x '

M, = —L—“;){cl [vu(s)—(l —w “‘f’] +

+C, [—uo B —10—w U;S)]}-

Mo=—Z{C [boo@ + 0~ g | +
+Cof = @ + (1 — 2},
Q= — 25 [C1v, (O — Cat, 1. = -

* These functions are known as Thomson functions, Tney, and their derivatives, are tabulated in the
appendix (Table 11).
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These expressions could alsohave been obtained from (4.14) by substituting

in them (2.25) through (2.28) of Chapter IV, taking into account (6.12).
Equations (4.17), (4.18), (4.19), (4.21) are again valid. Taking into

account (4.25), they become in the case considered:

EhL} *R1E (6.21)
® = =5 [—Coo () + Caty () + Gt + ZRE], l I I
_Eh v (£) 4o (€) 1R
”"‘T[_CIT +C g+ 26+ 3 5 (6.22")
Eh v, (€) ] up () .
Mo =5 {0 [u® + 22 |+ € 00 ) — 224 J+2c 128,
(6.22")
u=2{— (1 + 81—, ® + Ca @1 +
A+ u)p R
+2C.(l—p)e—~2*"’5h E}. (6.23)
These expressions contain three integration constants which are -- -
determined from the boundary conditions at the shell contour.
5
Consider as numerical example the shallow spherical shell shown in
Figure 131,
Let the geometrical and physical characteristics of the shell and the _
elastic foundation be as follows*; : ' - ' - l
R=13.5 m,
h=0.46 m,
Ro =5.1 m,
Eg=4.102cm/m?,
vo=0.4,
HIR,= 1.0,
f=1.0 m. (6.24)
E=2-10cm/m?,
p=0.167, -
1= 1.55, :
P=1.0cm/m,
D =16.2.104cm/m.

We then obtain from (3.16) and (3.17) of Chapter IV:
k=16-10> m/m3 2f{=1.85.10° m/m,
2=093 I/m,  aRy=4.72. } (6.25)

By (6.1) and (6.2), the reactions of the elastic foundation are:

¢=10269 m/m2 Q%=0.315 m/m, {6.26)

* It is assumed that the function ¢ (2) determining the vertical distribution of the displacements in the elastic

foundation is given by (3.15) of Chapter IV,
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Their substitution in (6.3) yields:

p* = — 0.269 m/m?, (6.27)

Insertion of the values (6.24) into (6.6) gives:

Li=134 m, tr=p =38 (6.28) l l I
0

The functions entering in (6.19) through (6.23) are for tz= 3.8:

Uy = — 1.967, u, = —2.822,

Uy = — 2.345, v, = 0.0526 (6.29)
by _ % _ '
= 0.742, R 0.138.

0’

FIGURE 131.

The boundary conditions are in the case considered:

atP=Ro(ER=f—:)i M, =0, . ! ! l
Qo= (P—Q%cosp, | (6.30)

No=— (P —Q¥)sinB, |
or [by (6.20) and (6.22'):

u, (&
¢, [UO(ER)_“ —P')‘BE(TR) ] +

o (&
+Cs [ —tt, ) — (1 — 1) %:(RR)] =0,
L3(P—Q%cos B

Crtytr) — Cotf (r) = — —p ", (6.31) ===
vy (ER) uy (8R) 1p*R?
_Cl’T'i‘C. ER 2C.+iﬁ=
_o®
=— %hq) sin 8.
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Substitution of (6.26), (6.28), (6.29) in (6.31) yields finally:
Ci=—3.68-10"* m, Cy=—23.26-10 m, Cy = — 0.948-10~0rm, (6.32) \
The moments M, and M,, and the forces N, and N,, obtained from (6.20)

and (6.22) for the numerical values (6.32), have been plotted in Figures 132
through 135,

S— -—j—"‘r' I "=~{._ According to Winkler
— \
s For plate (—i l) ~ o8
Ro — T ~
o - - ———— ke :h\\ o
== oSNy
e For elastic semi-infinite space \4\
T N
= = O W T W
02 C \I" 0z '
00 [T Noo
a0 02 %y &4 Ry 068, 84, &y
FIGURE 132,
M (7]
o8 ..1__ —L-H‘—i\" "According to Winkler
: For plate (—;T, hl 08
i — — N -
e E-§ X
idnts aluybyntey Sty o [~ -
For elastic semi-infinite space ™~
2 J - (A
— T J— ™
02 = ' H g D 02
aolll] i a0
ac a2k, a4k, as 4, a8%, %
FIGURE 133.
w[7A) \
«0 40
o Ty 1 \
1 I i | I - I g AN
20 IU f — 20
Ik < T
10 H | 10
ooLLLLEL CITEITTINTT [TiTmdas
ao 028, 049, 54, as%, A \
FIGURE 134.
Figures 132 and 133 2lso show values.of the moments M, and M,, calcul- - - == -
g e

ated for a circular plate of radius R = Ro, with the same values of the
characteristics of the elastic foundation and of the structure. The calcula-
tions were performed by three different methods: the method employed in
Chapter IV (for #/R, =1, y=1.55), the method of the elastic semi-infinite
space /26/, and by Winkler's method, the foundation modulus being :

k=1.6-10% m/m3,
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Comparison of these curves shows that the bending moments M,, and M,

acting on a shallow spherical shell are considerably smaller than those
acting on a circular plate.

ok (74
s Ln
20 1 2 Nn\
- NN
828, 4R, a6 ,»L[““ 04 %, o

FIGURE 13s5.

§ 7. APPLICATION OF THE ABOVE METHOD TO THE ANALYSIS OF
THE BOTTOMS OF CYLINDRICAL RESERVOIRS

The preceding sections dealt with some problems concerning a shallow
spherical shell on an elastic foundation. It was assumed that the shell edges

are free and that the shell is acted upon either by a uniformly distributed or " ' _ ' . '
by a contour load (Figures 126 through 129).

We shall now consider the case when the spherical shell forms the bottom
of a cylindrical reservoir on an elastic foundation (Figure 136).

FIGURE 136. FIGURE 137,

1

The bottom is usually securedto the cylinder by a supporting ring and can
be assumed in a first approximation to be a spherical shell built-in along
its contour. In other words, we consider the system shown schematically
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in Figure 137, disregarding the remainder of the structure. In this figure,
the contour forces P represent the load transmitted to the shell by the
reservoir walls, while the uniformly distributed load p represents the
pressure of the liquid in the reservoir. The reactions ¢ and Q¢ of the elastic
foundation are obtained from (6.1) and (6.2), assuming that in relation to the
elastic foundation the shell can be considered as a rigid punch.
As before, the stresses and strains of the shell are determined by (6.19) l I '
through (6.23). These contain the three integration constants C,, C,, and
C,, which can be determined from the following boundary conditions:

at p=R (=1 W=0 W=0 u=0. 1.1)
nlr
- = - T W -
a4 > 3
e ~
02 b= =t \\
\\
—
ac ©
P,
\ @
az \
04
028, 04 &, 06%, a8 ks )
My |7
~Q+ )
) — ==t = l - . - '
~—
a0 ]
n2%, 949, 064, 0AR, R,
FIGURE 138.
¥, ’/1
v %
-0
- 10 s 4
=20 —r =
+o
-10 =
a0 .
Q2R 4Ry a6#, Q8R, A
v 7]
«0
WE==
20
NS
18 \\\ \\‘\
0 b S ey S
-at \\\
~
-az N
03 A
-a \\ \
‘ S H - = -
-05 "
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028, a4k, a4, 048R, %,
FIGURE 139.
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These conditions yield:

Catto () + Cato (6) = — T,
Cutt, (68) + Cat Er) = O,
— (1 + 1) [— C,0} £R) + Catt] (Er)] -+ 2Co (1 — ) £ — (7.2)

1 *R3
—~H =, ! l l

where p*=p—g .
The solution of these eguations is:

Co = — ‘ v;(in)' PR
' 1o (ER) %o (ER) — o (E8) %o (5R)] EP
Ca= ) R (7.3)
[40 (ER) % (ER) — 4o (ER) % (£1)] £
3 '3 i 4 | -
Coo Lt { 2(uy ((R) + v, (5R)] }LR:.
¢ AT eg (40 (Gr) 7, (BR) — 4 (B) 0, (GR)] En

The bending moments M, and M,, and the forces N, and Ny, calculated by

means of (7.3), (6.20), and (6.22) for a reservoir bottom subjected only to

a contour load P, have been plotted in Figures 138 and 139. The values of

the elastic constants of the soil and the structure are given by (6.24). The

results obtained for a shell with free edges have been plotted in broken line -

in the same figures. ' - ' : .
It is seen that reinforcing the shell along its contour by a rigid ring

preventing radial displacement and rotation, reduces to a certain degree

the values of M,, My, and #,, while the tension N, at the shell contour

becomes considerably less. This is very important when a shell forms the

bottom of a reservoir.

2

be analyzed according to the scheme shown in Figure 140,

If the supporting ring prevents only radial displacement, the shell can z l l
The boundary conditions are in this case:

at p=R, (k=79 : W=0, M=0 u=0. (7.4)

City (5r) + Catg (Er) =— 'p—;%' .
or

c [vo €) — (1 — ) T‘j“—)} +

+Cﬂ[_"0(ER)—(l —u)uiéi—k)] -0, (7.5)

— (1 +p) [— Ci, €R) + Cuti) (ER)] +

+ 2G4 (1 —P)Ek—w p;ﬁ’ER = 0.
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The integration constants are thus:
Ci= K pRE
' @R KituEr)kal EA

Co=—_ Ko pR?
P [w(BR)Ki+ vo(ER)Ka] EA

Co= Mt® [0 (Er) Ki—ug (B} Ka | Jp*R? l l l
*T R | Gl G oKl T [ B (7.6)

where o (€ )
Ky = uo )+ (1—p) 25
R
4y (€
Ka = o &)+ (1 ) 2C8).
R
Y] - T -—
—
P d I
AT N
; | BB B
¢ -
4 v ¢
FIGURE 140.
3.
To obtain a more accurate solution it is necessary to make allowance -
for the effect of the cylindrical reservoir walls on the strains of the bottom.
This can be done by the methods used to analyze statically indeterminate

systems, i.e., the method of forces or the method of displacements (strains).

FIGURE 141,
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In the first method, a cut is made in the zone where the bottom joins the
cylindrical reservoir wall, and the constraints there are replaced by
unknown forces [and moments] (Figure 141), In accordance with the
convention adopted for the signs, the canonical equations expressing the
continuity of the deformations are:

(Aﬁ+A‘ﬁ)x,+(Af,—AP,)x,—A.°,+A.‘;—APp=o,} (7.7) ! ' '

(85 + A2) Xy + (85 + %) X, — AS + AL, + Ay — 0.

The first equation states that there is no relative rotation at the cut; the
second states that there is no relative displacement in the direction of Xy
The coefficients and load terms in (7.7) are given in absolute values,

The first subscript indicates the place and direction of the displacement.
the second subscript, its cause. The superscript "¢" refers to the cylin-
drical reservoir wall, the superscript "b" to the bottom.
The load terms:

b b
qu- Agﬂv A By

define the absolute values of the displacements due to the external loads q
and p, while the load terms Ab,, A, correspond to the displacements due
to the contour load P transmitted by the reservoir wall to the bottom.

All coefficients and load terms with superscript ""b'" can be obtained
from (6.19), (6.20), and (6.23).

To obtain the coefficients with superscript "¢, it is necessary to B . - ' . .
consider the axisymmetrical deformation of a cylindrical shell subjected
both to an external radial load g and to contour forces X, and moments X,.
This problem reduces to solving a fourth-order differential equation
identical in form with the differential equation of the bending of a beam on
an elastic Winkler foundation,

This problem is discussed in detail in many books * so that the coefficients
with superscript "¢’ can be found without difficulty.

The same procedure is adopted when the reservoir bottom is a circular
plate instead of a spherical shell. The coefficients with superscript '"b"

are in this case obtained from the formulas of sections 3 and 6 of Chapter IV, i E x l

* See for instance /8/.
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Chapter VI

DYNAMICS AND STABILITY OF BEAMS AND PLATES
ON ELASTIC FOUNDATIONS

§ 1. DIFFERENTIAL EQUATION OF THE VIBRATIONS OF
A BEAM ON AN ELASTIC SINGLE-LAYER FOUNDATION

Consider a beam of width § on an elastic foundation, subjected to an
external load p(x, f) varying with time (Figure 142). This is the case of
dynamic loading, where the inertia forces acting in the deformed system
become significant.

) ] KK X

FIGURE 142,

The differential equation of motion of the beam is:

EIVV (x,0) = p(x, f) —my ZLED g, 1), (1.1)
where EJ = rigidity of beam, J = . :
’ 12(1 —py) a
m; = mass of beam per unit length,
g (x,1)= distributed reaction of foundation, due to elasticity and inertia of

soil.

To determine the reactions q(x,#), we cut out an elementary column from
the elastic foundation {(cf. sections 2 and 3 of Chapter I), and consider the
equilibrium conditions of this column, applying Lagrange's principle of
virtual displacements. Assuming that no horizontal displacements occur in
the single-layer foundation and that the vertical displacements are described
by the function ¢(y), the virtual work done by all external and internal forces

acting on this column becomes: - - o -
E ¢ Et 0 ¢ v
) , =
Ty V'S $*(y) dy ——1_'{% V§ ¢ y)dy '-'"o5§ $'(v) dy 35 + g (x, )=0, (1.2)
Y
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where q(x,?) = load per unit length, applied to surface of elastic foundation
(foundation reaction); m,— % = mass per unit volume of foundation

{ 7o = specific weight of soil, g = gravitational acceleration); also,

E,= —% Vo= ——— (1.3)

where E; and v, = modulus of elasticity and Poisson's ratio of elastic
foundation respectively,
We introduce the symbols:

H
AN
k= =25 S ¢ () dy,
- )
- . -
Eq
S TCL (1.4)
H
mo=mb§ $X(y) dy,
[
Equation (1.2) then becomes:
2V"— kY —my TV 4 g (x, ) =o0. (1.5) N-K K
This is the differential equation of the vibrations of a single -layer
foundation under the action of a load g(x,7). Eliminating g(x,s) between (1.1)
and (1.5), we obtain:
VIV—ortep sty e OF 2D (1.6)
where ~
& Ed } ! l
= L B (g
s EJ Em—vg)§¢ W dy,
¢ Et ¢
rt= E_‘]:W\,“TS(#:(y)dyv f (1.7)
0
+ L] 5 ¢ 1
m m,
m* = Tutme =(77h+*;—§ ¢ () dy) =

[]

(yand 7, = specific weights of materials of beam and elastic foundation

respectively). © omm - = -
The partial differential equation (1.6) thus shows that not only the beam,

but also the elastic foundation vibrates.
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§ 2. FREE VIBRATIONS OF A BEAM

When p(x,7) = 0, (1.6) reduces to:

VIV—2rtV 4 stV = —m TV (2.1) l ' '

This equation describes the free vibrations of the beam when it is
disturbed from its state of equilibrium and then left to itself.

We assume a solution in the form of a product of two functions, one of
which depends only on x, the other only on ¢:

V=X@xT(@. (2.2)
Substitution of {2.2) in (2.1) yields:
h ¢ T - -
v _ » T
L IR (2.3)

Since its left-hand side is a function of x only, and its right-hand side
of f only, (2.3) will hold in the general case only if each side is equal to
the same constant. Denoting this constant by m*w?, we obtain:

"+ o’T =0, (2.4)

X‘V—Qr’X'—}— (S‘—m'm')x=0. (2.5)

The solution of (2.1) thus reduces to integrating two ordinary differential
equations.,

Equation (2.4) has the same form as the equation of free vibrations of a
system with one degree of freedom: it describes a simple harmonic motion
with frequency w. The solution of this equation is:

T == Asinw! 4 Bcoswf, (2.6)
where 4 and B = constants determined from initial conditions. ! l !
The mode of the free vibrations of the beam is determined by (2.5), which

can also be written thus:
XV — 27X — (M— 9 X = 0, 2.7

where
M= ri_ st 4 m*o?. (2.8)

The general integral of (2.7) is: - - mm -

X (x)= C shax + C,chax + Cysin Bx + C cos px,
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where C,,..., C, are constants, and:
af=2\t 4 r2  BI—AZ_ 2 (2.9)
Since w is still unknown, the parameter 22, on which « and g depend, will

also be unknown, .
The general solution of (2.7) contains therefore the five unknowns ! ' '
€1,C4Cs,C, , and i, whichcanbe determined from the statical, kinematic, or ]
mixed-type boundary conditions at the beam ends. Only two conditions can
be formulated for each end. When no external forces act, the boundary
conditions are homogeneous, containing only the values of the function X (x)
or of its derivatives at x=0 and x=1.
By expanding the boundary conditions at the beam ends x=0 and x—{
with the aid of the formulas:

X (x) = Cyshax + Cychax + Cysinpx 4+ C, cos fix,

X' (x) = Cyachax + Cyashax + CyB cos Bx —C,Bsinpx,

X’ (x) = Cya*shax 4+ Cya®chax — C;B?sin 8x — C, B cos fx,
X" (x) = Cya® chax + Cya® shax — C;8% cos Bx 4- C,p* sin P,

(2.10) S T

we obtain, putting x=0and x={, a system of four linear equations in the
four integration constants (,,...,C, . Since the boundary conditions are
homogeneous, the four equations formed will also be homogeneous. In the
general case we obtain:

au (N Ci+ a3 (M) Cs + a1 (M) €34 a5 (N C, = 0, .
Gy (M) Cy+ ags (V) C5 + agy MC+a(MCi=0, : ' - ' : .
85 (M) C1+ a32 (M) Ca + a5 (W Cy + a5, M Ci=0, (2.11)

an (N Ci+aa (M) Cs+ ays MC+au{MNC=0,

where the coefficients ax() (i, £=1,2,3,4) are functions of r. By equating
to zero the determinant of system (2.11), we obtain an equation in a:

au(M) a(V) a0 a6, (2
a1 (\) (M) (V) ay ()

A0 =10y () an(®) au() an() |=0 (2.12) -
aa (M) au(M) ap(}) ay ). x l !

This equation is called characteristic equation of the homogeneous
boundary-value problem, i.e., the problem described by the homogeneous
differential equation (2.7) and the homogeneous boundary conditions (2.11).
Since ) depends on the vibration frequency o, equation (2.12) will also be
the equation of the natural frequencies of the system.

Since by virtue of (2.9) and (2.10) the parameter iz appears in the
arguments of the hyperbolic and trigonometric functions, the characteristic
equation (2.12) will be transcendental, yielding an infinite set of values
for a2 . It is easily seen that all these values are real, irrespective of the
type of boundary-value problem to which the equation corresponds,

The parameters A2 (n=1,2,3,..) determined by (2.12) are called eigen-
values of the homogeneous boundary-value problem.

Applying the method described here to determine »* thus yields an infinite
set of real eigenvalues A}, ), \.,.... Toeacheigenvalue M there corresponds,
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in accordance with (2.8), a certain vibration frequency; hence, an infinite
set of natural frequencies will correspond to the infinite set of eigenvalues
M o(n=1,23,..).

From (2.8) we obtain:

Al+s|_rl

wp= MES— (2.13) l l l
Similarly, in accordance with

(2.9), a pair of numbers «, and B, , which
determine the function X, (r), will correspond to each eigenvalue ;. We thus
obtain an infinite set of functions X, (x) (n= 1,2,3,...) which satisfy all the
conditions of the given homogeneous boundary-value problem. These
functions are called eigenfunctions (cf. section 4 of Chapter III).

Since the constants Cy,...,C, are determined by (2.11) up to one common

constant factor, each eigenfunction Xa(x) will also be determined up to one
constant factor.

- e -
2
The eigenfunctions possess the property of orthogonality:
l
§XXpdx =0, (i) (2.14)
H
This can be proved as follows: - ' - . : l

Since X, and X, are solutions of (2.7), we have:

4 v -

()\:—f‘)X[=X;V—Z”Xf, } (2.15)

Me—r) Xp= Xy — 2r’Xk,

where ) and 3} = eigenvalues corresponding to eigenfunctions X; and X,
We multiply the first equation (2.15) by X,, the second by X,, subtract

one from the other, and integrate the resulting equation between x = 0 and

x=1. This yields;

[ 1 il { { } l !
0 =) X Xudx = XVXdx — [ XX, dx— 28 (§ % Xedx —x3x,2x). (2.16)
° [ [}

[] 0

Integrating the right-hand side by parts, we obtain:

1

(M=) XX = [X7Xy— X0X; — XiXy 4+ XoX)— 202 (XiXp— Xa X)L, (2.17)

0

where the symbol [ I denotes the difference between the values for x— / and - - -
for x =0 of the expression in brackets,
The right-hand side of (2.17) is proportional to the work done in state 'i"
by the generalized boundary moments and forces M and Q over the boundary
displacements corresponding to another state £, and is zero in the case of
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homogeneous boundary conditions, irrespective of the type of support.

Hence:
{
=2y Sx,«x,, dx = 0.
0
Since the eigenvalues 1} and ! are distinct wheni=£f, it follows that: ' l l
M—a %0
and therefore:
{
{XXpdx =0,
[}
\\
which proves the orthogonality of the eigenfunctions. - -
Exactly as in the case of vibrations of a simple beam (cf. section 4 of
Chapter III) all even derivatives of the functions X, and X, also possess the
property of orthogonality:
{
§x2m x¢™ dx — 0. (2.18)
0
Here, X“"" denotes the derivative of order 2m(m=1,2 3,...). This can be 7 . - ' '
proved for any value of m in the same way as the orthogonality of the eigen- -
functions themselves was demonstrated. N
3 \
Some examples of the determination of the eigenfunctions and the natural \\
frequencies of a beam on an elastic single-layer foundation will now be
given.
a) Let the beam ends have simple supports. The boundary conditions ’ y
are then: 3
at X*=0andX = !/ X=X"=0. (2.19)
The following system of equations in C,,..., C, are obtained from these
boundary conditions and from (2.10):
Cz +C, =0,
a*C, — pC, =0,
Cyshal 4 Cachal 4 Cysinpl + C,cos pl = 0,
- - -

Cia*shal 4 Cax*chal — Cyf?sin B/ — C,p% cos Bl = 0.

The first two equations yield:
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The remaining two equations then reduce to:

shalCy + sinBIC, = 0,
a?shalC; — B2 sin BIC, = 0. {l (2.20)

Equating to zero the determinant of this system, we obtain: l ' l

(2* + By shalsinpl =0
or
singl =0, (2.21)

whose roots are:

Ba=7-. [where n is an integer] (2.22)

Substitution of (2,22) in the second equation (2.9) yields all the eigenvalues
of the given problem:

x?,_—_"%-f-r’. (2.23)

Substituting (2.23) in (2.13), we obtain finally:

=V el .20 ‘E-T K

This is a general formula for the natural frequencies of the system. For
instance, putting s=r =0, we obtain as a particular case the natural
frequency of a simple single-span beam. Putting only r=0, we obtain the
frequencies of a beam on a Winkler foundation of modulus &.

Having determined the eigenvalues A! and frequencies w,, we can find
the eigenfunctions X,. According to (2.21):

sinpl = 0, ’ { l l
Substitution of this in (2.20) yields:

C,=0.
Hence, in the case considered three constants vanish:
C,=C,=C,=0. (2.25)

The constant C, remains indeterminate.
Substitution of (2.25) in the first equation (2.10) yields the eigenfunctions

X.(x), determined up to a constant factor. Taking this factor as unity, we
obtain;

X1=sin¥, X,=sin2—75, X,=sini;'f,... (2.26)
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b} If the beam end x =0 is simply supported while the end x = is built
in, the boundary conditions will be:

at x=0 X =X"=0, 2.27)
at x=1 X=X =0, ’
whence: ! l '
C;+Ci=0,
a’C; —B*C, =0, (2.28)

shalCy + chalC, + sin BICs + cos BIC = 0,
achalCy + ashalC, + BcosplCy —BsinBIC, = 0.

Thus:

Cs=C,= 0,
shalC; + sinBICy = 0, (2.29) o m cww o
achalC, 4 BcosBICy = 0.

The corresponding characteristic equation is:
Bshalcospl —achalsinpl = 0. (2.30)
Substitution of:
e =VVTE, BV, E-K X

yields:

Va—rthY N+l =Y+ ritgV M — 2l (2.31)

If r¢is given, the transcendental equation (2.31) determines all the eigen-
valuesl, 13, 2% ... of the boundary-value problem considered, whence all the
natural frequencies w,, t,, w,,...of the beam are determined by (2.13).
The eigenfunctions X,.(x) corresponding to the eigenvalues \; and .
boundary conditions (2.27) are: ! l l

Xo(x) =sinV M—r¥sh VN + tx—sh VM L rHsin V38 —rix
(2.32)
(n=1,2 3,...).

It is easily seen that these functions satisfy the boundary conditions
(2.27).

The functions X,(x) obtained depend also on the elastic characteristic - .
By successively assigning different values to this parameter we obtain
different families of eigenfunctions with corresponding eigenvalues,
determined for a given r* by (2.23); all the functions corresponding to this
value of r* will be orthogonal. The family of functions obtained for r*=0
corresponds to the vibrations of a simple beam with one end simply
supported and the other built-in (cf. section 4 of Chapter III).
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¢} When both beam ends are built in, the boundary conditions are:

at x=0 X =0, X =0;
at x=1/ X=0, X =0 } (2.33)
The characteristic equation, obtained in the same way as in the preceding ' ' l
examples, is;
cos VI = Lch Y R 7/ — V“’N"sin VOIRIshY =), (2.34)
—-—r
The eigenfunctions are;
X (x) = (chanl—coépnl) (Bnshanx —a, sin B,x) — (2.35)
— (Bnshan! — @, sin B,f) (ch apx — cos Bax), ‘
where L T .

a=VNIr g, =V

Putting r =0, we obtain the eigenfunctions and eigenvalues of a simple
built-in beam,

The above method can also be applied to other boundary conditions.

’ K-T K
Proceeding from the properties of the general integral of a homogeneous

linear differential equation, the following general expression is obtained for
the free vibrations of a beam on an elastic single-layer foundation:

Vix, t) = le,.r,. = 2’ Xn (Ansin oat + B, cos wyt), (2.36)

where A, and B, = integration constants. . )
This expression can also be written in the following form: E l l

V(x, t)=§1€axnsinmn(t—¢,o, (2.37)

where the integration constants are now C, and ¢,, the latter character-
izing the phase shift,

It follows from (2.36) that the elastic line of a freely vibrating beam
represents the geometrical sum of an infinite set of curves of the form:

Xn (Ansin ot 4 B, cos wpt),

which are called principal modes of the transverse vibrations of a beam.
Each curve is described by the corresponding function X, and oscillates at
the frequency w,. The beam axis therefore changes its shape continuously.
After the beam deflections have been determined in form (2.36), the
velocity at each point is obtained from:
o0

%: 2 X0, (An cos Wyt — B, sinw,f). (2.38)

=]
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The bending moments and shearing forces are:

M(x, t) = — EJ ¥ Xa (Ansinwat 4 Bacos onl), (2.39)
nz=1

Q(x, f) = —EJ Y} Xz (Ansinwat + Bacos wad). {(2.40)
n=]

The diagrams of these magnitudes also change their shape continuously.
The maximum bending moments and shearing forces are obtained atdifferent

beam sections and times.

§ 3. ACTION OF A MOMENTARY IMPULSE

Let an impulse of intensity p(x) per unit length act for an infinitely short
time on an elastic beam of length { resting on a single -layer foundation.
At the instant at which the load disappears the displacements are still
infinitesimal, but the velocities are already finite,

After the load has been removed, the beam will vibrate freely, its

deflections being:

Vix, )= ,‘2,1 Xo (An sinwpt 4 B, coswat). (3.1)

Assume that the eigenfunctions X, of the bar and the corresponding
frequencies o, have already been determined from the boundary conditions.
We obtain the coefficients 4, and B, from the initial conditions, which,
according to our assumptions, are:

Vix, 0 =0,
i 0 _ (3.2)
% o

where vy, = initial velocity at section x .

The first condition (3.2) yields B,=0. To make use of the second
condition, we express the initial velocity of a beam element of length dx in
the form:

v, =242, (3.3)

where m = reduced mass per unit length of system, which, by the last
expression (1.7), is:

R
m=my+m =1 +12(4* () dy.
[}

Since for B, =0:

-]
v
F 2, XpAnw, COS oL,

A=l
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the second condition (3.2) becomes:

<o
200 _ % 4pwnXon (3.4)
A=)
The determination of the coefficients A, thus reduces to expanding the l l l

function # in a series of the eigenfunctions Xa.

We multiply both sides of (3.4) by one of the eigenfunctions and integrate
the resulting expression over the entire beam length:

1 i

%Sp(x)X,dx: Em,.A,,SX,,X,dx. (3.5)

0 A=l 0

Because of the orthogonality of the eigenfunctions, all integrals on the
right-hand side vanish for n<=k. The only nonzero integral is:

1
w,A;.SX:dx. (3'6)
[

Equation (3.5) thus reduces to:

! ! ' ) . A '
%Sp(x)X‘dx=kaASX:dx.

[} [

whence:

{
o0 X, ax

A=t 3.7)
m.,szdx : l I

The solution finally obtained is thus:

w \P(x)X,dx

Vi, t)= %21 § Xasinmt. (3.8) [ — -
= o, X:dx

L LI
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The bending moments and shearing forces are:

p(x) X, dx
E Xusinwat,

m [
"o, { X3 ax
¢ (3.9)

!
. Sp(x)Xndx
EJ LN
Q(x, t)=-——,;2°——‘———x,.smm,,t.
=1 mnRX:dx
o

L L T

Mx, t)=—

ibt4gs

We thus see that each component of the impulse

Pn () = MAnwaXn

causes a simple harmonic motion of mode X», frequency ., and amplitude 4.X.

Series (3.8) for the deflections converges relatively slowly; series (3.9)
for the bending moments and shearing forces converge even more slowly.
This may cause considerable difficulties in practice. However, in these
expressions no allowance has been made for the damping of the vibrations,
which is considerably more rapid for the high-frequency vibrations than
for the low-frequency vibrations; most high-frequency vibrations are
already completely damped at the instant when the deflection corresponding
to the fundamental mode attains its maximum. "K-K K

As a result, it is sufficient to take the first terms of (3.8) and (3.9) in
order to obtain a satisfactory approximation.

Consider, for example, a single-span beam with simple supports resting
on an elastic foundation (Figure 143). Let a momentary impulse p, uniform-
ly distributed over the span, be applied to the beam. The eigenfunctions
are in this case given by (2.26), and the natural frequencies by (2.24). To
determine the coefficients A4,, we substitute (2.26) in (3.7) and obtain:

¢ nn -
p S sin T* dx
4p 3
An = : =mrmmn' (3.10)

7
n
mmng sin‘—lf- xdx
1

Substituting these expressions in (3.8) yields:

oo
4 1 . .
Vi, t)= #gln—%sm#xsmwnt =
ip 4w (3.11)

. . {4 . 3nx .
-—;’-n[w—lsm 7 smwlt+msstmm31+...]. - mE - mm -
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p

g cnsersana:

FIGURE 143,

Only odd values of » appear in (3.11), since a uniform impulse will cause
the beam to vibrate symmetrically with respect to its center section.

§ 4. FORCED VIBRATIONS OF A BEAM

Consider an external load acting on a beam resting on an elastic
foundation:

px, &) =p(x)f(t). (4.1)

Assume that the variation of p is not accompanied by any noticeable variation
of the mass of the system, i.e., m remains constant during the motion.

This problem reduces to integrating the nonhomogeneous differential
equation (1.6). Its solution is the sum of the general solution of the corre-
sponding homogeneous equation and of a particular solution of the non-
homogeneous equation. The general solution of the homogeneous equation is:

Vix, 1) = r12=1 Xn (Ansinwat + B, cos w,t), (4.2)

where A, and B, are found by expanding the given initial values of v and

% in series of the eigenfunctions X,, as shown in the preceding section for

the case of a momentary impulse.
To determine a particular solution of (1.8), we expand p(x) in a series of
the eigenfunctions X, :

p(x)="§lC,.X,.. (4.3)

The coefficients C, can be determined by multiplying both sides of (4.3)
by X, and integrating over the entire beam length. Because of the ortho-
gonality of the eigenfunctions, we obtain:

(4.4)
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If the external load also includes concentrated forces P, the integral in
the numerator of (4.4) is to be understood as a Stieltjes integral. We can
therefore rewrite (4,4) as follows:

{

Sp(x)X,,dx+}_‘,PX",
Cp="—qgp——, {4.5) l l '

where X, = values of functions X at points of application of forces p.
Each function X, can be considered as an elastic line induced by a
distributed static load of intensity wtmX,. The static load C,X, will

obviously induce an elastic line whose ordinates are f" X, . A dynamic
w,m

load causes at time ? the displacements*
t

Vi ) = o Viwsine (t — u)da, (4.6)

In the case considered the static load is CuXaf(t) . Hence:

!

Valx, t)=”i"' XnSf(u)sinmn (t—u)du. (4.7
n [
Hence by (4.3): ' - ' » .
«© c !
Vi =3 - X,,Sf(u)sinm,.(t—-u)du. (4.8)
ne=] n 0

The general solution of (1.6) is the sum of (4.2) and (4.8):

c, ¢
W

V(x,t)=)_‘,x,.[A,sinw,.t+B,cosm,.x+m Sf(u)sinw,,(t—u)du]. (4.9) x l '

The bending moments and shearing forces are calculated by the known
formulas of strength of materials:

av v
M=—E-’w, Q=—EJw. (4.10)
the velocity is found by differentiating (4.9) with respect to ¢:
o ¢ . -
[ - - -
v= % = 2 Xn [A,,m,.cosw,.t—B,.m,. sin wpt -’;"Sf(u) cos o, (¢ —u)du] . (4.11)

nm] 0

* See for instance, Rabinovich, 1. M., Kurs stroitel'noi mekhaniki (A Course in Structural Mechanics),
part 1. 1954,
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§ 5. DYNAMICAL ANALYSIS OF BEAMS CONSIDERED
AS SYSTEMS WITH FINITE NUMBERS OF
DEGREES OF FREEDOM

From the viewpoint of structural dynamics, the beams considered by us
represent systems with infinitely large numbers of degrees of freedom. -
The deformed axis of such a System can acquire an infinitely large number l ' l
of different shapes under the action of the various static and dynamic loads,
The exact dynamical analysis of elastic beams, which takes into account the
entire frequency spectrum, thus leads in general to an infinite series of
the eigenfunctions of the given boundary -value problem,
However, it can frequently be assumed that the beam considered has a
finite number of degrees of freedom. If a beam resting on an elastic
foundation is so rigid that it does not become bent, it can be considered as
a system with two degrees of freedom. Elastic beams can also be con-
sidered as systems with finite numbers of degrees of freedom. In this case
some basic forms are selected from the infinitely large number of forms e EE T o
which the elastic line of the beam may assume, and only these forms are ‘
considered in the calculations. Any function approximating the elastic line
of the beam and satisfying the geometrical boundary conditions can be taken
as vibrational mode. This considerably simplifies the solution of the
dynamical problem while being satisfactory for practical needs.

1

We consider first the vibrations of a rigid beam on an elastic single- ’ . e . | .
layer foundation (Figure 144). Let the deflections of the beam be:

V=CT (). (5.1)

The equilibrium conditions of the beam are obtained by equating to zero
the work done by all the forces acting on the beam over the virtual displace-

ment V=1. The inertia forces per unit beam length are:

v . .
m = 5 =mCT", (5.2) E l l
In addition to these forces, there act on the beam also the reactions q

and Q® of the elastic foundation.

e —— :

[l
Vel T 0

N O T
7

FIGURE 144,

-

¢
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In the general case, when allowance is made for the inertia of the founda- 4
tion, the distributed reactions ¢ are by (1.5):

av av
g=—255+ 4 +m %L (5.3)
Substitution of (5.1) yields: l l l
q = kCT + m,CT". (5.4) ]

To determine the fictitious reactions Q¢, it is necessary to calculate the
work done by the normal and shearing stresses, and also by the inertia
forces in the elastic foundation beyond the beam ends. The virtual displace -
ments to the right of the beam are:

V, = e-ate—n,

We then obtain: W N T wm
= L Mo
Q‘—(2atT+m°TT)C_(2atT + 52 T°)C, (5.5)
where:

Ed
1—v

H
S ¥ {y) dy,

k=
t

oS
§(14v)

+
27"

E ; 5.6
=y ) W, (5.6)
°

Equation (5.5) for the concentrated reactions, valid for the dynamical
problem, differs from (5.7) of Chapter II by the presence of a second term
representing the inertia forces in the elastic foundation.

Equating to zero the work done by all the forces acting on the beam, we )
obtain: -
(2lk+4at)7'+(2lmo+2lm,+2m°aT')T'=0. (5.7)

or
1
kil +—7
T+ (m' ‘:2 —~— T=0.
m (14 52+ 2 ) (5.8)

Thus, a rigid beam on an elastic foundation performs a simple harmonic \\
motion at a frequency of

1457 <
& al \
=V mEmT 5.9 ~

AN
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The vertical displacement of the beam at any instant is
V = C;sinet 4+ Cycos wf, (5.10)

where C, and C, = constants determined from initial conditions.

, I |

We consider as a second example the free vibrations of an elastic beam
of length 2/ resting on a single-layer foundation (Figure 145). Let the
motion be symmetrical with respect to the section x.= 0. The elastic line
of the beam is then approximately defined as follows:

inx

)((x)=2}/1,cosT (i=0,1,3,5,...,n). (5.11)
Lm0

The first term of this series (i =0) corresponds to the displacements ofa
rigid beam; the other terms correspond to a symmetrical bending. It can
be seen that the function X (x) satisfies the geometrical conditions of the
problem and one of the statical boundary conditions (M =0 at x=-{). The
second boundary conditions (Q=0 at x = +1) is not satisfied.

[T T e
| I
11
|
%W@ X;-cos 5

FIGURE 145, H l !

To find the natural frequencies , of the beam, corresponding to modes
(5.11), we obtain the equilibrium conditions for the beam by means of the
principle of virtual displacements. Taking (1.7) into account, (2.5) can be
written as follows:

EJXIV —2X" + (k—mowh X = 0. (5.12)

Substitution of (5.11) yields:

fJA,[EJ(g"T)‘+2t (‘%)' + (k— moY)] cos 5= 0. (5.13)

=0

229

TTITRYRRITITIITIELIINI



For each value of i, the first term corresponds to bending of the beam;
the second and third terms containing the coefficients k and ¢+ depend on
the reactions of the elastic foundation, distributed over the bottom of the
beam; the last term depends on the inertia forces,

In addition to these loads, concentrated reactions Q% will also act on the
ends of the beam when the latter is forced into the soil like a rigid body.

These reactions are determined from (5.5)*: l l l
Q°=(2at—’2"—a°m’)/4,,. (5.14) \
The following system of algebraic equations is obtained by calculating the N

work done by all these forces over each virtual displacement of the beam: \
! n
Sz(k—mm’) Arcos T4y 4 200 = 0, ‘
—1 im0
S ()' 4+ 21 (2)' 4 b mas W e
§ S[E/E) 41 (5 + 4ot |

~1{i=0

. inx . =®x _
xA.cosgcosﬁdx—O, (5.15)

la ‘. in \3
§'§o[£J(%) + 2 (‘2_‘) + k—mw’] x
nx

xA,»cos%cos —szx= 0

(i=0,1,3,57,...,n), K -

or, after the corresponding integrations are performed:

[k(l +T:,—)—(m1 + m, +m02+11) m’]A0+
i—1

+ A k—moh(—1) * =0,
fam}

2 1 L
+2t§,’-+k—mw2)Al=o, (5.16) :

e k—meh) (— )T A+
+ g (B + 25 + k—mot) 4, =0
(=1357....n).

The ";‘3 homogeneous algebraic equations (5.16) become identitites for
Ay=Ai=A4,=...= A, =0 . This trivial solution corresponds to the case when
the beam does not vibrate. A nontrivial solution is obtained by equating to
zero the determinant of the coefficients of the constants A;. This yields an

® Itis assumed that the elastic foundation beyond the beam ends performs harmonic motion of frequency w,
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equation of order "%3 in the unknown «®, whose solution gives all the
natural frequencies ; corresponding to the vibrational modes (5.11).
The vibration frequency w, of arigidbeam, givenby(5.9), is aparticular
case. This solution is also applicable to the natural vibrations of a beam
on simple supports. In this case, the first term (i = 0) in (5.11) and the
corresponding terms in (5.16) are discarded. Since in practice only the l l I
lowest frequencies are of interest, it is sufficient in the general case of a
beam lying freely on the foundation to take only the first two or three terms
in (5.11). The low frequencies are therefore obtained from a quadratic or
cubic equation.
It was assumed in the above examples that the beam vibrates symme -
trically with respect to the section x= 0. In the general case, due to the
orthogonality of the symmetrical and antisymmetrical modes of vibration,
the problem can be divided into two independent parts corresponding
respectively to the symmetrical and to the antisymmetrical modes. The
frequencies corresponding to the antisymmetrical modes can be determined L e e
by the same method as described above.

3

Let a beam with free ends be subjected to the action of a momentary
impulse of intensity p(x) per unit length,
The initial conditions are:

Vix, 0)=0,
W0 _p(x (5.17)
ol T m

From (5.11) and the first condition (5.17), the beam deflections are
approximately given by:

V(x, t)=2AICOS—Z‘l—xSin(‘)ﬂ, (5.18)
l==g
where the vibration frequency o; is determined from (5.16). i ! l

The second condition (5.17) yields:

n
P (x) inx
2 =§°A,»m, cos 5. (5.19)

The coefficients A, are determined by expanding the function 5’% in a
series of cos ‘12'15(1‘ =0,1,3,5,...). Multiplying in turn both sides of {5.19) by

cos l;‘—lx(i =0, 1,3, 5,...) and integrating the resulting expressions from x =0
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to = , we obtain:

n i—1 I3
Agoo + 3 Aoy 2 (— 1) =”%Sp(x)dx,

f=)

13
4
= Ao + A1, = %Sp(x) cos%dx,
s } (5.20)
4 ﬂ ...... 2. R
Ao (— 1) + Anw, =”—uSp(x)cos

(i=1,3,57...n),

n

dx

121
2!

from which all coefficients 4, in (5.18) can be found.
After the beam deflections have been determined in the form (5.18), the
bending moments and shearing forces corresponding to i>1 can be calculated AN
by means of (4.10). The forces and moments corresponding to rigid -body
motion of the beam (the first term in (5.18)) are determined by the reactions
of the elastic foundation which can be found from (5.4) and (5.5) when 4, is
known. The bending moments and shearing forces of the beam can then be
calculated by the usual methods.

§ 6. DIFFERENTIAL EQUATION OF VIBRATIONS OF A PLATE A
RESTING ON AN ELASTIC SINGLE-LAYER FOUNDATION E-H K

During bending vibrations, a plate resting on an elastic foundation can
be considered as being in static equilibrium, the plate elements being acted
upon by inertia forces (— m %) in addition to a distributed load p*(x, ¥, 1)

The differential equation of plate vibrations can thus be obtained from (1.1)

of Chapter III in the form: \
AN
. w(x, y, !
DYVt (x, 4, 1) = p* (x, g, ) —m, Z2EpD (6.1) _ N

where m, = mass per unit plate area; p*(x, y, 1) = distributed load, consisting { l l
of given forces p(x, y, 1) per unit area and of reactions q(x, y, t) of elastic
foundation:

PP,y )=px 4. )—qlx, y, 1) (6.2)

The inertia of the elastic foundation must be taken into account when
calculating the reactions q(x, 4, t).
To determine the latter, we cut out from the elastic foundation an
elementary column of cross section dx = I, dy =1 and consider its equilibrium
conditions, applying Lagrange's principle of virtual displacements (cf. - o= -
section 6 of Chapter I).
Assume that no horizontal displacements occur in the elastic foundation,
and that the z-distribution of the vertical displacements is given by a single
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function ¢(z2) *:

u(x, y, 2, 1)=0,
U(X. Y, 2, t) =0, (6.3)
W(x, Yy 2, t) = ID(X, Y, t)‘P(Z)'

Taking into account the inertia of the elastic foundation, the generalized
equilibrium conditions of the elementary column are:

fong # S S
S az‘cpdz—g c,d;’dz-{-& W’” cpdz_smo —%q;’dz-{»q(x, ¥, 1)=0, (6.4)
4 Q (1]

where g(x, y, f) = load applied to unit area of elastic -foundation surface,

- -
My = 7_;. = mass per unit volume of elastic foundation, 7o = Specific weight
of soil, g = gravitational acceleration, and H = thickness of compressible
layer.
By substituting in (6.4) the values of the normal and shearing stresses of
the elastic foundation o, ,, &, (determined from {6.2) of Chapter 1), we
obtain after some transformations:
=29 (x, 4, ) +hw(x, g, 1) 4 mg ZRELD _ oy g (6.5) -
vw(x, g, Y M5 —=14q{x 4, ¥, . '-"
where
H
k= Sq/’(z)dz.
1—\40
0
E H
R e
H

mo=7rl.,§<p’(z)dz. ’ F l l

The partial differential equation (6.5) describes the vibrations of the
elastic foundation, due to a load ¢(x, #.t}). This equation can be considered
together with (6.1), since the plate deflections are equal to the vertical
displacements of the surface of the elastic foundation beneath the plate, and
since the load q(x, , #) on the foundation equals the reactions of the elastic
foundation on the plate.

Eliminating q(x, y. {) between (6.1) and (6.5), we obtain:

v'v'w—2r'v*w+s‘w+m-";—f,’=%, 6.7)

* The function ¢ (z) is selected in such a way that ¢ (0) =1,
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where:

(1-»’)0

H
e par Y §¢' (2)dz,
H

!

'*=3=m§¢'(z;dz. (6.8) l l l
H

mt:ﬂ’j;—’""=(%+%§qa’(z)dz)‘T

Here, D = flexural rigidity of plate, 7 and 1, = specific weights of plate
material and of soil respectively, 4 = plate thickness, g = gravitational
acceleration, and:
E

. . (6.9)

1—vs . Cowm

Eo=

In the case of free vibrations, when no external load p(x, y, ¢) acts, (6.7)
reduces to:

ViV — 2V 4 stw = —m* S2. (6.10)

§ 7. APPROXIMATIVE ANALYSIS OF AN INFINITE PLATE ' ' - ' ’ '
IN THE CASE OF CONCENTRATED IMPACT*

Consider an infinite plate resting on an elastic single -layer foundation
(Figure 146). Let the concentrated force P({), shown in Figure 147 as a
function of ¢, be applied suddenly at some point of the plate, inducing a
vibrational motion of tlie plate, The problem is to determine the stresses
and strains of the plate during impact (0 ¢ <) and during the ensuing free
vibrations of the plate (1t < ).

r

FIGURE 146, FIGURE 147.

We introduce a system of polar coordinates, Let the origin be at the
point of application of the force. Obviously, the plate deflections will depend

® The calculation given in this section was performed by E. I, Silkin at the Institute of Mechanics of the
USSR Academy of Sciences.

234
D O SN |

BN EEEERRREERREEE



only on the space coordinate p and on the time ¢, i.e.:
w=wp, ).

The fundamental equation describing the free vibrations of the plate is:

2, (7.1) l l I

VeVow — 2tV 4 st = — e

where

2__ o 1 9
T T
(7.2)
202 9 2 » 1 & 1 9
Ve st e W T
k4 ¢ -
1. Solution of the fundamental differential equation
We present the solution of the homogeneous equation corresponding to
(7.1) in the form:
we H=WETw, (7.3)
where W (p) = function of only, and T () = function of ¢ only.
Substitution of (7.3) in (7.1) yields: " ' B ' ) .
VIV — 203V m*T" 4 9T
AL AR A L (7.4)

Since the two sides of (7.4) are functions of different variables, each of
them must be equal to the same constant in order that the equation be
satisfied in the general case:

viviw —2nvig _mT 4T M

7 = T , (7.5) l
where M = parameter to be determined, x l

It follows from (7.5) that:

m.T'+($‘+)-.)T=0, (7.6)
VIVIW — 2r2V3W — AW = (. (7.7)
Putting ""n"__“=m!, (7.8)
(7.6) then becomes: E - mm =
T + T =0, (7.9)
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whose solution is:
T = D;sinwt + D, coswt, (7.10)
where D, and D, = integration constants. .

Equation (7.7) determines the mode of the free vibrations of the plate,
We assume a solution of the form: ! l '

VW = nW. (7.11)
Substitution of {(7.11) in (7.7) yields:
n*—2r'n — M =0,
whence:
n=rtt+Vri4 (7.12) T W -

It is seen from (7.11) and (7.12) that the fourth-order differential equation
(7.7) is equivalent to the two second-order differential equations:

VWAV N —r)W =0, } (7.13)
VW — (VP R 4 )W =0, )
These two equations can be reduced to the same form: - I - ' I
e+~ w=o (7.14)

by putting in the first

x=p ) VA+M—rt
and in the second
=pp) VAt r+rt,
Equations (7.13) are thus reduced to two zero-order Bessel equations of
a real and an imaginary argument respectively. i
Considering again the variable p, the solution of (7.7) can be represented ,
as Bessel functions of the first and second kinds of a real and an imaginery ;
arguments *:

W =Ado(p VVFETR=7) + AYo(p VYV T2 —1) +
+ ke (0 VVAF R A1) + Ao (o V VA T 08 172), (7.15)

where J, and Y, = Bessel functions of a real argument, of the first and N

second kind respectively; /, and K, = Bessel functions, of an imaginary .

argument, of the first and second kind respectively (modified Bessel functions); \

Ay, Ay, Ay, Ay = integration constants. Com-.
By (7.3), (7.10), and (7.15), the general solution of (7.1) is:

wip, &) = [Dysinwt + Dycoswt)[Ady + AsYo + Asly + AKol. (7.16)

* In section 2 of Chapter IV the solution of a similar equation was presented in a different form. See also
section 7 of Chapter [ and section 6 of Chapter V,

236

TTITIRIIRITIITIEITTNI



2. Determining the integration constants from the initial
and boundary conditions

To determine the six integration constants in (7.16) it is necessary to
consider the initial and boundary conditions for the plate, Physical

considerations impose the following boundary conditions on the function

w(e, f): ! l
at p—0: w == o00; {(7.17)

at p—oov: w—0.

Since for p=0 the functions ¥, and K, tend to infinity, while for p— oo
the function /, tends to infinity (Figures 28, 148, and 149), we must have:

AI=A|=A4=0, (7-18)
Let no deflections occur before impact:
at t=0: w=0, (7.19)

Hence,D, =0, and (7.16) reduces to:

w(p, {) = Csinot-J, (pVV_r‘+l‘—r’), (7.20)

where C is aconstant. Todetermine its value, let the striking body of mass - .
M have a velocity V, at the instant of impact(#=0) If the rigidity of the plate ) ' - I )
is small, we can write:

at =0 and ¢y =0 : = =V, (7.21)

y-J’(I) { !

FIGURE 148. FIGURE 149,

as
y=%(x)

012.34\36/70‘570

-a5

This equation states that the velocities of the striking body and the plate
are equal at the point and time of impact. - - -
Since

%’ = Cw cos vt .J, (PVV?TT—I’)

L0 =1,

and
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we can rewrite (7.21) as follows:

Co= VO.

c=2, (7.22) l ll

Substitution of (7.22) in (7.20) yields:

w (p, t)=—l:n—°sina)t-J°(p Vr‘—}—l‘—r’). (7.23)

In the case of a massive plate, the coefficient € can be found by equating
the momentums of the striking body and the plate at the time of impact:

whence:

PV, P
-x—" = Tchoswt-Jo (0) L__o 4
®y k4 a4 -
+S 2rmCo cos wt - J, (pl/ Vf‘-{»—)\‘»—r’)pdpl‘ . (7.24)
nl‘n+1
+’§l S 2rmCw cos wt - J, (p VAN —rt)odp L_o,
Kn
where m = mass per unit area of plate and elastic foundation, determined
from the last expression (6.8):
" H — . . B
m=m'D=%+%S¢'(z)dz; (7.25) ' - ' - .

and py, pg,...,H, = roots of the function:

LV VA—=r),

plotted in Figure 149,
The absolute value of the integrals has to be taken in (7.24). The
summation in the last term is extended over all half-waves of the function: - H I I

5V VAR,

which lie inside the zone of motion of the plate, i.e,, that part of the plate
whichacquires a velocity at the time of impact. The boundaries of this zone
can be determined experimentally. Assume as a first approximation that
the influence of the impact extends only over a distance corresponding to
the first half-wave of J,. We then obtain for ¢ =0:

”y
PV, P
T~=Tcw+2ncmm§p1.,(p Vr+R_r)d. (7.26) = = =

The integral is equal to:
(3 (3

¢ _ 1 ' x4y (%)
§PJ0(P e WOS xJo(x) dx =V i
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or, since the first root of Jo(x) isp) = 2,4048 and J, (u,) = 0.5191,

[
VVre—r)g~ 120
§P"D (P + r )dp m_’,
Substituting this value in (7.26), we obtain: l l l

PVo(Vrt +0i— 1y
o [P(Vr¥F A —r%) 4 2,5nmg] (7.27)

C=

Substitution of (7.27) in (7.20) then yields:

wip, 1) = —Vol¥ri+ M—ry , sinot-Jo (o )V VA + R—n). (7.28) ‘- o

o [P(Vre £ A~ %) 4 2,5xmg

3. Obtaining the parameter a determining
the vibration frequency o of the plate

The parameter i appearing in (7.23) and (7.28) is related to the vibration
frequency w of the plate by (7.8), and is determined by considering the
equilibrium condition of a cylindrical element cut out of the plate near the - ' . .

point of impact (Figure 150).

Pt R

FIGURE 150,
Neglecting the foundation reactions and inertia, the equilibrium condition >
of this element is approximately given by:

P dw
2RQ=250, (7.29)

where R = radius of cut-out element and Q = shearing force acting along its

edge:
-] 1
Q=—D—(ap- +?$)- (7.30)

Introducing the coordinate R, defined by:

R=pVyrsar —r_ (7.31)
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we can rewrite (7.30) as follows:

— s Pw 1 ow 1 d*w
¢= D(Vr‘-{-)\‘—-r’) (W_k—'aﬁ'*‘ﬁam)' (7.32)

Substitution of (7.20) yields: ' l ‘ '

Q=D TR — M¥Csinut [J," (R)~ &1y (R+ %Jo'(R)]. (7.33)

Since:
, v _J w_ RI—1 U
B =—dudf =g =0y, Jm= R g
(7.33) can be rewritten as follows:
=—DV " FM—ry)Csinwt-Jy(R). (7.34) o vwm - wm

The function J, (R) has been plotted in Figure 151. It is seen that (7.34)
is not valid at p=0. We therefore exclude the zone inside the radius R = 1.8
from our consideration. [For R = 1.8], we then obtain:

Q=—0.582D(V r* + M — r)"s Csinwt. (7.35)

Substituting (7.35) and (7.20) in (7.29), and taking (7.8) and (6.8) into

account, we obtain: - ' ' .
(VAW — iy = Pl R

19.4 14 + v {42 (2) 2]
o

(7.36)

After » has been determined from (7.36), the frequency of the plate
vibrations during the impact can be calculated by (7.8).

4. Free plate vibrations x l l

At the instant at which the impact ends (f =) the plate has already
acquired finite displacements and velocities, and it continues thereafter
to vibrate freely. The displacement and velocity at the beginning of the
free vibrations are, by (7.20):

w = Csinwt/, }
(7.37)

dw
ar = Cocos wr.J,.

Taking into account the boundary conditions at the origin of coordinates
and at infinity, the solution of (7.1) is:

w(p, t) = [Dysinw* ( — 1)+ Dycosw® (f —1)] 4, J)' =
=[Cisinw” (t —1) + Cycos 0" (t — )] J,° (7.38)
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where o’ is the frequency of the free vibrations, and \* determines the
argument of the function . The constants C, and C, are found from the
initial conditions. Putting =+ in (7.38), we obtain:

w= Cz-’;: 39
. r g 7.
» —wCi (7.39) l l l
¥
as}
ast
/Y
o .
02} R18
-4
FIGURE 151,
- T -
Solving (7.37) and (7.39) for C, and C, yields:
C; = C % coswt -i ,
w0 JO
7.40
Cy = Csin wr—"." , ( )
',0
where C is given by (7.22) in the case of a flexible plate, and by (7.27) in ’ ' - ' . .
the case of a massive plate,
Substitution of (7.40) in (7.38) yields:
wipt)= [:;. cos wtsinw® (f —«) + sin wr cos ©* (t—r)] CJ,. (7.41)

We obtain the parameter o' from (7.1), assuming its solution to be of the

form:
Ve = aw, (7.42) ‘ ! : l l
where ¢ has to be determined.

Substitution of (7.42) in (7.1) yields:

atw— 2rtaw + stw =—m'g%:". (7.43)
Inserting into this (7.41), we obtain:
a? —2rf 4 ' = m'w't, (7.44)

where o is to be considered as a function of «, whose extremum is givenby:

4" _ 9, (7.45)
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or

This condition is fulfilled for: ' l '

a=rs,

Substitution of this value of « in (7.44) yields:

W = N (7.46)

where, as before:

H
me=Tdm [T FLACEORS

§ 8. PLATE WITH SIMPLE SUPPORTS ALONG THE EDGES
2 -0 K

Let the deflections of a freely vibrating plate with simple supports,
resting on an elastic foundation (Figure 152) be given by:

wix, g, ) =w(x,y) T(1). (8.1)

FIGURE 152,

The differential equation describing the shape of the deformed plate
surface is, as before:

v’v’w-—-2r’v’w+(s‘~—-m‘w’)w= 0, (8.2)
whose solution can be represented as follows:

© oo . N
w(x,y):EZ Ain cos?cosg‘ (8.3) \\.
=] = \
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Each term of this series satisfies the boundary conditions at the plate
edges [when iand n are odd]:

0w
ox?

e

w="0, ap =0 l ' l

We determine the natural frequencies o by substituting (8.3) in (8.2),

at x =4+ =0;

at y

{
H
o] ~ o

multiplying the result by cos —b—cosﬂ (j and & are arbitrary integers), and

integrating over the plate surface:

T8 5 I Rl o)

i=f n=

»|wn4-\-|<r
-nl"m-”-
-

(8.4) e . -

X cosTcos "ll”cos’ibxcos T dxdy = 0.

Equation (8.4) defines the work done by all generalized forces acting on
plate and elastic foundation over the virtual displacements of the plate.
Because of the orthogonality of the trigonometric functions, all integrals
for which i +j and n 3 h are equal to zero, and (8.4) reduces to:

AIHSS[(g"b‘—'+n’xl)i+2 2(11:: +nlt:,=) 4 st _m‘w’]x ©.5) T ' _ ' ) .
X cos’%cos’#dxdy=0.

In order that the solution be nontrivial, we must have:

(an_l’+ nznz) +or ’(‘lt’+n’”')+s‘—m W =0,

whence:

wn=V (5 + ) 2 G+ D) . (8.6) E !

The entire frequency spectrum is obtained by assigning in turn different
integral values to ; and n. The principal vibration modes corresponding to
these frequencies are:

nny

Wi = Amcosib—cos——l— (8.7)

2 m - = -_—

The coefficients A;, are determined from the initial conditions of the
problem. Let a momentary impulse of intensity p(x, y) per unit area act on
the plate, Since there are no displacements at t=0, the deflection function
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can be written:

[ -] .
w(x,y,t)=2 Z A cos ‘—chos?sinwmf. (8.8)
{=] nmm}
whence: l l '
& inx n
. 13
gT"’ =373 An @1nC0S 7 COS l—ycos W t. (8.9) \
=] A

The initial velocity at ¢ — 0 is: \

oo oo . .,
(gf")rﬂ:ZZ A s cos‘—"fcos"lly=”—(‘"—y). (8.10) . i ~
i=1

m

We multiply (8.10) by cos Lb’cos '# and integrate the result over the

plate surface. Because of the orthogonality of the trigonometric functions
this yields:

b2 s X ' ba In X
Ainwin S Scos’?cos’#dxdy: = S Sp(x,y)cos"'Txcos '%yd'”i!/' )
—bR —i/2 —bfa —if2 ' _ ' 7 .
whence:
b ipe . N\
4 px,y) cos T cosPM gy gy h
As = —b;ﬂ—l/sl b ! (8.11)
14/ B m u)‘»n lb
Thus, finally: N
b2 inx  nm :
0 o S S p(x,y)cosTCOSl—dedy ( )
__4 —bp =12 inx Aany . 8.12
vl =op S o X cos==cos TEsin w, 2.
deml pam=]

Substituting (8.12) in (1.8) of Chapter III, we obtain the values of the
bending moments and shearing forces appearing in the plate due to the
momentary impulse p(x, ).

§ 9. VIBRATIONS OF A PLATE WITH FREE EDGES
1

The natural frequencies of a plate resting freely on an elastic foundation
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(Figure 153) are determined by separating the variables in (6.10):

"+ o'T=0, (9.1)
DV — 2tViw + (k — mo*)w = 0. (9.2)
The shape of the deformed surface of the plate can be represented in
the following form: 4
w(x, ) = 3> Con P (%, ), (9.3)
1 1

where ¢m. (x,y) = linearly independent functions, selected in advance accord-
ing to the geometrical boundary conditions, and Cn.,= constant coefficients.
For the functions ¢m. we shall choose trigonometric functions together with
linear terms corresponding to rigid-body displacements of the plate: D S —

.
[

FIGURE 153.

The frequencies corresponding to the vibrational modes (9.3) are
determined from the equilibrium conditions, applying Lagrange's principle
of virtual displacements. For this we calculate the work done by all
external and internal forces acting on the plate over any virtual displace- .
ment, in the same way as in section 12 of Chapter III. Substitution of (9.3) 4
in (9.2) then yields the following system of algebraic equations:

m
Q

Con { SXIDV'V’?M b 2’V'?nul =+ (k —_ m"”) ?mn]?ik dxdy +

I

1

+ §1Qm () + Q¢ N pads}} = 0 (9.4)

(i=1,23,....m k=1,23,....n),

The terms under the double integral sign in (9.4) represent the work
done by the internal forces acting in the plate, the reactions of the elastic
foundation, and the inertia forces arising in the plate and the elastic founda-
tion. The contour integral represents the work done by the shearing forces
acting on the plate edges. The first term determines the work done by
Kirchhoff's reduced additional shearing forces {(cf. (1.9) of Chapter III),
which appear at the plate edges as a result of the approximate fulfilment
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of the static-equilibrium conditions by the functions o(x, ¥). The second
term represents the work done by the reactions, distributed over the
plate edges, determined by the deformations of the elastic foundation
beyond the plate edges. Using (10.8) and (10.9) of Chapter III, and taking
into account the work done by the inertia forces acting on the elastic
foundation beyond the plate edges (cf. for instance (5.5) and (5.14)), we obtain:

Qb =9t [(a - m, ,‘%)w; + (g%’), -2%(3%}),]'

' (9.5)
= (e = ) (3~ (20

where the subscripts ! and b correspond to the longitudinal (x = +-b) and
lateral (y =-+/) edges respectively.

Equations (9.4) holds true even when the postulation of a foundation
modulus is acceptable; in this case the terms containing Q¢ and ¢ should be
discarded, the characteristic k being taken as foundation modulus.

Equations (9.4) can be represented in the following form:

aO(Lm)Cl)o + 8o(l. lnClo +... + 600. mn Cmn = 0.
Blo. 00 Coo + 510. 10 Cm +... + ‘Slo, mn Cmn =0.

S, 00 Coo + 8k, 10C1o + - - . + 8ik, mn Cma = 0, ’ (9.6)

&mn. oocoo + 6mn. 10 Clo + o + 8mn.mn mn = Oy

where:
b, mn = {{ (D90 Pmn — 249" + (& — M%) @] gun drdy -
+ § 1Qmn () + Q® (N () ds. .7
Integration in (9.7) is extended over the entire surface and the entire
contour of the plate respectively. These integrals represent the virtual

work done by the forces corresponding to one state of the system over the
displacements corresponding to another state, Hence, by the reciprocity

theorem:
(Bex, mn = Sma, ia)

and the matrix of (9.6) will be symmetrical,
System (9.6) will have a nontrivial solution if its determinant vanishes:

300, 00 S0t .. Bug mn
e e e e ©-8)
Smn00  Smn 1o 8mn, mn
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Expansion of (9.8) leads to an equation of (m + n)-th degree in o*, whose
solution will give all the m+ n frequencies corresponding to the vibrational
modes (9.3). The natural vibrations of the plate are thus:

m n
W (%, Y, £) = ) 3 Conn Pmn (X, 4) $iN Oy (£ — $inn), (9.9)
N Ill
where ¢m. = constant determining the phase shift.
If the shape of the deformed surface of the plate is described by trigono-
metric functions, their orthogonality enables the general problem of the
motion of a plate on an elastic foundation to be divided into four independent
problems corresponding to the symmetrical and antisymmetrical vibrations

relative to the x and y axes respectively. Each of these problems will now
be treated separately.

2

In the case of symmetrical vibrations, (9.3) becomes:

mnx

W(X. y) =Coo+ 2 CmDCOS—b—+ ECMCQS’#__‘_
1 1

(9.10)

m n
mnx nxy
+ 226,.,. cos —=—cos =
11

(mn=1,3,5,...,(2k—1)). K -K K

This means that:

mRx

Poo=1, ?mo=C05T. (
9.11)
q;,,,=cos"# ' Pmn = COS ’%COS '%y,

where m and n = odd integers.

Substitution of (9.11) in (9.7) yields all the coefficients in (9.6). For
example, when four terms(m =1, n=1), corresponding to the four possible :
modes of plate vibration shown, are taken in (9.10), the matrix of the 4
algebraic equations is given in Table 18. This matrix is symmetrical. It
is formed by calculating 10 dimensionless coefficients, using the following

symbols:
% b
o = ii‘ B=i_'
EW
D=12(1—pf)'
Eo €
k=1_‘,l 84‘ (2) dz,
g (9.12)
t——£"—ﬂ¢’()dz R TR—
“4<1+w)§ #az, '
_ H
mo=mu§¢’(2)d2,
]
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Here ! and b = length and width of the plate respectively, D = flexural
rigidity of plate, mg = reduced mass of elastic foundation, % and ¢ =
generalized characteristics of elastic foundation, ¢= ¢ (¢) = function

representing distribution of displacements over thickness of elastic
foundation,

equation of the fourth degree in w?, from which the patural frequencies of
the plate, corresponding to the four assumed modes, can be obtained,

If the plate is considered to be perfectly rigid, all terms except the first
in (9.10) vanish. From Table 18, we obtain for this case:

By equating to zero the determinant of this matrix we obtain an algebraic l l l

TR RO (R ES

ab

or

2 a4 -
=V mirmoire (9.13)
my ab

In the case of antisymmetrical vibrations, (9.3) becomes:
a) for vibrations symmetrical with respect to the x axis and antisym - . .
metrical with respect to the y axis: ’ ' - ’

m n
w(x,!/)=cno27"+2 Cmo Sin'%+?§2 Con cos""_i'/+
1

+ 313 Cma sin ?cos# (9.14)
1
1

b} for vibrations symmetrical with respect to the 4 axis and antisym- .
metrical with respect to the x axis: {

m n
w(x, y) = Co, 2744+2’_;'2 Cmg €05 =X 1 ! Con sin L
1 2

o ) (9.15)
+§}.?Cm,. cosm%xsm""Ty
(m=1,3,5,...; n=2,4,6,...);

¢) for vibrations antisymmetrical with respect to both axes:
m
_ dx; 2 R
w(x, y)= C°°T£+Ty§6"’° sin %.;_

572 Con sin 258 4 31 31 Co sin 728 1 1m0 (6.18)
b

3 2
(n,m=2,4,6,8,..).
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The coefficients in (9.6) are again obtained from (9.7).

Considering only the first four terms in (9.14), (9.15), and (9.16), we
can represent (9.6) for the cases a, b, and ¢, by the matrices given in
Tables 19, 20, and 21 respectively, where a, g, k£, D, and m,, are given,
as before, by (9.12). Equating to zero the determinants of these matrices,

we obtain equations of the fourth degree in w' which yield four natural
frequencies for each case considered.

Taking only the first (linear) terms in (9.14) and (9.15), we find from
Tables 19 and 20 the frequencies of a rigid plate:

in the case of vibrations antisymmetrical with respect to the y axis

6 B 12
_ k’+ﬁ(1+3—)+a’b'.
gy = = - ; (8.17)
ad ma 14m L 3+8
my ab
in the case of vibrations antisymmetrical with respect to the x axis :
6 /1 12
14+2/(2 ]
0°°=V7"k—' +ab(3+f?:;:'—bfﬂ. (9.18)
m
1+;“+ -

The first approximation in the case of vibrations antisymmetrical with
respect to both axes (Table 21) is:

p B 0= et Sy 0T
gy = * ab ab
™, {4, _3+3p
m, ab

(9.19)

§ 10. BUCKLING OF A RECTANGULAR PLATE RESTING
ON AN ELASTIC SINGLE-LAYER FOUNDATION AND

COMPRESSED IN ONE DIRECTION ! l l
Consider a rectangular plate resting on an elastic single-layer foundation

and loaded by axial compressive forces N (x) per unit width (Figure 154),
The differential equation of the deflections of this plate is:

DV’V’W—?iv'w+kw=—N(x)$, (10.1)
where D = flexural rigidity of the plate, and 2 and ¢ = generalized character-

istics of the elastic foundation. The compressive forces are considered
positive in (10.1),

We represent the plate deflections by the finite series -TEm =
Wy =3 Wily) g (x) (10.2)
k=3
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and assume as before (cf. section 2 of Chapter III) that the functions x(x) ¢
are known; the functions W,(y) are considered as unknowns. We can then
write (10.1) as follows: [cf. (2.25) of Chapter III]:

2 an Wy — E £2 (b + p3%) — Nl Wa+ 2 (cn + sy Wi=0

I 2} 1. T3] =1

(10.3) ' 'l
(i=1,2,3,...,n. ]

_4#—-0——/4-

- . -
FIGURE 154,
The coefficients au, b, cus pix, sh in (10.3) depend on the selected system . ' . . . .
of functions y.(x) and on the values of the elastic constants of plate and

foundation: [cf. (2.26) of Chapter III]:
ap = LD Sx:: x:dx,

bix = ED{SX;X; dx — % [xe X;' + X,h Xil'} ,
Cue = LD Sx; ZI' dx,

) : (10.4)
pir = t{ooedx + g5 [l vall,

s?.:k{sx. x,-dx+2Tth; x}dX+£;lllx~ Zzll} ) ! l !

The magnitudes N, , whichdepend on the compressive load N (x), are:

Nik=SN(x)x(xkdX. (10.5)

If the external load is uniformly distributed, i.e., if N (x)=const, equation
(10.3) can be written in the form:

: EE - = -
2 a;p WiV — 2 [2 (bin + pir) — b%)a”'] W, -+ Z (e + s) Wy = 0, (10.6)
k=1 L] A=1
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where P = total compressive load and b = plate width,

By assigning to ¢ Successively all values from 1 to n we obtain from
(10.6) or (10.3) a complete system of ordinary homogeneous differential
equations in the unknown functions Wely)(k=1,2,...,n). With the functions
(X (k=1 2. n known, these equations can be solved up to a parameter p
(¥ in the general case), representing the unknown critical force. By adding ' l
to (10.6) the homogeneous boundary conditions at y = +l, for the functions
Wily), we obtain, from the conditions of the existence of nontrivial solutions,
an infinite set of values for . Since the system (10.6) has a symmetrical
Structure, the eigenvalues will always be real in the homogeneous boundary -
value problem considered.

The best way to solve ordinary differential equations with constant
coefficients is Krylov's method, which was developed for the case of small
vibrations of systems with many degrees of freedom.

If {>>0, the solution of (10.6) can be represented in the form:

Vi) =Cesin®  (e=1,2,3..., n), (10.7)

where the C, = constants, and i = length of the sine half-wave corresponding
to buckling in the y direction.

Substituting (10.7) in (10.6) and equating to zero the determinant of the
eguations obtained (the C. being considered as unknowns), we obtain a
characteristic equation of order n in P, whose roots will be real. Since
two unknowns, the force P and the half-wave length A, are interrelated by

the characteristic equation for finite values of n , these unknowns have to be - .
found from condition: . - ’

In practice it is sufficient to take only the first terms of (10.3). Buckling
in the direction of the plate width is in this case characterized by the
function y(x), and the differential equation becomes:

AWY 4 (N, —2B)W* 4+ CW =0, (10.8)

where W = W (y) = unknown generalized deflection; and: : ! I

A=D{y2dx,
8 = D {x*dx—y bac1*} + e Garde + L e,
C

=DSX"dx"'k{szdx'i‘z—:Sx"dx+2i’[[x!”}_ (10.9)
|

k

For (/ <=ty we can represent the solution of {(10.8) in the form (10.7). We
obtain:

A(%)'— v, —28) G)+c=o. (10.10)

It can be seen from (10.10) that the generalized compressive force Ny,
is a function of A. To determine the minimum (critical) value of ny, we
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differentiate (10.10)} with respect to » and equate the result to zero. We
obtain:

. —_—
r=r)/A (10.11)

The critical value of N,, is then: ! l '

n=2(B+VAa0l. (10.12)
If N(x)=const, we can rewrite (10,12) as follows:

p=2p 4 v70), (10.13)

where P = total compressive load. S o mw  wm
Introducing the generalized geometrical characteristics:

= B2

R o0 = (10.14)

A’ A

we can represent (10.11) and (10.13) in the following form:

EF__m

A= P=ga—malrt+s) (10.15)

where .F = area of plate cross section, 4 = plate thickness, and ! = plate ' - ' ) '
length. If the plate length ! is of the order of the width 4, but less than the
wave length 1. obtained from (10.11), then [ has to be taken as wave length,
and the critical compressive force is then determined from (10.10)., If

,é >AD> ;—:_—, , weput ) = ;‘l-and ﬁ in (10.10); the lower value obtained for

N, is the critical one.

§ 11. BUCKLING OF A NARROW PLATE RESTING ON
AN ELASTIC SINGLE-LAYER FOUNDATION

Equations (10.3) are easiest to solve when the plate cross section can be
considered as undeformable. This assumption is justified for sufficiently
long plates with free edges (Figure 154), or with one edge simply supported
(Figure 156), and also in many other cases when an elementary transverse
strip of width dy, cut out from the plate, can be deformed (Figure 155). In
this case we choose as functions y (x) the displacements of the strip
considered as a combination of rigid links,

We shall now consider some examples. - - == -
1. Rectangular plate simply supported along a longitudinal edge

Consider a rectangular plate of uniform thickness 4, loaded by a centrally
applied compressive force P = Nb (Figure 156). Rigid-body rotation of the
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plate about the supported edge is taken as the virtual displacement depending
on the x coordinate:

X =x.

This problem is described by (10.8), where

5 ! l l
A=D§,

B=Db(1—p) + (1 +55).

kb 3 1 (11.1)
e+ 3(1+ ).
M=,
so that (10.8) becomes:
WY a0 =B+ S A+ 20+ v =0 a12) ===
/S & ey H-K K
Ll
N &7 2
| i
i X(z)
FIGURE 155, FIGURE 156.
Let the lateral plate edges y =0 and y=1{ be simply supported. The
solution of (11.1) can then be represented in the form:
W=Csin. (11.3)

Plates having undeformable cross sections can only buckle in the form
of one half-wave, so that » in (10.7) is always equal to the plate length .

Substituting (11.3) in (11.2) and dividing by Csin ’%‘ , which is different
from zero, we obtain:

Pl g0 —0—50+ 35 +5[+ 30+ 2)-0 - - -
whence:
Pcr:%+lﬁ%+21b(l+%)+ﬁ_’:’[l+%(l+$)]’ (11.4)
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where J =%,,2_- = moment of inertia of the plate cross section.

For u =0, the first term of (11.4) is identical with the expression for the

critical Euler load. The second term is due to the increase in the critical

force, caused by the fastening of the longitudinal edge of the plate., The

last terms of (11.4) takes into account the supporting effect of the elastic

foundation. ! l '
If the plate lies on a foundation for which a foundation modulus can be

postulated, the terms containing ¢ and « in (11.4) (determined by the shear-

ing strains of the elastic foundation) should be discarded. We then obtain:

1EJ 6EJ , kbid
PCI:{’;;*—M—Fb’(i—{-p)T_RT' (11.5)

where £ = foundation modulus.

2. Rectangular plate with free longitudinal edges

Consider a rectangular plate loaded by axial forces whose transverse
distribution is linear (Figure 157), These forces can be reduced to a
centrally applied compressive force P (considered positive) and a bending
moment M acting in the plane of the plate. We assumed that the plate
consists of longitudinal strips of different thickness and that in the general
case it has no longitudinal axis of symmetry.

[
¢ - (3 —=—
[T e

- Ty o —otf

S O B |

[

[LTTRITITT

FIGURE 157, FIGURE 158.

]
.

The virtual displacements of a transverse strip, cut out from the plate,
are taken as the translatory displacement y, = | and the rotation y2= x about
an axis passing through the centroid of the plate cross section (Figure 158).

The plate deflections are then:

w(x, Yy=Wx,+ Wixe= W, +W,x, (11.6)

where W, and W, = generalized deflections. The functions ¥,, which has the
dimension of length, corresponds to the cylindrical bending of the plate in

258

IBRREEREERERRERERER



the longitudinal direction; the dimensionless function W, defines the angle

of rotation about the axis through the centroid of the cross section. It is

thus assumed that both flexural andtorsional buckling of the plate is possible.
In the case considered (10.3) takes the form:

oW,y + a,W;’ + (N1 —2(by,+eh)] W+ Ny —
—2(bia + p1)I W + (€1 + s5) Wy =+ (€10 + 55) Wy = 0, 1

. . (11.7)
ay WY 4+ an, Wl + [Ny —2 (g + B W,y + [Ny —
—2(bsy + P21 W, + (ca + 53,) W, + (€22 + 53) W3 =0,

where by (10.4),

3. — a2
Uy = 2 Dnbm, Q1 = 2 Dm _m+*12_m »
1

ayy = Z D, 3 (Xmg1 — Xm)(¥5 + Xmp1Xm + Xmpa), - o -
by = by =0, b1z = 2, Db,
i =Cp=05,=0, :

1 ! 1 11.8 ™
p?,:(b(l+ﬁ , P("’=2_(C:_C:)<I+a_b)’ ? ( )

) 1

= |5+ =)+ + ],

2 k 2
=k (1+ ). sh=7@E—(1+5).
0 12 2 1 2 1 N
Sn—_kb[g(fx+cz—cxca)+a—b‘(cf'f'cz)*f-?] J

The summation in these expressions is extended over all the longitudinal
strips.

Here D=12(%)1’_) = flexural rigidity; b = overall width of the plate;
k and (= compression and shear characteristics of elastic foundation
respectively,

According to (10.5) we have:

Ny= SN(X)X:dx- ! l

.9
Ni= ¥ (tpxad, (11.9)
M= (N (0)xid.
We can write:
N(x)=n(x)h, (11.10)
where the normal stresses N (x) are given by: - m -
n(x)=;+%x. (11.11)
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]
Here F = the area, and J, = Sx’dF, the moment of inertia of the plate cross
section; M= Pe,, where ¢, = eccentricity of applied force P.
Substituting (11.10) and (11.11) in (11.9), with xi=1 and y,==x, we obtain:
Ny = {nhdx=p,
Ni={nxhde= M, (11.12)
Ny = frcthds= 524 20
where
Jy={2dF, dF =hdx. (11.13)
Substitution of (11.8) and (11.12) in (11.7) yields finally:
b9 . -
auW¥+ (P — 28)W) + W, + Wi + (M — 268 W; +
+ 52’W= = 01
amWi¥ + (M—28) W, + s4W, + aaWi¥ + (11.14)

+[FR A+ B — 200+ )] Wi + W, — 0.

Several examples will be given to illustrate the procedure adopted.

3. Rectangular plate of uniform section

If a rectangular plate of uniform thickness # has free longitudinal edges
and is loaded by a centrally applied compressive force P (Figure 159),
(11.8) and (11.12) reduce to:

EJ
au‘—‘Db:’TP,. au=bu=bu=cu=C11=Clz=0.

b EJb? J

E ; ,
“=Pu=ga—m m=Db=rg.
1 w3 ;
Pgl=lb(l+u—b)’ Pra=Si3 =0, p‘,’,=ﬁ(l+ﬁ). (11.15)

si=r(l+g). =F(+g5+5)

@)
pJ *
Nu=P, Nu=0, Ny=lh_P2

System (11.14) can in this case be separated into two independent
equations:

auW{v‘f‘(P‘_QPfl) W;+521W1 =0, (11.16)

corresponding to flexural buckling,
and W3 + [Pl —2(bn+ )| Wi+ 3w, = 0, (11.17)

corresponding to torsional buckling.
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Let the lateral plate edges be simply supported.

Substituting Vi=CisinZ,  Wy=Cysin™ (11.18)

in (11.16) and (11.17), we obtain the following expressions for the critical

forces: l I I
K bt

EJn?
P‘=_l‘(—1—nl1’)+2’b(l+ab)+kn_’ (1+2). (11.19)
__Eim 24EJ 3
P’_m+m)+2tb(l+ﬁ)+k§(l+§67b+¢z!_’l?" (11.20)

fo— g ——i

FIGURE 159, FIGURE 160.

It can be seen that in the case considered, the smaller critical force is
given by (11.19), which corresponds to flexural buckling; in other words,
torsional buckling is impossible in the symmetrical case. Let a moment
M act on the same plate (Figure 160), The coefficients will have the values .
given by (11.15), except for N,. Here: { ! ll
Niu=0, Nyy=M, Ny=M7. (11.21)
For a symmetrical plate:

Jy= Sx’ 4F =0
so that Ny, =0. Hence, the system of equations (11.14) reduces to:

auWi¥ — 2680 W; + W, + MW, = 0, (11.22) -5 T
MW;'HZ:,W:V—'? (bae + P Wo+ saWy = 0. .

When the lateral edges are simply supported, the solution of (11.22) can
again be presented in the form (11.18).
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Substitution of (11.18) in (11.22) yields the following expression for the
critical moment:

2 [ 1 “
M= l/(au + 29'1]1,1,_, + 5‘1)1 ,{7)[022 + 2 (b22 Plz'z):Tq + S%?J - (11.23)

In this case, mixed flexural-torsional buckling takes places. ' l l

§ 12, BUCKLING OF A PRESTRESSED PLATE
RESTING ON AN ELASTIC FOUNDATION

1

Consider a prestressed rectangular plate, compressed by a reinforce-
ment rod lying in the longitudinal section x=e, (Figure 161). The rod is
extended by a force R =n,AF, where AF = cross-sectional area of bar.

The normal-stress diagram for the plate cross section y = const is shown
in Figure 161. With the exception of the vicinity of the rod, the normal-
stress distribution is given by:

Re,

x

R
=g+ -5 (12.1)

where R = tensile force acting on the reinforcement rod.,

FIGURE 161,
Jm - . -
oY
The state of stress thus corresponds to a balanced (in static equilibrium) \
system of forces, i.e.: .
® b RS
{nar=pP=0, {nmxaF=m=o. (12.2) .
™~
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If we assume that the plate cross section is not deformed, the solution
will be given as before by (11.14). Those coefficients which do not depend
on the compressive load are for a plate of uniform thickness determined

by (11.15).
The coefficients which depend on the external load are obtained from
(11.9), where the integrals are to be understood as Stieltjes integrals. The
integration yields:
Nu={n(x)dF = (n,dF—n, 8F = 0, I
Niz={n(x) xdF = {nxdF —n, AFe, = 0, (12.3)
Na={n(edr = R R pa
where
J:=Sx‘dF. Ja=sx“dF. dF = hdx. . e o -
Substitution of (11.15) and (12.3) in (11.7) yields:
W aa Wi — 28, W; + suW,=0, (12.4)
anW, + (N2 — 2 (bye + pl)] Wi+ sk, =0, } )
where for a plate of uniform thickness: R ' ' .
Nn=R(%—e:)- (12.5)

The first equation (12.4) is independent of the load and therefore:
W,=0.

Buckling of the plate is thus determined by the second equation (12.4),
in which W, appears. Since the generalized displacement W, represents a .
rotation, torsional buckling will take place. It follows that no flexural ¢
buckling occurs in a prestressed plate.

Assuming that the lateral edges of the plate are simply supported, the
solution of the second equation (12.4) has the form:

W,=Csin"T". (12.6)

Substitution of (12.6) in the second equation (12.4) gives the following
value for the critical force:

1
Ry = D

e.[“u:;-f-?(b,,-}-p:,)-}-s&%], (12.7) - - == -
1‘2_ z

where ay, by, pp. s are given by (11.15),
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2

Consider a prestressed plate of uniform thickness, subjected to a
compressive load applied at an eccentricity e, (Figure 162).
The differential equations of buckling in this general case, which is a

combination of the two previous ones, are: ! l '
auWi' + (P—2%) W, + shW,+ Pe,W; = 0,
. 3 »
PesWs + auW3" +[(P+ R) [y — Rt — 2 (6w + ) W3 + (12.8) \
+ Sgaw/s =0.

In the particular case when the external load is applied centrally (e, = 0),
the system of equations (12.8) can be separated into two independent equa-
tions, corresponding to flexural and to torsional buckling respectively.

.

In all the above examples it was assumed that the plate is simply
supported at the lateral edges y=(0and y =/, With other methods of support
(built-in edges, free edges, etc.), the critical force is determined from
the general integral of the corresponding homogeneous differential equation
satisfying the boundary conditions. This yields a system of homogeneous
algebraic equations in the integration constants, since the boundary condi -
tions are also homogeneous in buckling problems. Equating to zero the
determinant of this system (considering only the nontrivial solution) we
obtain a transcendental equation in the parameter characterizing the
compressive load. This equation has an infinite number of roots, the
smallest of which determines the critical value of the compressive forces.

264

IRRRERRERRARRERERER



Chapter VII

METHOD OF INITIAL FUNCTIONS. APPLICATION OF THE
METHOD TO THE THEORY OF THICK PLATES AND
TO THE THEORY OF ELASTIC FOUNDATIONS

§ 1. GENERAL SOLUTION OF THE THREE-DIMENSIONAL
PROBLEM OF THE THEORY OF ELASTICITY

1

The general problem of the equilibrium of a solid isotropic elastic body
undergoing small deformations is described in cartesian coordinates by the
differential equations:

au‘ 61" Oru
wty ta ta=0
da ;21 at

v vz v _ - -
wta ta t6=0, (1.1) §I-I N
a

%2 aTu 61141
5z v tg te=0

2G

Ox

5[0 =% +v(3+ =N
v= g =0p ++(Z+2)],
]

)]
2G dv
d—y> 4 1.2
Ty =T =G (';—'y‘+";_:), (1.2)
Ty =Ty =G g-f-g—:). 1

-

5

o= (=02 4y (&4

ow | du
Tax = Ty, =G(6_X+a—z)'
where o, g,...., 7,2, 1. = components of the stress tensor; u, v,®w = components

of displacement vector of point considered; a, b, ¢ = components of vector
of the body force per unit volume at this point; G =2(‘L+v) = modulus of

elasticity in shear; v = Poisson's ratio*.

* Equations (1.2) were already given in section 6 of Chapter I, The magnitudes {ntroduced there wete
different, being the elastic constants £, and v, of a three-dimensional body (the elastic foundation), defined
by (6.3) of Chapter I,
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As already mentioned earlier, two methods of solving the general
problem are used in the theory of elasticity, namely the method of displace-
ments and the method of stresses, The first method, in which the basic
functions are the displacements u=u(x, y, 2), v=v(x, y, 2), w=w(x, y,2) , Was
used in the preceding chapters when considering the strains in the elastic ! l l
foundation in the two-dimensional and three-dimensional cases. In the
second method the basic functions are the stresses. o, =a,(x, g, 2),...,

Te: = T (X, Y 2),

In addition, it is also possible to apply a mixed method, as will be done
by us in the solution of the general three-dimensional problem of the theory
of elasticity.

Let the basic unknown functions be the displacements u = u(x, y, 2),
v=v(x,y 2), w=w(x y, 2) and the stresses ., 1., 9;. The components u, v,w
of the displacement vector will be considered positive if they coincide with

the positive directions of the coordinate axes x, y, z - e
Similarly, the components t,,, 1., 9. of the stress vector acting on an
elementary surface, whose outer normal is directed along the z axis,
will be considered positive if they coincide with the positive directions of
the x,y, 2 axes respectively. To simplify the notation, the displacements
4, v, w will be replaced henceforth by the magnitudes:
U=Gu, V=0Gv, W=0Gw, (1.3)
also called displacements. , ' N O
The unknown stresses will be denoted:
=X, t.=Y, o,=2. (1.4)
Eliminating between (1.1) and (1.2) the stresses o,, o, Try = Ty WE Obtain
the system of six fundamental equations of the mixed method. Substituting
(1.3) and (1.4), these equations can be presented in the form:
U ow |
r ax + X, -
av N
=Y
aw v oU 1—2v
8z 1—v<6x )+2(i—v)z
9z X @y (1.5)
or T T T o
& _ t14vaou v 2 oW v ooz,
8z 1—v0x6y‘—<0x' v dy’)_l—v?—y-_ ’
ax 14+v v AU 2 U v oz
T T T i varay _(a_y" +t1r— 61’) =3 %
The remaining stresses are: -— — —
2 U /v aw
o= =g [0 =) G+ {5+ )]
2 v oW | U
°v=‘—1_2v[(l—v)a—y+v(7ﬁ— 0_1J' (1.8)
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From (1.5) and the boundary conditions, the six unknown geometrical and
statical magnitudes characterizing the states of strain and stress can be
obtained.

3

The mixed method of representing the general equations of equilibrium
of an isotropic elastic body can also be applied to dynamical problems of
the theory of elasticity. The unknown functions U, V, W, X,Y, Zdepend in this
case on the variables z,y, 2, ¢;in (1.5), the expressions for the inertia forces

m oty m 3 m oW
G e (1.7)

G or G o
have to be added.

§ 2. SOLVING THE EQUATIONS OF THE THEORY OF
ELASTICITY BY THE METHOD OF INITIAL FUNCTIONS

1

Consider two planes in the body: the plane z=0and a plane z = const,
parallel to it. The part of the body included between these planes represents
a layer of thickness z=const. When 2 is fixed the unknowns in (1.5) depend
only on x and y. Thus, the magnitudes U, V, W, X, Y, Z determine the dis-
placement and stress vectors at any point (x, y) of the fixed plane z = const.

The magnitudes U,, V,, W, X, Yo, Z, corresponding to z=0, will henceforth
be called geometrical and statical initial functions.

The positive directions of displacements and stresses for points of the
lower plane z = const and of the upper plane z =0 are shown in Figure 163
(the 2z axis is directed downward),

0 2o k4
s
X,
l ’ u’
| u‘A Y,
I] |l[ IY’ Ld
AT
p. I e ¢
[ -
l. ot 920
- A I |
v ¥
FIGURE 183.

For any plane z = const, the vector components are positive if they act
along the positive directions of the coordinate axes. The same rule is also
applied to the components U,, V,,W,. The components X, Y,, Z, are positive
when their directions are opposed to those of the positive coordinates
axes,
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2

We assume a general solution of (1.5) in the form of Maclaurin series

in 2 :

..........

The following symbols will be used for the partial derivatives of any function

F=F(x,y2):
oF aF
o =*F  F=PF
»F nF
W = G.F, ay’ = B'F,
il a"F
— = qnf —_ = fn
an M " BoF,
in general:
PFtitmp
Ix*dytaz™

5 =F

IF .

s = F

nF L

o
= a*plrmF.

(2.1)

(2.2)

These symbols are those used in the so-called symbolic method, which

makes possible the application of the methods of linear algebra to differen-
tiation and transformation of equations.
We can then rewrite (1.5) as follows:

tU=—alW + X,
W= —

rZ=—a.X—ﬂY—c

ry = —!—'*'—-vaﬁU (a’V +i

14
rX=—iivapV—(ﬁ’U-|~1

The body forces a, b, ¢ will henceforth be assumed to vanish.
Multiplying (2.3) by r, and eliminating the terms containing rU, rV, .

)

-—b,

_va.'U)—i—_—va.Z—-a.

(2.3)

X,

we obtain the second derivatives with respect to z of the unknown functmns

U= — a'+ p')U—r—'apV— )aZ

'V-—‘_va.BU ( p=+a')v— ',pz
1

rw = 1—v(“'+p')w_z(1—v)°‘x—zu —afY.
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PZ = 2@+ B alU+ 2 o + BBV £ B2,

{—v
Y= R — e — (IR 4 )Y, (2.9 N
r'X=1iv(a’+ﬁ')aW—(f::¢'+ ﬁ')X—i—l—vaW

The third derivatives with respect to z are obtained by multiplying (2.4)
by r and eliminating the terms containing rU,rV,...,rX with the aid of (2.3).
Higher derivatives are obtained in the same way.

3

Equations (2.3) and (2.4) are true for any values of the independent
variables x,y,z. Puttingz=0, we obtain the partial derivatives in the - E =
right-hand sides of (2.1). Grouping together the differential operations
performed on the same functions ( U,, V,, ..., X,) we obtain the unknown
functions U, V,..., X, expressed through the initial functions Ug, V,, ..., X, and
their partial derivatives.
These formulas can be written in the form

U= LyyUg+ LuvVo+ ... + LuxXe,
V= LVUUo + vavo +...+ LVXXo. -
................. (2.5) K-0 K

X =LxpUs+ LxyVo+ ...+ LxxX,,

where Lyy, Lyy,... Lxx = linear differential operators with respect to the
initial functions U, (x, y), Vo (x, 9), ..., Xo(x. ¥), depending on 2 and containing
partial derivatives with respect to x and y for z=0. These operators can
be represented as follows:

12— * o, BB
Lov=Lxx = 1—22_21 —':“; @ — B+ 2_4((1 -:')) Tat+ :
2¢ 2 (4 — 2 ¢
+ v — 720((1 —:)) et — 1B+ - E ! II
. 2
Lov = Lyx = — pr—; 0B + gy 0B —

2
—m‘r‘dp+

B2—v) #(3—v)
501 —v) 'f'“_uou-v)'f‘“"‘

Lyw=Lix=—az+

T -
Luz=L\vx=—4_(1%v)a+mz:—_v)T:a_
e Tt g e =TT
Lyy =Lyx = “12(12'—v) p— 120(12.,—") vop—

7’ ¢
—moa—m TRt
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z'(3-—2v) 22—
Lox=z— =y ‘652+1zou v)'fw'F
P (5 —2v)
+ 1P — 10080(1—v)" 50_407‘Bz+
‘l
L"U=L’“’=_‘2(1—v)“p+12(1—v)72“p_
2
—moa—y Tt ' ' l
2(2—v) 23 22(3—v) 459
Loy = Lyy = 1 =5y B — 5 a® + o=y VP
1 4 —
g vt — g Bogtar
2 3_—
Lyw= Loy = e84+ T qp— 20—y
27 (4—v)
+soso g =y 1B
z? 2
va=Lwy=——4(1_v)P+24(1_v)'r’ﬁ— .
2 " 28 . - - T ws
~@ma—w TPt o=y TP — :
_ #(3—2v) 2 (2 — T
Lyy=2— 12(1-») B—g et mao v‘)'f“ﬁ'
2.8 27(5 — 2v) 27 e
+Eﬁ'\"’ T I0080(—v ST * -
o _ 2U4v) g B(2+Y)
Lov="Lxz=—a+ 5y o= T+
27 (3 +v)
T gy T _
- B o, B4y (2.6) K -K K
Lov=Lyz=— B+ 5a=y 18—
224 v)

27 (34 v)
—ma—w 1B+ 500 (T —w TP~ -+

t <
Lyw=Lzz=1 +2(:_V)Tz‘—;4((1iv) T+

28 (2 +v)
+720(1_v)7 -
ozl —2v) 2 P 1+2v)
Lwz = Ti—v T A= ~ %@ —vy T

27(1 +v) ’
504—0(1_—\,)7
2 g
LZU:LXW=1——1—V'{20.— z 4 v fa—. ..

fa—y 1ot 120(1

Loy = Lyw = {2y — i =
v =Lyw =18~ 5751 + o1 1B

2 20 z7
L’-"’=_a(1—v)7‘+3ou—v)'T"‘sl.ou_v) LA AR
1 3

Lvu=LxV=—z( +‘) ?’*‘zﬁfii:)) o

z(5+v) 27(T+v)
—moa—wy Tt 00T v VB

2z 223
Lw=—'r:—,,ﬁ'—z°"+3(1;_\,)7232+7'r’“’— S T S
2 * * .
T mT‘“’ + sao—ﬂ:v)"ﬁ’ + s 1 —
2z
= — +3“ 5 1 +—T’§’

2
- a1 m'f‘pz + 630(1—\.) Tt + "MTW -
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The symbols 42, ¢, ., denote two-dimensional harmonic, biharmonic,
and n -harmonic differential operators in the x, y plane.
These operators are related to the single-term operators:

a_ 8 :2_ 08
a_oxz' ﬁ ay?

as follows: ' l '

TP p =@ (e

4
Considering the differential operators
a, a®, B, B aB, 1% 1, . LW T

in the right-hand sides of (2.6) as algebraic magnitudes, i.e. performing
on them the operations of addition, subtraction, multiplication, and division
we can represent the operators Lyy. Lyy, Luw, ..., Lxy, Lxx in (2.5) in closed

. : . at 3
form as trigonometric functions of the argument qz =z l/ Frairr

Using the series developments of the trigonometric functions:

»

_ s o 3 o i N |
sm¢=<p—%+%-—.‘., cos¢=l—%+%— .

;—(sinq)—q:cosw:;;:—%’:——%’;—’—...,
%(sinqp-{-tpcoscp) =¢ —-% + %— R
%(qzsinqs+2cos<p) =] —Z;; + %—% + .
%(3sin¢—¢cosq>)=<r—%,‘+";+'—%+...
where we write ¢ =1z, we can represent the series (2.6) in the form: ‘ E ! l
Lxx=Luu=cos~(z—2“‘—_v)aTlsin72,
va=Luv=—2—“‘_—v)aTBzSinTZ.
Lzx=Lyy = _2(1%1—\') :—[(l — 2v)sinqz + yzcos qz,
wa=Luz=-—4“1—_v)%sin1z,
Lvx = Lyy = — Z(iiTv) :—e(sin Y2 — 7z cos 12), (2.7)
Lux=i1sin'rz—,ﬁ:—:(sin'fz—'fzcos 12), - - - -
Lxy=Lyy =—2“1*_v) aT—stinTz,
Lyy=Lw=COS‘rZ—2(11‘_V)%SinTZ,
Lay=L w= —2“‘*__”)73 [(1 — 2v)sinqz 4 yzcos 7z,
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i s
Lyy = Lyz = —m%sm 12,

Lyxz =Ly =2Ti__v)%[(l — 2v)sinyz — yz cos yz],

1 N
Lyz=Lwy = W__v)%l(l — 2v) sinyz — yz cos 72},

Lzz=Lwy = — 117\4 7 (sin 12 — 7z cos 72), l ' l
i 1

Lwz = = [(3 — 4v) sinyz — 72 cos 1z],

(2.7)

Lxw=1Lzy = ayz sinyz,

1—v

Lyw = sz = ﬁﬁ'{l sin %2,

Lzw =— ’—_‘_;'f(sin %z — Yz cos 1z),

va=Lyu=—1—1—"%(vsin'yz+1zc05'rz).

Loy = — & B . - m T
yy———T-sm'rz—‘_vT(sm'rz—%'fzcos'rz),

Lo g* . at .

xu_—TsmTz—i_V—T—(sm'rz—{»yzcos-rz).

We have thus two forms of representing the differential operators
Loy, Lyv.. ., Lxx: a purely differential form given by the infinite series (2.6), \
and an integral-differential form, given by the transcendental equations
(2.7), which contain operators of the form:

T =(a®+ P = (ai;a + %), ;— = (a® + B3,

=@+

where, as before:

3! a?
PP =t

5 : x l
Using (2.5) and (2.6) to express U(xr,y,2), V(x, ¥.2),...,X(x,y, 2) through
Ugt, 9 Vo (%,8), ..., X, (x, y) and their partial derivatives, as well as through z ,

we obtain by means of (1.6) the remaining stresses q,, a9y, and 1, = 1, , acting
on surfaces parallel to the 7 axis:

o= AU, + AW, + ... + AxX,,
o, = ByUy + ByWy + ... + BxX,, (2.8)
Cry = Tyx = Cqu + CVV0+ st CXXn-
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where AU:?%“\,“_12\.(2“‘+?‘)“+12 “2‘_‘) (3a+ BY)yta—
— ey e+ B e
2v 2? 2 2 2!
Av:mﬁ—ml(l‘f’v)a +Vﬁlﬁ+mx
x |(2+v)a*+vﬁﬂy*a—%N%W[(s-pv)auyﬁwm..., ! l l

Ar = — 25 @ ) + e (20 Y 7 —
_ﬁﬂTzs——v)(‘hz By +2?20(217—_\,)(41’ +Br - ...,
Az = 2 — gy L+ 0o+ ]+ gt x

X A2 492+ B — g[8 4 Vet VB,

v 24
A":iz—vp_s(iz:v)[(l e BB+ oy X

Fid ‘- . -
* U2+ V) a? + B 7 — o [+ V2 T+,
Ax=z(iz__v")a—g“—z:—v-)[@—v)a’-{r-(2—v)ﬁ’|a+
J’m[(‘i—")m’+(2——")3’1'{’0‘—

—W'_v)[(s—v)aw(z—v)pm‘a—.‘..
Bu= (Eya— rEs et 4 (1 WFe + gt x
X bt 4 (2 ) B e gt bt - B9 .., "KE-N X
By = 1B — 15 (0 + 289 B+ prriy; (0 + 39B— (2.9)

—mi'_—v)(awwwu-..,

Bw = + 89+ 7 (4 2

60(1—\;) (a? + 3 1" + AJZO(i—v) (o - 4pT 7 —

BZ=1:V_2“Z:V)_—2(1 v)[‘“2+(1+\')5'1+

+ a1+ 2+ )BT — i X E ! l
x{w?+ @+Pxt+ ...,

By = z(lz:v“}ﬁ”Wi_v)[(Q_“)“”r(3—v)p’]§+
*ﬁw@—v)awu—vm*nm_
5040<« T 2+ GBI+

Bx = pZqa— 6(1 )|“2+(1+‘)52]°‘+120(1 x

X [we? 4 (2 + v) Bt 1% —ml“ +(3+v)ﬁ’]7‘a+....

Co=p—F(f=ne* +8)p+ 5 (= +87)rp—

—mc%\,a’ +ﬁ’)'r‘ﬁ+ cen
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Cv=a— 2 2B o+ o (a2 %f‘: ) ra —
720( +1 )‘“‘I‘""
Co = — 220 + ZH- Y yr0p ;o‘f,“mw
+Z5%(,‘_”—’v>1aﬁ- (2.9)
Co=—5q—y v) p+12(1 G Tap— 21.01”—\«)7“?'*’
Cy=za—T(a’+‘_vﬁ)a—}—m(\az—{-;:vﬁ’)fa—
— s (ot + 2= It 4.,
Cr= b (5 + P4 G (1= + ) v

27 f4—

— s (= e +9)T'3+

Using (2.7) we can represent these operators in the following closed form:

Ay = -—i—v ®*COSYZ — sin ¥z,

1
(a® + 2vp?)
Av = — =gy

(1 V)

za?
sinyz —p—

2y zat
Av= = Peosyz— 7

\
Az=1
Ay =

cos yz

B at | .
7 u—v)("—W)s""”‘z(

3
Ax=mf_¢—v)?cos'rz+

_ 2vat 4 Bt zB?

By = — 1—v7 1—

— 2 L
T— T) sin vz,

v
B; = 1—cos 12—

p* . ]
By = m [(2 ) 27' ]sm ¥z + 2(‘+ﬂv)’r’COSTZ,

Bx=7(+_v)<v——2ﬁ%)sin1z+3
Cy= ﬁcost—“—z_f\%—T sin 1z,

Co = a :BVHI(]
Cv =acos-(z—%sin-rz,

. 1 1.
Cy = —sinyz —m%&—(Slﬂ‘fZ—'fZCOS'{Z),

7

Cz= —ﬁsinu

. 3 R
Cx= %sm 12 —3(1+‘ﬂ')1’ (sin Yz — 72z cos yz).

B )sin 12,
2 2e:
_ mr a‘sinyz,
za’8
1T\')_)"COS 12,
=@~

2 zaf®
By = [—xcosyz — =y sinTz,

m{ BYsinqz,

zafs
m Ccos vz,

— 2v)sinyz + yzcos yz],

cosyz,

27, ] sinyz,

(2.10)

These expressions could also have been obtained directly from (1.5),

(2.5), and (2.7).
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§ 3. BASIC PROPERTIES OF THE LINEAR TRANSFORMATION
MATRICES IN THE METHOD OF INITIAL FUNCTIONS

1
Equations (2.5) represent a general solution of the three-dimensional
problem of the theory of elasticity. When the operators Lyy, Lyy,...,Lxx are 4

defined either by the infinite series (2.6) or by the transcendental equations
(2.7), we obtain a one-to-one correspondence between the six initial functions
Us (%, 9), Vo (x, 4),..., Xo(x, y), corresponding to points of the plane z=0 , and the
six unknown functions U(x,y), V(x,y), ..., X (x, y) corresponding to points of any
fixed plane z = const.

Equations (2.5) thus represent the general law of transformation of the
initial into the unknown functions. An identical transformation corresponds
to a unit matrix whose principal diagonal consists of unit elements, all other
elements being zero. This property follows also from (2.7).

- T - T -
TABLE 22
U |4 w z Y X
4 Lyy Lyy Lyw Lyz Lyy Lyx
v Lyy Lyy Lyw Lyz Lyy Lyx
w Lwy Lyy Lyw Lyz Ly Ly ' - . i .
Z LZU LZV LZW LZZ LZY LZX
Y LVU LYV L)‘W LYZ LVY LYX
X LXU LXV LXW LXZ LXY LXX
9, Ay Ay Ay Ay Ay Ay
Ty = Ty Cy Cy Cyp Cz Cy Cx
The transformation of the initial into the unknown functions is called
direct transformation. The set of 36 operators Ly, Lyv,..., Lxx forms the
matrix of this direct linear transformation, given in Tables 22 and 23. If
U.V,....X are considered as given and U, V,,..., X, as unknown in (2.5), we
obtain the inverse transformation. In this case the problem reduces to
- - -

integrating a system of six compatible partial differential equations of an
infinitely high order in the limit.

This seemingly complex problem is solved very simply by taking into
consideration the physical meaning of the method of initial functions. Taking
any plane z=const as initial, the functions U, V,..., X as given (transformable),
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and the functions U, V,,.

negative value to the coordinate 2 in (2.5),

operators Lyy, Lyy,.

while the remaining operators Lyy, Lyy, ..

change sign, we obtain:

Us=LuU + LovV — LywW + LyzZ — LyyY — Ly X,
Vo= LvvU 4 LwV — LyoW + LyzZ — LyyY — LyxX,
Wo = — LyyU—LoyV+LyppW — LwzZ+ LoyY +LwxX,
Zo=LayU+ LoV —LzwW + Lzz2 — LpyY — LzxX,
Yo=—LyU—LwV + LywW —Ly,Z + LyyY + LyxX,
Xo=—LxyU—LxyV + Lxw — LxzZ — LxyY +LxxX.

Substitution in (2.5) of the functions U,, Vo, - .

2

transforms the former into identities.
and (3.1) are orthogonal. This property, observed in problems concerning
thin-walled bars and shells, and known from Krylov's method of initial
parameters in the analysis of beams on elastic foundations, is expressed
mathematically as follows: the sum of the products of the corresponding
elements in a line of the direct transformation (2.5) and in a column of the
inverse transformation (3.1) equals unity, provided line and column have

the same ordinal number.

.-+ X, as unknown (transformed), we assign a
Taking into account that the

.. Lxx are even functions of ; and thus retain their sign,
. Lxy, are odd functions of z and

(3.1)

-, Xo defined by (3.1),

It follows that transformations (2.5)

The determinant formed by the operators in transformations (2.5) or
(3.1) is equal to unity. This property,

of transformations (2.5) and (3.1),

operators Lyy, Lyy,

just as the property of orthogonality

is strictly fulfilled in the limit, when the
..+, Lxx are defined by (2.7).

TABLE 23
i v v v 2 ' Y x
L
1 1 a az ap - sinyz—
[ TRTESD IO TR X i | [T
alz apz X (1 —2v) x — T X
X ——sinyz X — sinqz X sin 7z (X (sinyz—yzcosya)l ~&(I—v) 7
T [7 X sin 1z + 72 cos 2] X (sinyz—yzcoste)
1 i
Btz _ E x pz ?lnp—mx
i R TR o e I P MU 1 e
- xsinyz | X1 —29x Xsinyz| X palsinyz—
X sinyz+yzcos yz) -
72 cos 12)
s, | A f | T
w| 20=97 2A = 1 7 g lrestoye-[TT vy
x [(1=2v)sinyz —| X |(1 —~2v) x —2 (1 — v) cos 2] X [(3 — dv)sinqz —|
— Y208 2]{ X sinyz —qzcosyz] — 12c03 12)
z i—t’i‘sln vz ’_‘v sinyz —~v X
X (yzcosyz—sinyz)
1
| __aB x —ZLsin 12—
v 1—vy ge
X (vsinyz + - (—‘Tm x
+ y2cosqz) X(sinyz+y2cosy2)
t)
- B sinyz —
T 1]
X a
~i—wr*

X (sinyz 4 yzcosy2)
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In addition to the properties listed, the operators in transformation (2.5)
obey the following law:
LVII = Lxy, Lyy = Lyx,etc. (3.2)
Hence, the matrices (2.5) and (3.1) are symmetrical with respect to the
secondary diagonal.
The equality of the operators Lyy and Lyy , and of the operators Lyy and

Lyx symmetrical to them, is due to the isotropy of the elastic body with
respect to the z axis. Thus:

Lyv=Lxv, Lzv = Lxw, Lwy = Lxz, Lyy = Lxv,

3.3
Lyy= Lxx, Luy = Lyx, Lyw = Lzx, Lvz = Lwx, Lur = Lyx. 3.3)
- -
§ 4. GENERAL METHOD OF REDUCING THE THREE-
DIMENSIONAL PROBLEM OF THE THEORY OF
ELASTICITY TO A TWO-DIMENSIONAL PROBLEM
The six initial two-dimensional functions U,(x, y), Vo(x, ¥),..., Xo(x, y) are

obtained by integrating (1.5) by the method of expanding the unknown func -

tions in powers of z. The initial functions are determined by the boundary

conditions for z=0 and z=hA=const or, in the general case, for z=h{(x, y) .

These functions are determined at each of these planes. The boundary -

conditions may be purely statical, purely geometrical, or mixed. ' - ' : .

Inthe case of statical boundary conditions, three components of the stress
vector are given at the boundary surface. The unknown functions are in this
case the components U,(x, ), Vo(x, y) Wo(x, y) of the displacement vector of
the plane z =0. A system of three differential equations for these functions
is obtained from the statical boundri'y conditions at z=h{(x, y).

In the case of purely geometrical conditions, the displacement components
are given, the stress components X,(x, ¥), Yo(x, ). Zo(x, y) being unknown.

A system of three linear differential equations for these three unknown
functions is obtained from the geometrical boundary conditions at z=#h(x, v). :

In the mixed problem, the boundary conditions at 2 =0 are given partly .
in displacements and partly in stresses. Three conditions altogether are
given for each point of the plane 2=0. Three differential equations for the
remaining three unknown functions are obtained from the three conditions
at z=h(x, y).

Expanding, according to the general method of initial functions, the
boundary conditions for z=0 and z=#A(x, y), we can always reduce the three-
dimensional problem of the theory of elasticity to a two-dimensional problem
described by a system of three linear differential equations in three unknown
initial functions of x and y4 *.

These equations will have variable coefficients in the case of an elastic
layer of variable thickness A =h(x, y). If the thickness is constant, the
coefficients will also be constant,

The order of the differential equations depends on the number of terms
retained in (2.6).
® A similar method, though formulated differently, was proposed by A.N, Lur'e /56/.
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The boundary conditions for z =0 and z=~h(x, y) are satisfied exactly
during the reduction of the three-dimensional to a two-dimensional problem.
The boundary conditions at the lateral cylindrical surface are satisfied when
integrating the differential equations of the two-dimensional problem. These
conditions are satisfied up to the terms of (2.6) which have been discarded,
If in (2.6) we use only terms linear in z for the displacements, up to 2
for the shearing stresses X and v, and the first terms in 2* for the normal l ' '
stress Z, we obtain a solution which satisfies the boundary conditions on
the lateral surface only in Saint-Venant's sense.
We arrive in this case at the general moment theory of thick plates,
independent of Kirchhoff and Love's hypothesis. If terms of higher order
are retained in (2.6), a more accurate theory of thick plates is obtained.
In this case there appears on the lateral surface, in addition to the axial
forces and moments considered in problems of plane stress and bending of
a plate, also an equilibrium system of stresses, which can be reduced to
generalized forces of the same nature as bimoments.
It is thus possible to develop by the method of initial functions a general R B
bimoment theory of thick plates and shells, independent of Kirchoff and
Love's hypothesis, by means of which the boundary-value problem can be
solved with the required accuracy.

§ 5. THICK PLATE SUBJECTED TO A LOAD SYMMETRICAL
WITH RESPECT TO ITS MIDDLE PLANE \*:

1
Let a plate of uniform thickness 24 be subjected to surface loads {normal

and shearing forces in the general case) acting at the planes z=+#, sym-
metrically with respect to the middle plane of the plate (Figure 164).

g e A, y
,'UMUTLij & : l !

P R

FIGURE 164.

We use the middle plane of the plate as reference plane, The z axis is
directed downward, the x axis tothe right, and the y axis in such way that the
coordinate system xyzis right-handed. Due to symmetry, there will be no
verticaldisplacements and shearing stresses in the middle plane of the plate; the
three functions W,, X, Y, will therefore vanish. The unknown functions will
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be the horizontal displacements U,(x, y) and Vo (x, ¥}, and the normal stress
Zo(x, 4} .
Inserting W, = X, =Y,=0 into (2.5) yields:

U =LywUs+ Loy Vo + Lyz 2y, - 7
V =LyyUs+ Lyy Vo + Lyz Zo,
W= LoyUs+ LuvVo+ Lwz 2, (5.1) ‘

Z=LawUs+ Ly Vo+ Lzz 2,
Y=LywUs+ Lyy Vo + Lyz Z,,
X=LxyUs+ Lxy Vo + Lxz Z,.

The unknown functions U, (x, y), vo(*, ¥). Zo(x, y) are found by solving the
system of three differential equations, obtained from (5.1) by equating the
stress components X, Y, Z for z=h to the given functions Z,(x, y), Ys(x, ).

X/,(X, y) :
4 4 -
Lzv(Uo+ Lav (BYVo + Lzz (h) Zy = Z.
LyumUs+ Lyv (W) Vo + Lyvz (B) Zo =Yy, (5.2)
Lxy(BYUo+ Lxv (B) Vo + Lxz (h) Zy = Xa,
where Lzy(h), Lzv (h),...,Lxz(h) = differential operators determined from (2.6)

for z=h . When X,, Y Z, are known, (5.2) forms a system of compatible
partial differential equations in x and 4.

2

The equilibrium of a plate subjected only to a normal load Z,(x, y),
symmetrical with respect to the middle plane, will now be considered in
more detail. The last two equations (5.2) are in this case homogeneous
(Xt =Ys,=0) and will be satisfied if we introduce the function F = F(x, &)
satisfying the equations:

Us= (LxvLyz—Lyy Lxz)F, d
Vo= —(LxvLyz — LyuLlxsn F, (5.3)

Z,= (LxvLyv—LvyuLxyF,

where the differential operators in parentheses are formed by the rules of
symbolic differentiation for z=#4. Substituting (5.3) in the first equation
(5.2) we obtain:

Wlav(Lxv Lvz— Lyv Lxz)— Lzv (Lxy Lyz — Lyy Lxz) +

5.4
+ Lzz(LxuLlyw — Lyu Lxv)In F = Z,, (5.4)

where the differential operator in brackets is determined approximately by
(2.6) and exactly by (2.7), when z=h is substituted.

The order of this equation depends on the number of terms taken in (2.6),
which in turn depends on the relative thickness of the plate and the required
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accuracy of the solution. If for a plate of medium thickness only the first
terms are taken in (2.6), we obtain the approximate theory of the equilibrium
of a symmetrically loaded plate.
To obtain the exact theory, the exact values of the differential operators
determined from (2.7) for z=+h should be substituted in (5.4). In this case,
we obtain for F a transcendental equation in which the arguments of the
trigonometric functions contain partial derivatives of £ with respect tox ! l l
and y. This equation can be written in the form:

o
{—v

sinyh(sinyhcosth + yh) F = Z,. {5.5)

Furthermore:

Up= a sin vk [(1 — 2v)sinyh —yhcosyh] F.

2(1—v)
V,=g(’ii'_’_'ff)[(l—2v)sin'rh—1hcos1h] F, (5.6) \‘- - ==

2, = CET inyh gk cos yh) F.

The order of (5.5) can be reduced by writing:
=187k (5.7

Equations (5.5) and (5.6) then become:

'r['r’l+ __T_""z"’ "]o=z,_ (5.8)

Vo= 3 [t — 29822 —hcosyh o,

Vn=-g-[(1—2v)'ﬂ:7ﬂ—hcos1h]0, (5.9)
Zy = y[sinyh + thcos yh] ©.

of their argument, the transcendental equation (5.8) becomes an ordinary

If the trigonometric functions in (5.8) and (5.9) are expanded in powers - : l I'
differential equation: Writing again ¢*=a® + p*=V?* , we obtain:

[2hv- —ipve g L pvrorwr— .. ] ®=2, (5.10)

Expregsions (5.9) can then be written as follows:

Uo=ah[—v+ T T L ...]o,
Vo=ph[—v+ L;:lh*v'—‘%*i;)—‘h‘v'v-+...]0. (5.11)
Zo=h [2-%;;-\7- + %h‘v'v’—...]vw.

Equations (5.8) or (5.10) describe exactly the states of strain and stress
of a symmetrically loaded thick plate. After the function @ has been
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determined from these equations and the boundary conditions on the lateral
surface of the plate, the initial functions Uy, Vo, Z, can be obtained from
(5.11), while the displacements U, V, W and the stresses Z, Y, X are found
from (5.1). The remaining stresses 9x 9y, 1, are then determined from

(2.8).
An approximate solution is obtained by taking a finite number of terms l l
in (5.10) and (5.11) or, which is the same, in (2.6). Thus, retaining only

the first two terms in (5.10), we obtain:

3 3
VIVIO — VIO = — 55 7). (5.12)

The unknown initial functions are in this case:
o
Up=—w32, V°=—yh%°, Z, = 2hV'O. (5.13)

If the load acting on the plate is axisymmetrical, an ordinary differential
equation in polar coordinates is obtained in both the exact and the approxi-
mate solution.

§ 6. THICK PLATE SUBJECTED TO A LOAD ANTISYMMETRICAL
WITH RESPECT TO THE MIDDLE PLANE

1 K -0 K
If a plate of thickness 24 is subjected to a load consisting of normal and

shearing stresses (Figure 165), applied antisymmetrically with respect to

the middle plane z=0 at the boundary planes z=-+4h, the horizontal dis-

placements and the normal stress at the middle plane will be equal to zero.

Taking z=0 as reference plane, and putting in (2.5) Uy=V,=2,=0, we
obtain:

U=Lyw Wo+LyyYe+Lux X, Z=szWo+Lsz°+szX°, ’
V=LvwWotLyyYot+LvxXe, Y=LywWotLyyVo+LyxX,, (6.1) {

W=LoywWo+LoyYo+ LwxX,, X=LxwWo+LxyYo+LxxX,

- — ——it HE - = ) |
”
T
U
1
FIGURE 165.
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The unknown initial functions are in this case the displacement

=W, (x, y) and the stresses X,= X,(x,y) and Y,=VY.(x, v).

The following system of three differential equations is obtained for these
three unknown functions from the statical boundary conditions:

LxwWo+ Lxx Xo+ LxyYo= Xp,
LywWo+ LyxXe + Lyy Yo=Y, (6.2)

LawWo+ Lax Xo + LzvYo = Zn,

where z=#4 has to be substituted in the operators Lxw, Lxx,...,Lzv .

If only a vertical load Z,=Z4(x, y) acts on the plate, the first two equations
(6.2) will be homogeneous. These equations can be satisfied by introducing
a function F= F(x, y) which satisfies the equations:

Wo=(Lxx Lyy — Lyx Lxyh F, - -
Xo = —(Lxwlyy — LywLxv)s F (6.3)
Yy = (Lxw Lyx — Lyw Lxx)n F

(The subscript # indicates that the differential operators in parentheses are

determuned for z=~h).
Substitution of (6.3) in the third equation (6.2) yields:

(Lzw (Lxx Lyy— Lyx Lxy) — Lzx (Lxw Lyy — Lyw Lxy) + (6.4)
+ Lzy(LxwLyx — Lyw Lxw)ln F = Z. :

2

The order of (6.3) and (6.4) depends on the required degree of accuracy.
Expanding the differentiai operators in (6.3) according to (2.6) and
substituting z =4 yields:

_ A2 —v) (3—v)
Wo=[1—"57=y v=+24 S VVi—. | F. §

Xo=[— sV gy VPV —- ]aF. (6.5) x x !
Yo = [~ 45 V' + 5 VIV - | BF, '

where, in accordance with the symbolic notation used:
v 2 k=¥ pr2 (6.6)

The following differential equation is obtained for the function F:

] | | -
21 284 4
[3(1-»)_15(1—\.) +315u )V’V’— 6.7)
2h .
—m—y V'V VTR =2
282

ITTTRITITIINII




3

The fundamental equation of the problem considered is (6.7), which
determines the function F = F(x, ). The order of this equation depends on
the required degree of accuracy.

To obtain an approximate solution, we retainonly the first terms in (6.5)
and {(6.7), obtaining:

. __m oF _ B, 0F
Wisb Xe=—15 V5. Yo=—y5 Vg, (6.8)
202 3(t—v) :
Vv == g,
Writing, in accordance with (1.3):
E . o
Vo= sirw @ e o W

where w=uw(x, y) = actual vertical displacement of the points of the middle
plane, and eliminating F(x, y) from (6.8), we obtain:

_ ER? 2 0w _ Eh? 20w
Xo= ) v ax’ Yo=— 2(1—-v’)v dy '

(6.9)
Viyy = ?L;E:lz..

\a
Equations (6.9) and (6.8) correspond to the moment theory of the bending ' ' >'
of plates which is a particular case of the general bimoment theory which is
independent of Kirchhoff and Love's hypothesis. The moment theory holds
true for sufficiently thin plates and distributed antisymmetrical loads. If
the thickness of the plate is not small in relation to its other dimensions,
and if the plate is subjected to local (concentrated) loads, the more general
bimoment theory corresponding to (6.7) has to be applied. When the plate

is of medium thickness, the first two or three terms (depending on the
problem and the required accuracy) in (6.7) will be sufficient. The funda-

mental function F = F(x, y) is invariant with respect to coordinate trans - d
mations. :
The exact transcendental form of (6.4) and (6.7) is:

L {th —sinqhcosh] F = Zy, (6.10)

{1—v

while (6.5) takes the form:

W, = {cos th ——:,,_—(;rh?v-isin 1h] F,
(6.11)
_ Byh . —__ath .
Yo._—i—_;sm'th, Xy = 7— sinThF. e — -
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§ 7. DEFORMATION OF AN ELASTIC FOUNDATION, DUE
TO A LOAD APPLIED TO ITS SURFACE

1

base and subjected to normal and shearing surface forces Zy, Xy, Yy
(Figure 166). It will be assumed that at the plane of contact of this layer
with the subsoil, the shearing stresses X and ¥, and the vertical displace-
ments W vanish. This means that the elastic layer can slide freely along
the contact surface, as shown schematically in Figure 166.

Taking the plane of contact as reference plane, we again obtain expres-
sions (5.1) for the displacements and stresses of the elastic layer. The
problem considered is thus identical with the problem of a thick plate
subjected to a symmetrical load,

In the general case, when surface forces Z,, Xy, Y, are present, the
system of differential equations determining the solution is written in form
(5.2). In the absence of shearing loads (Xy =Yy, =0), we obtain again:

Consider an elastic layer of finite thickness H, lying on anincompressible ! l l

[Lzo(LxvLyz— LyvLxz)—Lzv(LxuvLyz— LyvLxz) + (7.1)
F Lzz(Lxv Ly — Lyulxy)in F=—2y4
or
[ZHV’— vy Lo ] O =—2, (7.2)
2,

Il y
2

2 7 -
= 2 = ~
FIGURE 166.

Retaining only the first terms in (7.2), we obtain the differential equation
of the approximate theory of an elastic foundation of finite thickness # :

V:vz@__3.V2®+——3 Zy=0 V’=i+—al- (7.3)
Hi SHY H 1 9x3 ay? .

The foundation model described by (7.3) corresponds in its behavior
better to the elastic layer than the single-layer model considered before, e -
since both vertical and horizontal displacements are taken into account.
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Let the elastic layer, subjected to surface loads z,, X,, Yy , be fixed
rigidly along the reference plane z =0 (Figure 167). Inthis case, thethree inij-
tial functions Vo, Wy will be equal to zero, The unknown functions will be
the normal and shearing stresses Z, Yo Xo .

We obtain from (2.5):

U=Lys2Z0+ Lyy Yo+ Lux X,

V=LvzZy+ Lyy Yo+ Lyx Xo,

W= LwzZy+ LwyV, + Lox X, (7.4)
z =LZZZo+ Lzyyo+ LZXXo- :
Y = Lyz Zo + Lyy yo + Lyx Xon

Xe=LxzZo+ Lyy Yo+ Lyx X,

The functions 2, (x, ), Yo(x, y),

Xo{(x, y) are determined from the boundary
conditions at z=4:

LVZ (H)Zo -+ LY}’ (H) yo+ LYX (H) Xo = Yl'h

Lxy (H) Zo+ Lyy (H) Yo + Lxx (H) Xo= Xy.

Lzz (H)Z, + Lzy (H) Yot Lox (H) Xy = — 2y, }
(7.5)

FIGURE 167,

This system of three partial differential equations in x and y represents
the solving system of the problem considered.
In the particular case when only normal surface forces Zy act on the

elastic layer (Xy =Y, = 0), we introduce the function F = F(x, y) satisfying the
equations:

Zy = (LxyLyx—Lyy Lxx)u F,
Yo=—(LxzLyx—Ly; Lyx)y F, (7.6)
Xo= (LxzLyy —Lyz Lyy)y F.

Substitution of (7.6) in (7.5) transforms the last two equations (7.5) into
identities, and the first one into:

L2z {Lxy Lyx — Lyy Lyy)— Lzy (Lxz Lyx — Lyz Lyy) + (1.7
+Lzx(LxzLyy — Ly, Lyy)lu F = — 2. '
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This equation describes the states of stress and strain of a foundation
rigidly fixed along the plane z=0. The order of this equation depends on
the number of terms taken in (2.6). Substitution in (7.7) of the exact values
of the differential operators, given by formulas (2.7) for z = H, yields:

H? (1 —=2v?* .
[m'ﬁ—coszxﬁ—“1—_\,;,—sm‘1H]F=—ZH. (7.8) ! l '

while (7.6) becomes:

2, = c051H[2(1H+v)sin7H—cos TH] F,

H .

Yo= RSP (1H cos tH — (1 — 2y sinyH] F, (7.9)
H .

Xo= 2“7';‘;51 5 (1 — 2 sinyH —qH cosvH| F.

§ 8. CONTACT BETWEEN A PLATE AND
AN ELASTIC FOUNDATION

Consider a plate subjected to a distributed load p(x, y) and resting on
an elastic foundation representing a compressible layer of finite thickness
H (Figure 168).
The plane along which the elastic foundation rests on the underlying
subsoil is taken as reference plane. We assume that the displacements at . - . : .
z=0 vanish: U,=V,=W,=0. The states of stress and strain of the elastic

foundation are then given by (7.4).

FIGURE 168. FIGURE 169.

The functions Z,, Y,, X, are determined from the boundary conditions at
z=H. Assuming that there is no friction or adhesion between plate and

elastic foundation, we obtain:

X”=Y}]=O- (8.1)

The differential equation of bending of the plate on the elastic foundation
is:

DY*'w(x, y)=p(x, 1) —q(x, y). (8.2)
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where p(x, y) = given distributed load, q(r, y) = reactions of elastic foundation.
According to our assumptions, the plate deflections w(x, y) equal the
vertical displacements of the elastic -foundation surface wy (x, y) =%WH (x.y) .
It follows that W, = Gw (the positive directions of the deflections and dis-
placements are shown in Figure 169). Furthermore, the reactions q(x. 4

represent a surface load Zy (x, ¥) with respect to the elastic foundation. In l l '
accordance with the convention adopted for the signs, the normal stresses

at the surface of the elastic foundation are:
Zu(x, v) =— 2 VI Wy (x, g)—p(x, 1). (8.3)

Substitution of (7.4) in (8.1) and (8.3) yields:

Lzz (H)Z,+ Loy (H) Y, + Lzx (H) X, =
- _gvzvz (Lwz(H) Zo+ Loy (H)Y o+ Lwx (H) X,)--p,

Lyz () Zo+ Loy (H)Yo + Lyx (H) X, = 0,
Lxz (HYZo+ Ly (H) Yy + Lxy (H) X, =0,

(8.4) L T e

or
D, D,
(L2200 + & 1Lz ()] Zo 4 [ Lar() 4 2 yiL g #]Yo+
+[Lax ) + 5 1*Lax ()] X, = —p, (8.5) R o o |
Lyz(H)Zo+ Lyy (H) Yo+ Lyx (H) Xy = 0,
Lxz(H)Z, + Lxv(H)Y, + Lxx(H) X, =0.
The differential operators Lzz(H), Lyp(H), ..., Lxx(H) are defined by

(2.6) or (2.7) for z=H.

Introducing the function F(x. y) satisfying (7.6), system (8.5) is reduced
to the single equation:

[(Lzz + %T‘L wz) (LxvLyx — LyyLyy) — } l '
— (Lzy + % T‘LVY) (LxzLyx — LyzLxx) + (8.6) i

+ (sz + gY‘wa) (LxzLyy— LyzLyy)luF = —p.

This is the exact equation of bending of a plate resting on an elastic
foundation considered as an isotropic layer of finite thickness H. Appro-
ximate solutions are obtained by taking a finite number of terms in (2.6),

the order of (8.6) depending on this number, i.e, » on the accuracy required
of the solution,

§ 9. THEORY OF PLATES AND SHELLS OF VARIABLE
THICKNESS, SUBJECTED TO ARBITRARY SURFACE LOADS

Consider the general equilibrium problem of a plate of variable thickness
h=h(x, yy. This problem has considerable practical importance in the
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design of shallow shell-type roofings of variable thickness, having plane
upper surfaces (Figure 170).

FIGURE 170,

Choosing such a surface as reference plane (z-- 0) and considering the
surface load acting on it to be given, we obtain the stress components
X Yo, Z, in (2.5) as known functions of x and y. The unknown initial
functions in this region are the three displacements

Uo=Us(x, 9), Vo=Volx, 1), Wo=Wi(x, u). -=-
Hence, the displacements
U=U(x, y. 2), V=V, y, 2), W =W, y 2
and the stresses
X=X(x, 42, Y=Yy 2 Z=2Z{x y 2) . . .

e=3,(% 4 2, o, =0,(% ¢ 2 ty=14(x y 2

at any point x, y, z are determined except for the three unknown initial

functions U,(x, y), Vo(x, &), Wo(x, ). Substituting z=~h(x, y) in the general

solution, we obtain the three components of the displacement vector and

the six different components of the stress tensor for the points of the

surface h=h(x, y) forming the lower surface of the plate or shell. At

z=h(x, y) , the stresses X. Y, Z, (o, o, ) must bein equilibrium with the

given surface load applied to the lower surface h=h(x, y). -
Denoting by X,, Y, Z, the components of this given surface load in

the fixed cartesian reference frame x, y, z, the equilibrium conditions of

an elementary tetrahedron, whose inclined surface forms part of the

boundary surface h=h(x, y), can be represented in the following form:

X,=chOS(V| X)+T,,COS(V, y)+XCOS(V. 2) (X, LE Z)' (9.1)
where
os (v, 1)= 2 ’ :
Y@
dh 1 ’ .

cos (v, _‘/)=Fv' V(%)‘_*_ (g_:)’*_i L Y (9.2) L] |} [
cos (v, 2= — !

V(&) + &)+

= cosines of angles between outer normal to element of surface h = h(xy),
and coordinate axes x, y, 2z respectively.
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For h= h(x, y) the statical boundary conditions are given by (9.1), which
after insertion of (9.2) become:

_ 1 on on
X, = (a,—a;+t,,@—X),

V@& + &)+
Y.= '/(a_h)':(gf’+1 (1""g_g+°”%-y)' r (9.3) l l I
2 oy,

1 h oh
Z, = (11,5;+1,,5;—Z).

When the initial functions X,, Y,, Z, are known we obtain, by substituting

in (9.3) the stress values given by (2.5) and (2.8), a system of three linear

partial differential equations with variable coefficients, for the unknown

functions U, (x, y), Vo(x, ), Wo(x, ¥) . The order of these equations depends

on the number of terms retained in (2.6). ST e T w.
We shall consider in detail the moment theory of plates and shells of

bariable thickness h=h(x, y), assuming that the displacement W is constant

over the shell thickness (i.e., does not depend on z), and that the displace- \

ments U and y vary linearly. Furthermore, the law of variation of the

shearing stresses X and Y is given by a parabola of the second degree in Z,

and of the normal stress 2, by a cubic parabola [the stresses 6.0y, ande,

vary linearly]. The following approximations then obtained from (2.5) and

(2.8):
U=Uo—zao;:"+zyo.V=Vo-—zaal;'+z}’o.W=Wo. . - . '
o (2 BUs | BUN t4v. B,
X= z(i—v ot ay-.)“i'—vz'ax_oy -
2—v X,  BX, 1, Y,

TIAWP e T T e g e w T

1 11 W, v 0Z,
T2V 6x+x°—1—vz ax
_ 14y U, 2 o, | aw,
Vet gy s o) —

2—v 'Y, ¢ 3%y, 1 s 90X,

T A=W T T T e T ITa=w? ey T :
1 aop W, A
+1_v i 0y +yo_i_vz ay ' E l I
o | 3V,

4 =1‘13"V'(ax +0_y>—3“1—v) AVIVIW, — (9.4)
—z %+?:T°)+Z°+zuz‘—vv)vtz°+ (
+ w2V (5 5.
Cx = 13'4 Z_Ix/o_f_v%_‘;o)—iivz 3;‘;o_+_‘,3_;%-
'*'f::z%'*‘i:vz%"'il_v.z‘“ -
- -
st e, R
e g e (2 o), N
~\
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It is easily seen that the stresses given by (9.4) satisfy (1.1). Substitution
of these values in (9.3) yields a system of differential equations for
determining the unknown functions U, (x, ), V, (x, ¥, W,(x, 9.

Equations (9.3) and (9.4) describe the general moment theory of a plate
or shell of variable thickness A=#h(x, y). This theory, based on more
general assumptions than Kirchhoff and Love's hypothesis that linear
elements remain normal to the middle surface, makes it possible to ! l l
determine the stresses and strains of a plate or shell for an arbitrary
law of variation of its thickness, i.e., for any shape of the lower surface
h=h(x, y)of the shell, Equations (9.3) must be supplemented by the
corresponding boundary conditions, given for the unknown functions U, Vv,
V¥, in accordance with the model adopted.

The exact solution of this boundary-value problem for plates of variable
thickness h = A(x, y) is very difficult and can hardly be carried out by the
methods available at present. Bubnov and Galerkin's variational method is
the best existing method for the approximate integration of equations with
variable coefficients.

§ 10. GENERAL SOLUTION OF THE TWO-DIMENSIONAL
PROBLEM OF THE THEORY OF ELASTICITY

It was shown above that the solution by the method of initial functions of
the general three-dimensional problem of the theory of elasticity reduces )
to determining the six initial functions U, Vo W, X, Yo Zy . Since the two- . ' - . : '
dimensional problem is a particular case of the general three-dimensional
problem, four initial functions will be sufficient to determine the states of
stress and strain of the body, these being the displacements u,(x). v,(x) and
the stresses « (x), o%(x) at y =0 (Figure 171). This can be proved by taking
the displacements u(x, ), v(x, y) and the stresses ey (X ), o,(x, y) as
unknowns, and representing them as infinite series in powers of y.

AT

FIGURE 171.

In the two-dimensional case the equilibrium equations (1.1) of an elastic
isotropic body become, when no volume forces act:

ot s ) B - == -

de T
x Xy ¥ [ 43
e . ] (10.1)
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The relationships between stresses and displacements for the case of

plane strain are:

26 du du
eIy (0= E g

s,,:fa—[(l ‘y)“z_”-;-v"_“J, (10.2)

1—2v y [
Ou v
o == G ). ! l I
where \

__E
G= 2(1 +v) N\
Introducing the symbols:
U = Gu, V = Gu, )
X =, Y=o, (10.3) -
0 a
FriRail ay ™

we can rewrite (10.1) and (10.2) in the form:

BU = —aV 4 X,
B~ — el + gy (10.4)

- - 10.4 :
o = —ax. XK N
. 2 v
3 = — T—> aU — — aV,

whence
2

Se= gy [(1 —v)al + wBV). (10.5)

Expanding, as in (2.1}, the unknown magnitudes in Maclaurin series of
powers of ¥, we obtain the following solution of system (10.4);

U= LyyUy+ LyvVy+ LivYy + LuxX,, H l I

V= Lyl + LyvVo+ LyyYo + LvxX,,

Y= LyUg+ LywVy+ LyvY, + LyxX,, (10.6)
X=LxeUy + LyvV, -+ LxyYy + LxxX,,
where Lyy, Lyy., ..., Lxy, Lxx are, as before, the linear differential

operators on the initial functions U, (x), V,(x), ¥,(x), X,(x); these operators,

which are functions of y and contain derivatives with respect to x , can be

represented either by infinite series (Table 24) or in transcendental form

(Table 25). The bottom lines of Tables 24 and 25 give the operators obtained e -
from (10.5) entering in the expression for g, :

G = AUUo + AVV:) + AYYO + AxX,. (10-7)
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.
N (el 1115 (—yoz
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TABLE 25
U, Vo Yy Xo
1 —2v L =isina —
. Lyy - cosay — Lyy TTA =y sinay — p UXx~a Y
ay ay Loy=—ga—yysinay | 1 LI
— Ty sinay — I =y osay d1—v)a
X (sin ay — ay cos ay)
] - @
1 —2v 3—4v
vy =5 —ssinay — _ Ly, = sinay —
1 2(1 V), Lyy _2(1_v)x ViT Al —V)a Lyx = Lyy
_L/ N
T I —yycosay X sinay + cos ay — ruy_—v)cos ay
Y ay_ Ly - — 5= «
Lyy=q—"ysinay T—v Lyy < Lyy Lyx = Lyy
“ (sin ay — ay cos ay)
L a
X[txv =72, Lyy=Ly, Lyy=Ly, Lyx=Llyy
X (sinay : aycos ay)
2a v ya
i AU:{NJ cosay - 4 = — a x Ar=1_\, €os ay — AX=._,*(1_V)cosay+
x L .1 -V ya J—2
— 7y Sihay X (sinay -+ ya cos ay) I =) = sin ay - _v.‘“ —y)Sinay

Equations (10.2) through (10.5) and Tables 24, 25 correspond to the case
of plane strain. The corresponding expressions for plane stress are
obtained from them by replacing the modulus of elasticity £ and Poisson's
E (14 2v)

L+w
Table 25 yields the matrix of linear transformation of the functions- U, (x)
Vo(x). Y, (x), Xo(x) into the functions U, ),V(x, 9), Y(x, v, X (x, y) for the
case of plane stress, given in Table 26,

Equations (10.6) represent the law of transformation of the initial into
the unknown functions and give the general solution of the two-dimensional
problem of the theory of elasticity. These equations are symmetrical with
respect to the secondary diagonal:

ratio ., by and ﬁ, respectively. Performing this substitution in

Luy = Lvx, Lyv = Lyx, Lyy = Lyy, Lyy = Lxx,

LVU = LX)’, LYU = LXV-

The initial functions U, V,, Y,, X,, which in (10,6) constitute four
arbitrary functions obtained by integrating (10.4), are determined by the
boundary conditions at y=0 and y =4 = const . Two functions can be pre-
scribed for every plane y— const .

Since two initial functions are always known from the beginning, the
solution of the two-dimensional problem reduces to the determination of
two initial functions from the boundary conditions for y=~h. These boundary
conditions yield a system of two ordinary differential equations, which, in
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the general case, are of infinitely high order, When the problem is solved
by approximation, the order of these equations depends on the number of
terms retained in Table 24,

TABLE 26
Lyy=cosay— { 3—v
= — i 1 Lyx = —g—sinay +
17 t 4y ' Ly = 5 (1 — v} sinay+ Lyy=— -:vysin ay Ux %a Y
— Tz eysinay + (1 4 v) ay cos ay) + ’rvycosay
1 1
vitvo=7l1—v)sinay— |L,, = ;_-vaysinay-}-
Lyp=Lyx Lyx=Lyy
—{ +v)aycosay] + cos ay
T n -
YI Lyy=(1+v)alysinay Lw=0+vax Ly,=1L
4 ¥ (ay cos ay — sin ay) yr— Svy Lyx=Lyy
Lyy=—{1+vax
X[ =xv Lyy=1L Lyp=1L Lyy=1L
X (sinay + ay cos ag) xv vu xy = Lyy XX 77
= Ap=vcosay — g
o, Ap=(1+vax Ay=—(1+vjax ¥ V‘O:y Ax= 711+ V) aycosay + . . .
2 — i i v 5 - .
X (2 cos ay — ay sin ay) X (sin ay 4 ay cos ay) ———aysinay +(3+v)sinay]

§ 11. BENDING OF A THICK PLATE IN THE CASE OF
PLANE STRAIN. APPROXIMATE SOLUTION

Consider the bending of a thick plate in the case of plane strain

(Figure 172). Let the external load consist only of normal forces p(x) -
disposed antisymmetrically with respect to the middle surface y=0. E ! !

plz)
i TiRSw
..1__. —o 2 ]

» pt——— {

4 y © EE - mm wm

-~

FIGURE 172.

294

ITITRNITNTTITRIIINI



Taking y =0 as reference plane, we obtain:

Up=Y,=0, (11.1)
so that (10.6) reduces to:
U= LyyVo + LyxXo, ! ' l
V= LyvVo+ LyxX,,
Y = LywVo + LyxXo, (11.2)

X = LxvVo + LxxXo-

From the boundary conditions for y =4, namely: Y,=p(x), Xy =0,
we obtain:

Lyv () Vo + Lyx (h) X, = p, )

Liv () Vo + Lyx (8) Xy = 0. (11.3) - w m
We introduce the function F satisfying the equation:
Lxx(WF =V, Ly (BF=—X, (11.4)

Substitution of these expressions transforms the second equation (11.3) into
an identity, while the first becomes:

(LyvLxx — LyxLxv)nF = p. (11.5) : . - . . '

The solution is obtained by rewriting {(11.5) either as ordinary differential
equation, in which case the operators are given in Table 24, or as trans-
cendental equation, Table 25 being used instead. The second method is
more convenient, since transition from the transcendental integral-
differential to the ordinary form is easy.

Substitution in (11.5) of the value given in Table 25 yields:

la—_v[ah—sinahcosah]F:p, (11.6)
while (11.4) becomes: : ! l
1 . .
V= coszh——.mahsmahjf, (1.7
X,= — —' sthsinah.F.

t—wv

Expanding the trigonometric functions in (11.6) and (11.7) in power series,

we obtain:
9p9 h? . 2h¢ B s = °
T 1 et — etk o F=p (11.8) _-e-—-
ey 3—v d—v :
Vo=1{1—. hat v o hlat — —g—y h%® — .. | F,
o ( Ti—w 25 (1=v) 720 (1 —v) l (11.9)
B2 o, n he
X”:_1—v la[l—Ta'+ma‘_ 5040 ao+~~~JF'
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Equation (11.6) or (11.8) represents the exact solution of the problem \
considered. To obtain approximate solutions, we retain in (11.8) only a
finite number of terms, Thus, if only the first term is used, (11.8) and \
(11.9) reduce to:
248
;“mh_v) FV=p, (11.10) l ' l
Vo=F,
n L, (11.11)
Xo=— 2 F

Thus, in a first approximation, F equals V,, i.e., the vertical displace-
ments of the middle surface of the plate, while (11.10) becomes the ordinary
equation of the bending of a beam in the case of plane strain. The first
approximation thus yields the elementary solution corresponding to the
hypothesis of plane sections. The matrix of the initial functions or, which
is the same, of (11.2), is in this case given by Table 27,

TABLE 27
[l Ve Xo
j
0
U 11 —ya —
V } 1 _ ' - l ) .
I
|
o P _
Y ! T g at ya
d 2
X 1y_v o? 1
x - lz—yv a -
It is seen that the horizontal displacements vary linearly with y; the ! { !
vertical displacements are constant; the laws of variation of the normal

stresses o, = Y and the shearing stresses =X , arerespectively parabolas
of the third and second degree,
Substitution of (11.11) in Table 27 yields:

U=—yv V=v. |
(I=WY =g ER—gW", (11.12)
(1= 9 X = (=AY V] |
(1 —v) o, = — 2yV;. J
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The function V, is determined from (11.10) and the boundary conditions
atthe plateedges x=4/!, Two conditions can be formulated at each edge, in
agreement with (11.12) and (11.10). For a free edge, not under load, this
solution makes it possible to eliminate the stresses only in the sense of
Saint-Venant, i.e., by equating to zero the moment and the shearing force
Vo=0, V; =0).

In a second approximation we obtain from (11.8) and (11.9): ' ' '
FV‘—%F"’:—%p(I—v), (11.13)

2—v "
Vo= F— 2=t hop,

. . (11.14)
Xo=— < h*F" 4 Fa—y FY-
We assume that the vertical displacements are constant:
- W -
V=y,. (11.15)

Substituting (11.14) and (11.1) in Table 24, and retaining (in accordance
with the order of (11.13)) in the expression obtained for [/, the terms
containing F’ and F~, in the expression for v, the terms containing F'Y and
FYL, in the expression for X, the terms containing F” and FY, and in the
expression for o,, the terms containing F” and F', we can represent the
unknown displacements and stresses of the plate in the form:

v LS B

U=—yF’+§y[y’—

2— 3v
8(1 —v)

2—v

K] F=,
(1—=Y =L@y FIV— & (5h — yt) FV1,
(11.16)

(1= X = (y* — 1% pm _L=M pv

(l—v)cx=—2yF'+§y’F"’.

The first terms in (11.16) are identical with (11.12), The additional

terms take into account the deviation from the hypothesis of plane sections.
The general integral of (11.13) is: 3

F=Ci+Co+Ct+Cod +Csh Yoy coen¥E 4 4 6 (11.17)
h h

where G = particular integral of (11.13), depending on external load, and
Cy....,Cq = constants.

To determine the six integration constants we require three boundary
conditions at each lateral edge of the plate, For built-in edges (V=0, U=0),
we obtain from (11.14), (11.15), and (11.18):

2—v
Fe 2= _pape _ g,
2d—v (11.18)
F =0, Fm =0,
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If a membrane, rigid in its plane but flexible in bending, is placed at the
edge (V=0, o, =0), the boundary conditions will be:

F=0, F =0, FWV=q. (11.19)

Finally, for a free edge notunder load (s, = 0, t,, = 0), the boundary -
conditions will be: ' ' l

Fr=0, FV=o,
§ [(y’—h’) F _¥FVJ@= 0. [

¢

(11.20)

The plate can therefore be analyzed in a second approximation for any
boundary conditions at the lateral edges x=+1/. After determining the
integration constants from these conditions, and then the function F from
(11.17), we can find the displacements and stresses in the plate from (11.16). TR T o
This procedure is applicable to thick plates, for which the deviation from
the hypothesis of plane sections is considerable, If in (11.16) Poisson's

ratio v is replaced by 4~ , we obtain the equation of bending of a high beam

(beam -wall) for the case of plane stress.
Higher -order approximations for greater accuracy can be obtained by

increasing the number of terms retained in the expansions. This, however,

increases the order of the differential equations and makes their solution

more laborious. The second approximation is quite satisfactory in practice. o ' ~ ' R '
In this section we have considered only the bending of a thick plate for

arbitrary boundary conditions at its lateral edges x = -1/, showing how this

problem can be solved by approximations. The same procedure is possible

in many other problems of plane stress or strain involving massive struc-

tures (see sections 5, 6, 7, and 8). In all these cases the fundamental

solution is obtained from the boundary conditions at the longitudinal edges

of the plate; an approximate solution is then obtained by retaining a number

of terms depending on the accuracy required.

§ 12. USE OF TRIGONOMETRIC SERIES IN THE SOLUTION H l l
OF THE TWO-DIMENSIONAL PROBLEM#*

1
We shall now consider problems of the theory of rectangular plates whose

boundary conditions can be expressed with the aid of trigonometric series,
Let the plate edges x=0 and x =/ (Figure 173) be rigidly connected to thin

* This and the following sections are based in part on V.V, Vlasov's Candidate's Thesis, Metod nachal'nykh
funktsii v ploskoi zadache teorii uprugosti (The Method of Initial Functions in the Two-dimensional Problem
of the Theory of Elasticity), 1958, and on his papers /13, 14/.
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membranes perfectly rigid with respect to displacements in their plane, but

freely displaceable out of their plane. These boundary conditions are
formulated as follows:

at x - 0and x -/ : VeV o, =0. (12.1)
It follows from (12.1) and (10.1), (10.2) that
® ®
Ux,y)= ,.Eg, fin(@)cosanx, Y (x,y)= Ex fs (9) sinanx,
Vi) = 3 fm@sinass, X (5,4 = 3 fa o) cosans, (12.2)

oo
se(x,y) = E fon (#) sin 2,x,
n=1

where a, —= ?. ! = plate length in x direction.,
Equations (12.2) represent Filon's solution,

\ are expressed by sine series, and v,Y,

obtain Ribiére's solution satisfying the boun

If, on the other hand, U and
and s, by cosine series, we
dary conditions;

at x=0and x=1{: U=X=0 (12.3)
We shall use (12.2), assuming all the initial functions Uy Vo X,, andy,
to be known for y=0, being represented by trigonometric

series with
constant coefficients:

O (oo
U, = > Un cosanx, Y, = 2 Ynsina,x,

n=1 a=1

o oo (12.4)
Vo= Z Un Sinanx, Xo= 2 Xn COS AnX.

n=1 n=1

The states of stress and strain of the plate can be expressed through the
initial functions which satisfy (12.1), by substituting (12.4) in the general
integrals of displacements and stresses, written in the form of Table 25.
For example, the first term in the expression for U becomes:

(cos %y —Q-”’TV) a,,ysina,,g»(/o (x) =

hag m 2m+-2
B o [ (@9 1 (a,9) ]
) 21 o %u( eml T TE—) @ AT ] 005 an =

oo

1
= 2 Up (ch Sl + T =) %Y sha, y)cosa,.x.

n=]1
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The same procedure is applied to the other terms in Table 25.
obtain:

U= 11" % {un [(l—v)cha,.y»}r %anysha"y] —_

n=1

—%"[(l — 2v}sha,y + a,,ycha,,y]——%y,.ysha,.y+

+ x—-’: [:17::_" shaqy + ych any]} COS AnX.

1 4 4p p— —
V=1__.;2_|{7(a,.ycha,,y (1 — 2v) sha,y]+

=1

+ vn [(1 —V)Cha,,y—%anyshany]+y4_n[3—4v

a,

sha, y—
1 .
—ych a,,y] + Tx,,ysh . y} sina,x,

-]
Y = 1%’ 2 {u,.afly shany + vnos (shaay — o ychany) +
ne=]
1 x
+ Yn [(l —v)cha.y — = taysh a,.y] + 7" [(1—-2v)sh XY+

+ anychany ]} sina, x,

(=]

X = ii_v h3 {u,,a,. (shany + @ay chaay) —vaaty shany
n=1
+ % [(1 —2v)sha,y — anychany]+

=+ Xn [(’ —v)chany + %-a,.y sh a,.y]}cos & X,
L= ]

i i 3 2 {— Untn (2ch any + oy shany) +

naxq

Ty =

+ Unttn (sh &ny + any chany) + yn (vch any +

+7:,- any sh a,,y) — ? [(3—2v) sh &py+a,y ch a,,y]} sina, x.

We

(12.5)

These zeneral expressions are valid for any boundary conditions at the

longitudiral plate edges y=0 and y =4 .

Replacing Poisson's ratio v by ﬁ_"—v, we obtain the general solution for

plane stress under boundary conditions (12.1),

Iehya

: {
77 & 5 5

FIGURE 173.
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Similar expressions can be obtained when the boundary conditions are
given by (12.3).

Several examples will now be considered:

2 Il
Let a plane punch be

pressed into a rectangular plate (Figure 173) at the
boundary plane y =4, It will be assumed that the normal plate displacements
under the punch are known functions of x, being zero at the other boundary
plane of the plate (y = 0), and that the shearing stresses X vanish at y=0
and y=4. Hence, by (12.2):

(-3
at y=h: V(x)=2 S.sina, x.

The following boundary conditions are therefore obtained:

at y =0 Vo= Xo = 0;
(12.6)
o0
at y=h V= . sinax. X =0,

= K- K

The initial functions U, and Y, are determined from the boundary condi -
tions at y =4, Putting in (12.5) v, = x,= 0 in accordance with (12.6), and
substituting the expressions for V and X at y=#h inthese boundary conditions,

we obtain for each term of the series the following two equations with two
unknowns g, and Yn:

2Ba chBa— (1 -—2v)shp,.]u,.+h(3';:' sh B —ch B) g =

l=4(l-—v)8,” ’
28n (shpa + Bn ch Bn) u, + A1 —a)Shpn—FAChpn]yn =0, 3

]
where 8, =",
After the unknowns u,, y» have been determined from these equations,

we can rewrite (12.5) as follows:

U=— 3 2B 0 — 2)sh By — uchBalch pary -+ Bash, (nshpun),
nm) n

V=3

I 20— )bt uchBalshBin— pshpa(renpu)],

Y= 5 2P ot Buch B chun — B sh o x (nsh B, (12.7) =

=)

<o 3,88 co
X= 3 2B (e ushBun—sha (nsh ),

gy = 2 3, ﬂn;‘Aﬂ BaE {(sh B —BachBa) ch B, m + Bash B, (nsh B, 1;)},

=] "
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where 7 = 7. i= i dimensionless coordinates, and A, = (I —v)sh? B...
The magmtude (1 —v), which depends on Poisson's ratio, enters in the
expressions for the stresses Y, X, o, only as a factor which can be written
before the summation sign. Ifwe assume that at y =0 and y = 4 the displace-
ments U and not the stresses X vanish, more complex expressions will be
obtained for the stresses and displacements, and Poisson's ratio will not -
appear before the summation sign. In the case of boundary conditions of the l l '
mixed type (12.6) we thus obtain a peculiar generalization of M. Lévy's
theorem for rectangular plates.

3

Consider as second example a double-layer plate subjected to a vertical load

p= 2 Prsina,x. e W W
nm=] °
We denote the elastic characteristics and thicknesses of the upper and lower
layers by G,,v,h, and G, v, h respectively. Thedirectionsof the coordinate
axes are shown in Figure 173. It will be assumed that the upper layer
behaves like a thin plate. The following boundary conditions will be assumed
for the lower layer:

at y=0' V0=Xo=0'
D d¥v

at y—h: X=0, Z& 4v=—p, (12.8) N G A |

where D = flexural rigidity of plate.

The last condition (12.8) expresses the fact that since the upper layer
behaves like a thin plate, the load transmitted tothe lower layer is de-
termined from the equations of cylindrical bending of a plate. The coeffi-
cients u, and y, in (12.4) are found from (12.8).

We then obtain:

U__Ehp;;osAﬁE{[ﬁ,,chp,.—(l—m)shp,]chpm_ H l !
— Basha (s Ben)},

v__zﬂ%ﬂﬁﬂwu—wmm+ﬂwhhwm_

— Bush B (neh B,
v=—3 2a Pt {sh B -+ Bach Ba) ch g — (12.9)
” ~BashBa (nshpam)}.
_ 3 Blucmbat Pla {Chpnsh?n'ﬂ—Sth(nchPm)} - mm mm

ne==)

n——Zf”“ﬂMw—mmmmm+
-+ pn sh pn "}Sh ﬂn'q)}.
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where

Ao =Bu+ gsh2h, + LWL g g, (12.10)
4
A solution in trigonometric series can also be obtained by proceeding ' l l

from the fundamental differential equation of the problem instead of from
(12.2) and (12.4). This will be illustrated by the above example of the
bending of a thick plate,

The fundamental equation for F is in this case [ef. (11.6)]:

a
1—v

[ah —sinah cosah] F = p(x). (12.11)

For simplicity, only the case of a load symmetrical with respect to the

y axis will be considered, - . W W=
The origin of coordinates is placed at the center of the plate, Weassume '

a solution of (12.11) for the boundary conditions (12.1) in the form:

ngx

zﬂl,,cos—l~ (n=13,5,...,2m—1)). (12.12)

.,,
h
-8

We expand p(x) in a cosine series:

p(x)=n§1p,.cos’¥ (n=1,3,5,..., (2m—1)), (12.13)
where:
4 17
Pn = TS p(x)cos'%dx.

0

Substitution of (12.12) and (12.13) in {12.11) yields: ! x l

in
4(1—v) § p(x)cos A, xdx
o

Ap = — - 1 (12.14)
?" [)\nh—?smz}‘n h]
where
M=3 (r=1,3,5...,@m—1)).
- - == -
From (11.7) and (12.12) we now obtain:
< 1k
Vo= 3 Aufehiaht o 5 sh ek [cos o, [
=1 (12.15)

Xo= — 3 2o Mhshihsinnar. ]

n=1
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Substitution of (12.5) in Table 25 yields:

o
1
U= 2“—_”"2_1 Anl(} — 2v) ch X\ yhsh Ay —
— hahish hohish My + Moy ch hahich o) sin hax,

o0
V= 5(_1‘__“) D) Anl2(1—v)ch Ak ch \yy—Xay ch Aahshhy+ I l l
A= ]

~+ hahish Mk ch hay) cos dax,

o

AR

Y = 3} 258 [hphsh hay shhak + ch kot sh kg — (12.16)

n==}

— My ch rAch hay] cos h,x,

o A
X =3 P8 [yshhay chhoh — hch hoy'sh hahl sin o,

ne{

o A
ox= 3 [ (shhaych ek + haych hagchh, h— - ow m

nw=}

— Aot sh My sh My A] cOS hpx.

5

We shall now give the exact solution in trigonometric series for a plate
subjected to a load symmetrical with respect to both x and y axes (Figure 174).
The solving equation is in this case:

in 2ah
rofan+ SR F = —p (), (12.17)
where
_ 9
a—a—x.

We assume a solution in the form:

. .
F=2 Awcos™r  (n=1,3,5,...,2m—1)). (12.18) ! !
nm=]

nwex

- We obtain:

Expanding p(x) in a series of cos

i
4(1—v)§ p(x)cosh,xdx
0

A, = (12.19)

%’(—["n" +sin2;nh J '

where - - =m -

)s,.:%ﬂ (n=];3)5""y(2m-—l))'

* {The hyperbolic functions used in this section should apparently be trigonometric functions, ]
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Furthermore:
1 -]
Ug=— —v Z B, sin \x,
=)
© (12.20)
Y°=_1i\. D) Cncoshax, l ' l
n=]
where

Ba= An (1 — 2v) shhh— haichMh), } (12.21)

Crn = AM [shhah + Nachhqhl.

| B GRS 4 -

e §—

I 0 —_——E
yl
[

UL

FIGURE 174,

-.—;——L—;n—..

The stresses and displacements of the plate are:

(2]

t
U=—35=y "Z_l (Bachhay+
+ Ankny sh hph1sh hy) sin hax,

o

A
V = 2 An [— sh )\,‘hsh )\"y— W’:{—V) Ch)\nh sh kny—*»—

Mo
A
+ 5o a 'f 3 shhhAch lny] cos hpx, <
(12.22)

oo
(1 — )Y = 2} [AMysh\phsh hay — Cochhay) cos hax,

n=]

o0
(1—9)X = 2} A\ (hchhyfishhy y—y sh hpch hag)sin Aax,

nme]

-]
(1= 0, = 2 Apha(—shMich Moy + Mphch A ch hy—

A=)

— My shxishx, y) cos Mpx.
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§ 13. EXACT SOLUTION FOR A RECTANGULAR STRIP WITH
ARBITRARY BOUNDARY CONDITIONS AT THE LONGITUDINAL
EDGES AND HOMOGENEOUS BOUNDARY CONDITIONS

AT THE LATERAL EDGES

going plane strain were given for the case where the boundary conditions
at the lateral edges can be expressed with the aid of trigonometric series,
This section will deal with the problem of finding exact solutions for a
rectangular strip with arbitrary boundary conditions at x — ¢ and x =1/
(Figure 175), and homogeneous boundary conditions at y=0and y=+.

We first assume homogeneous boundary conditions of the mixed type,
i.e., for y=0 and y—4 :

In the preceding section, exact solutions for rectangular plates under- ! l '

u=g,=0. (13.1)

This means that at the lateral edges y=0 and y=+# the strip is held Lo o= -

by membranes rigid in their plane and flexible out of it. The initial functions
U, and Y, vanish in this case.

! | T-K X

FIGURE 175.

Inserting into (13.1) the values of the operators given in Table 26, we
obtain a system of two differential equations of infinitely high order in the
two unknown initial functions V, and X,:

— (I —v)sinah 4 (I + vy ahcosah)V, +

13—y . i V
+7[Tsmah+(l+v)hcosah]xn=o, (13.2) ! l l
2(l+v)a(ahcosah—sinah)V.,-—-

— (1 —v)sinah + (1 + v)ahcosah] X, = 0.
We introduce a function F (x) satisfying the equations:

Voz—(L_—vsinah + ah cos ah)F.

14w (13.3)
Xo = — 2a (ahcosah—sinah) F.
The second equation (13.2) is then transformed into an identity, while the T - Em
first becomes:
(sin*ah) F = 0. (13.4)
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We assume a solution in the form:

F = Cet=, (13.5)

Substitution of (13.5) in (13.4) leads to a transcendental equation in &:

sin*kh =0, (13.6) ' l l

whose roots are:

where n = positive integer,
The general solution of (13.4) is thus:

0o
F =) Apchkax 4 Byshkex 4 Caxchkax+ Dax shkax, 13.7) B

n=0

where A, Ba, C..D, = arbitrary constants,

Substituting (13.7) in (13.3), we find the initial functions V, and X,.
Introducing these values into Table 26, we obtain the stresses and displace-
ments of the plate when the boundary conditions are given by (13.1). For
practical calculations it is more convenient to substitute first (13.3) in
Table 26, simplify the results, and then use (13.7). We obtain:

U= (= 1)y {kadnch kax + kaBash kox +

nest

+ [— : : : shk,x + k.x ch k,.x]C,. +

4 [— : :: chkax + kaxsh k,,x] D,.} sin kay,

oo
V= 3 (— 1y {kadnsh kux + kuBychhx +

n=1
+ (2 chax + kaxshkax ) Ca + :
+ (12 sh ax + kaxch kax ) Dy} cos kay, E l '
o (13.8)
Y =—23) (— D" kah kaAn{ sh kax + kaBachkax +

n=1
= (2chkox + kaxshkax) Cn +
+ (2shkax + kpxchkax) D,.} sinkny,

X =2 (— 1)k h{knAnchknx + koBnshkox -
n=1

+ (shkux + kaxchx,®) Cq +
+ (ch kax + kax sh kax) D,.} cos Ray, - - -

oy =29 (— 1) kah {knAnsh kax + knBnch kax +
n=1

+ keaxCpsh kn X + kaxDach knx } sin kny.
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The elementary solution in polynomials, corresponding to the zero roots
of (13.6), no longer appears in the general solution (13.8) which thus re-
presents incomplete expressions for the displacements and stresses, This
elementary solution cannot be obtained in a general form by introducing the
function F, since V, and X, are expressed through F by differentiations in
which part of the solution in polynomials drops out.
In order to find the elementary solution, we replace the trigonometric l ' '
functions in (13.2) by their expansions in infinite series, Taking only the
first terms, we obtain a system of two first-order differential equations in
the unknown functions Ve and X, :

—alo+Xo=0, aX,=0. (13.9)

It follows from (13.9) that:

Xo=A4,, Vo= Axx+ B, (13.10)

Substitution of (13.10) in (10.6) [using Table 26 and taking account of
(13.1)], yields:

U=Y=3,=0, V=Awx+B, X=4, (13.11)

This result corresponds to pure shear of the plate. The constant B,
determines the rigid-body displacement of the plate in the y direction.

Adding together (13.8) and {13.11), we obtain a general solution for the o
displacements and stresses of the strip. To each value of » there corre- ’ l _ ' . l
spond distinct states of stress and strain, The infinite set of these states
forms the exact solution of the problem for boundary conditions (13.1). An
individual solutions are orthogonal.

The solution obtained contains 4n+ 2 constants which have to be deter-
mined from the boundary conditions at x=0 and x=1!. Two boundary
conditions can be formulated for each edge, Expanding the statical or
geometrical magnitudes given at these edges into Fourier sine or cosine
series in the interval (0, h) in accordance with (13.8) and (13.11), and
equating the resulting expressions to the known corresponding displacements .
and stresses at x=0 and x=1, we obtain for any n+0 a system of four 4
algebraic equations in the unknown constants A,, B,, C, and D,. When these :
constants are determined the problem is completely solved.

It is often advisable to introduce other constants having a clearer physical
meaning, Taking r =0 as base plane of the strip, and assuming as before

that boundary conditions (13.1) are fulfilled at y=0 and y—#, we obtain as
initial functions:

U.=U(0:y)v V.=V(01y)r X.=X(0! !/). °;=°l(01 y),

which, as follows from (13.8) and (13.11), must satisfy the following
relationships: - EE - - -

Ld o
U=3 usinksy, V=3 v}, COS Rny,
- pond (13.2)
X =3 x,c0skay, ol = o sink.y
R==0

Awm)
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Here u, v}, x}, s, are the Fourier coefficients of the trigonometric series
for the initial functions. In order to express A, B, C. and D, throught them
we set x =0 in (13.8) and (13.11), and equate the results obtained to the
corresponding expressions (13.12). We obtain:

4, = (= 11"k (kads— 5% D),

. n 2

vn=(_l) h(kan"}'mcn). (13.13) ! ' '
X, = (— 1)" 2844 (kan + Da),

o) = (— 1)" 2k4B,,

By=v, A== (13.14)

It follows from (13.13) that:

14v /., 1=v % - oW =
A,.=(-——l)" ThE, (2un+mz)‘ :
PR
Bo= (— 1y e
. (13.15)
— n 1+V 0 %n
Cr=(= 1) (vn_ 2, )
1 *n .
Da = (=1 )
Substitution of (13.14) and (13.15) in (13.8) and (13.11) yields the following : ' -' - '
general expressions for the stresses and displacements:
0 U:l
U= 3310+ Y harchbx — (1 — ) shitar) + u (chkwr— 13 fox shiwr ) +
Nl
+ 1—2'3 xxshkox + %”[3;"“ shkax — (1 4+ v) xchkax J} sin kay,
V=u 4+ xx+ > {u; (chk,,x-+— L ;" k,.xshk,,x)—
n=1
M X3
_%[(l—v)shk,.x—%(l+v)k,.xchk,.x]_T[ ",.v X E l '
{49,
b shk,.x+(]+v)xchk,.x]— % anxshk,,x}cosk,.y.
V=73 {—(l + V) Ukn (2¢h kax + Roxsh kox) + (1 + ) ulka (sh kax + knxchk,x) — (13.16)

n=g
.

— ff— {3+ V)shkax + (1 +v) kaxchbx}+ o (vch knox + ! ;' Y kaxch k,.x)} sink,y,

X=x+ Z {(1 + V) Uk (shkax + Raxchkax) — (1 +-v)Wlktxshkax +

A=l

. 14y ";
+ 2, (ch kot + 5 kot shkyx ) + G (1 —=v)shkar— (1 +9) kntch kax] }cos kny,

o= 2 {(] + V) Ulkax sh kax + (1 <+ v) U ko (sh kox — kaxch kax) +

fem]

x—z"— [(1 —v)shkax + (1 + v) kaxch kax) + o, (—- ! '; “kaxshkax + ch k,.x)} sin kay.
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We can thus determine the stresses and strains of a strip in the case of
plane stress with arbitrary statical, geometrical, or mixed boundary
conditions at x=0 and x=!. The solution by trigonometric series (13.18)
is a generalization of Filon's solution.
We could also have obtained (13.16) in a simpler way by direct substitution
of (13.12) in Table 26, rewritten in terms of the variable x.
The method used to obtain (13.16) from (13.8) is a generalization of ! ' l
Cauchy and Krylov's method of initial parameters.

§ 14. OTHER HOMOGENEOUS BOUNDARY CONDITIONS OF
THE MIXED TYPE AT THE LATERAL STRIP EDGES

Consider now a different kind of homogeneous boundary conditions of the
mixed type (Figure 176). It will be assumed that at y =0 and y=4 ;

V=r,=0. (14.1)
We obtain in this case:

Vo= X, = 0.

By satisfying the boundary conditions at 4 = h we obtain, [using Table 26],
a system of two differential equations of infinitely high order in the unknown

initial functions y, and V,: B ' _ ' : '

(I —v)sinah — (1 + ) ahcosah| U, =
+%[(3— v)smTah—(l—}—v)hcosahJYozo, l
—2(1 + vya(sinah - ahcosah) U, +
+ I{] —v)sinah — (1 + v)ahcosah|Y, = 0.

(14.2)

We introduce a function F(x) satisfying the equations:

U,,=(:%: sinah—:hcosah)F, } (14.3) d
Yo = 2a(sinah + ahcos xh) F,

This transforms the second equation (14.2) into an identity. The first
equation is again reduced to (13.4),

Since (13.1) and (14.1) have the same solving equations, the considerations
of the preceding section apply also to this problem. As a result, we again
obtain (13.7) for the solving function F.

FIGURE 176
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To determine the general integrals for the displacements and stresses,
we have, as before, tofind anelementary solution in polynomials, proceeding
from the system:

— 2valy + (1 —¥) Yo =0,
2(1 + v) a2y +va¥, =0, } (14.4)
obtained from (14.2) by retaining only the first terms, ! l '

We obtain from (14.4):

{—

Uy = szox+Ao, Y, = vB,. (14.5)

Substitution of this in (10.6) [using Table 26, and taking account of (14.1))
yields:

§ -

U=-3"Bx+ A, Y=3By o=B8, (14.6) . m . m m

Expressions (14.6) represent an elementary solution corresponding to
a uniformly distributed load o, = 8,. The constant A, does not affect the
states of stress and strain of the plate but determines rigid-body displace-
ment of the strip in the x direction,

Expressions (14.5), (14.3), (13.7), and (10.6) yield:

U= Ao+ 15" B,,x—%(—l)nh[k,.shk,.xAn+ ‘¥ . K K
n=1 _ .

+ kach kaxBy + (13

+ (1% shkax + kaxch kax )D,.] cos kpy,

chkax + kox sh k,.x) Cn+

o
V=3 (— 1) {ka ch kaxAn + ku sh koxBa +
n=1

- [fi :shk,.x + kax chknx]C,. -+

+ [? i : chkux + k,xsh k,.x] D,,} sin Ray, .
©o 5
Y =vBy+ 22 (— 1) koht|kncChknx A, -+ knshkaxBa + (14.7) { l l
Nnm=]

+ (3shkax + knxch kax)Cor +
+ (3chknx 4 kaxsh k,x) D) cos kay,

X =23 (— 1)k [k sh kox A, + kychkyxBy +

n=t

+ (2ch kpx + kaxshk.x)Cr +
+ (2shkpx + kaxch kax) D }sin kny,

[
o, = Bo— 23 (— 1)kpht{knchkaxAn + knshkaxB, + - mm

n=]

+ (shk x + k.xchk.x)C, 4
=+ (chkax + knx sh kax) Ds) cos kay.
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As in the preceding section, the general solution (14.7) represents an
infinite set of distinct orthogonal states. Any boundary conditions for x — ¢
and x=/ can be satisfied by a suitable choice of the constants Ao, B,, A, B,
Cny Dy (n=1, 2,...,0) . We can also in this case introduce constants
having a clearer physical meaning by taking x =0 as base plane, and the
magnitudes U(0,y) =U", V (0, y) = V", X0,9)=X", 5.(0,4) = o, as initial
functions.

It follows from (14.7) that when the boundary conditions are given by
(14.1), we can write:

-] (-]
U'= E u,cosk.y, X' = Z X sink,y,
ne=Q n=1

(14.8)
00 -]
V= 2 v’ sin kay, o, = Z 9, Cos B,y

nax] na==0

Inserting x =0 into (14.7) and equating the results to the corresponding
equations (14.8), we obtain:

_ 1+l 3+ °,.,
Au——(—])" anh [U"+ 2(1+v) EJI
nd+v . v .

Prm g [ ma ]

14y x, .
Co=(— 1y 15 (2:’I+un), (14.9)

TV E-K K
Dn=(—1) 2h U,.+_2—'E)y
Ao=u;, B°=3;.

Substitution of (14.9) in (14.7) then yields expressions similar to (13.16)
for the displacements and stresses expressed through the initial functions

(14.8):
U . t—v . < .( t4+v .
=u; + 3 aox+z u \chkx— 7 kxshk,.x)-+ : ! I
A=1 o
+ (1 =) shkax — (1 4 v) kox ch knx] —
— it" X, xshkax +
. " (14.10)
+°T"[(3-—v) sk:x —(1 +v)xchk,.x]}cosk,,y.
-] “'
V=73 {T"[(l — ) shkax + (1 + V) knx ch kpx] +
R}
+":- (chk,.x+ ’,?'k xshk,,x)+ - - =m -
_;_’Tn[?_ shkax + (1 +v)xchk,.x]+
+'1" a;xshknx}sinkny,
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1

o«

Y = voy 4 {(l + V) uy ka(shkax + koxch kox) +
-
A (L + V) 0 kn (2¢h knx + k,x shkax) +

+ A—z"— 13 5- v)shkpx 4 (1 4 v) kaxchkax) -

+ o, ( vehkax -+ %’ k.x sh k,.x)} cos Ry, l ' l
oo

X=3 {(1 F VU R xshkax + (1 ¥) U]k, (sh kyx -+
n=1

14,10
+ kexchk x) 4-x7 (ch k,,x-i—%' kux sh k,x )—— ( )

.

— 3 =V shkax — (1 + v) kux ch £u) Jsinky,

=0+ {(1 + V)t £n (sh kax — kox ch k) —

n={

— (0 +9) 0, k2 x sh kar— (1 — vy sh kpx 4
4 (1 4 v kax ch kox] +
+ o) ( chk,x — ! ; Yk, sh k,,x‘)} cos Rny.

Equations (13.16) and (14.10) represent general solutions in trigonometric
series of the two-dimensional problem of the theory of elasticity. They are
generalizations of Filon's and Ribiére's solutions, since the latter do not - ' ~ . ) '
actually contain general integrals for the displacements, while (13.16) and
(14.10) determine both the states of stress and strain in the strip. It is thus
possible to obtain a solution for problems (13.1) and (14.1) not only when the
boundary conditions for x =0 and x=/ are statical, but also if they are
geometrical or of the mixed type.
These examples do not exhaust the problems of the theory of rectangular
thin plates which can be solved by the exact methods of mathematical analysis.
Similar exact solutions can be obtained for homogeneous statical boundary
conditions at the longitudinal edges of the strip (see /15/) or other types of
boundary conditions. From these homogeneous solutions it is easy to obtain '
relatively simple approximations for rectangular thin plates undergoing
plane strain, with arbitrary boundary conditions on all four sides of the
plate. The same procedure can be applied in the presence of body forces
and temperature stresses.

§ 15, THREE- AND TWO-DIMENSIONAL PROBLEMS OF
THE THEORY OF THICK MULTILAYER PLATES

1 l - . -

Consider a thick plate consisting of several horizontal layers having
different elastic characteristics (Figure 177). Let 4 be the total thickness
of the plate, and k., v,, G, be respectively the thickness and elastic
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constants of the m -th layer. The coordinate axes are directed as shown in
Figure 177. It will be assumed that the displacement and stress vectors
vary continuously at the contact plane of two layers,

o
] o5
'\‘I S
‘;‘5.
F T
}—’1

T o e
l””llyﬂ (79
1
4 (R
FIGURE 171,
The unknown magnitudes: _ L S -
u, v, w, Gz, Txzy Tyzy

will be denoted as follows:

ulx,y,2)=Uy, v(xy,2y=U, w(r,y2) =U,

0;().’,_!/,2)=U‘, "n(x:!/'z)=Ua- Tvl (xv !/, Z)=U‘. (15.1)
The initial functions u,, ve, wy, Zo, X, Y, then become: B ' - ' .
Uy (X, !/) =Uo: 14 (xr y) = {2 w, (xv Y)= U')'
P s W) =03 (15.2)

ZED =0 Xols)=US Y, (m9)=U |

When no body forces are present, we can rewrite (2.5) as follows:
[
U= La@U  (i=1,2,...,6). (15.3)

1
Substituting v=v,, G =G, z2<{h we determine the displacements and
stresses in the first layer. These expressions contain only three of the
six initial functions (15.2), since three of the latter are already known from
the boundary conditions at z=0. To determine the unknown magnitudes of
the second layer we first obtain the displacements and stresses at the
contact plane of the first and second layers at 2=4,, which form the initial
functions for the second layer. Then, substituting in(15.3) v=yv,, G = G,, and
the expressions for the initial functions of the second layer, we determine
tue displacements and stresses in the second layer:

L]
U= L,@U (=12,...,86), (15.4)

L2 8
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where:

L}
Lh@=2L2@LY (k)  (h<z<hy). (15.5)
i=t

We denote by LiJ(m) and L#(2) respectively, the operators Ly in (15.3) ! l l
corresponding to the first layer at z=/h and to the second layer at any
arbitrary value of z:

L;}(’ (h) = L (v,, Gy, hy),

L0 = Ly n Crr) (<2 hy. | (15.6)

The matrix L, (2)] is thus the product of the matrix 1L (z)| and the matrix
I!Lj},’ (")), and is therefore a function of the three initial functions corre-
sponding to z = 0. Similarly, the matrix L, (2)| for the displacements and
stresses in the m -th layer of the plate is the product of the matrices:

M%%MU:LZ””m—DamﬂuwmwMﬂ<z<ML
Determining in this way the displacements and stresses at the bottom
z=h of the plate, and inserting the boundary conditions for this plane, we
obtain the system of differential equations of the three-dimensional problem
considered, from which the three unknown initial functions can be obtained,
and thus the states of strain and stress of the multilayer plate determined. ' - . : .
2

Consider the case of plane strain of a multilayer plate (Figure 178).
We introduce the following symbols:

ulx, y)=U, v(x, y) = U, (15.7)

|
a,(x, y) = Uy, Ty (%, y) = U,, ox (%, y) = Uy, I ;
uo (x) = Uy, U (x) = U, (15.8) 1
Yo (x) = UL, Xo (%) = UL

We can then rewrite (10.6) as follows:

4
Ui= 3 LuwUs  (i=1,23,4). (15.9)
k=1

The displacements and stresses in the m -th layer of the plate are:

4
Ui= DL (=1,234, (15.10)
LES]
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where the matrix [L,, (1) is the product of the matrices:

P () =12 .., m—1yand Li"W] (e <v <t

and contains only two of the four initial functions. The other two initial
functions are determined directly from the boundary conditions at y = (.
Inserting (15.9) into the boundary conditions at y = 4 yields a system of ! ' '
two ordinary differential equations of infinitely high order with constant
coefficients whose solution determines the two remaining initial functions.
We shall consider now in more detail problems with boundary conditions
for the longitudinal plate edges x=0 and x =/{. Let the initial functions be
represented by the following series with constant coefficients:

[+ +) L)
0 a H n -

Ul = 2 ulpsinanx, Uz = E Uag COS 2pX,
n=1 n=0
o o (15.11)

0 Y L] . N

U= S uhcosox, U= Y ul.sinax, - - -
e
n=o n=]1

where

hw
Oy = ——.

[

The boundary conditions at the plate edges v =0 and x =/ are:

Uy=Ui=0 (u=1q=0). (15.12) 'K -K X
AT o (T

'. * ‘
o 6.y, . Ry
0 L ¢ ;

-
'

[ 630
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' '
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'
‘

v, - )

e

—TT;
(5 N
HL‘

N -

(4

R
’1

. : ‘
| 6o e . ?h.,, ! ’i RISALER a7 de: y T 1’7 atase 7
L 1 r l.._1_—1..(-i-1‘~'--1—>'

FIGURE 178 FIGURE 179.

These conditions are satisfied for each span of a multispan plate resting
on an infinite number of identical and equidistant supports and subjected to
a load symmetrical with respect to the ends of each span (Figure 179),

As already mentioned (see section 12), the representation of the initial
functions in the form (15.11) corresponds to Ribiére's solution. Inter-
changing the sines and cosines yields Filon's solution which corresponds to
the following boundary conditions:

Us= U, = 0. (15.13)
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Substituting (15.11) in (15.9) and inserting the values of the operators Lo
given in Table 25, we obtain:

-]
U = by {u',’,, [ch Ay + 5

—_,
Nme] )

0
X (1=2v) shapy + any ch any) + 40:1’"_v)ysh X/ + ! l '

3= Y sh any + ycha,.y]}sm @nX,

a'AyShany]+ 5=V W X

+4G(1—v)[

1—2v)
==

o
+ 2 {2(1 )l(l—QV)Shany—anycha,,y]+
R

1]

Ysn
+u [cha,.y— 7 v)a,,ysha,.y]+4—6“_v)x
i GRS | -
x( sha,,y-—y cha,.y) 40(1 )ysha,.y}cosa.x,

<0 0
Ua=“:o+2 {—

Nl

+ — a,. (shotay — apych any) +

(15.14)
+ ul, (ch Qny — 2(1—1—\7}“"-’/ sh a,.y)—

: K- K
Uen

—Ii—v [(l— 2v)shany + anych a,g]} €OS a,x,

@

e
U= 3 {"Tva,. (shany + ey chany) +

L

ug,G
T oy shauy —

0

u
— ,;—({’“T,,) [(1—2v) shosy — @ty ch any) +

+ udy [ch %y + 5 1 1_ % a,ysh a,.y]} sinanx,

0 o DG :
U= 24 3 {225 an (2chony + awy shany) + ! !
A=)

Uy, G
+ 1{—\; n (shany + aay ch %ny) +

U5n 1
+ = v(vcha,,y +Ta,,ysha,,y)+
0

+ Z(:hf:v) (83— 2v)sha,y 4 a,ych a,.y]} COS &pk.

Putting v=v,, G = G,, we obtain from these expressions the stresses and

| - -
strains in the first layer of the plate., The coefficients us, (i=1, 2, 3, 4) N
represent unknown magnitudes determined from the boundary conditions at \
y=0and y=nh, o
Substituting (15.11) in (15.10), we obtain the displacements and stresses ~
in the m-th layer. These can also be determined by a different and simpler
\\
A
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procedure., Each term of any series (15.11) is orthogonal in the interval
(0, 5) to all other terms of the same series. Expressions (15.14) can
therefore be considered as an infinite set of independent and orthogonal
states of stress and strain. The displacements and stresses in the m -th
layer are therefore, in accordance with (15.14):

4
un=3 a" Wk (=12...,5), (15.15)

R

where the matrix }e?"(y)| is the product of the matrices:
162 v G Bl (i=1,2,..., m—1) and |aff (vm, Gm. )}

Consider as example the equilibrium of a double-layer plate subjected
to a vertical uniformly distributed load p, acting on the upper surface of the
plate (Figure 179). We denote by 2c the width of the plate supports, and by
{ the distance between the support centers; the coordinates are directed

as shown.
It will be assumed that due to the external load only normal stresses U,,

distributed uniformly over the plate width, arise in the supports. Thus,
for y=h , the stresses U,are constant= (—%’:—’) at the supports and zero

between them.
The boundary conditions at the upper plane y=0 are:

Ui=up=—p, Ui=0.

The normal load acting on the lower plane of the plate can be represented
as a Fourier series in the interval (0, ):

(+ 3 2 )
Usix, = —p(1 + — SinanCcos anx). (15.16)

n-?l. o

The first term of this series corresponds to the load Ujy(h)=—p. The )
combined action of this load and the load U3 =-—p causes a uniform com- :

pression of the plate. The loads represented by the remaining terms of the
series are statically equivalent to zero in the interval (0, /).
Substituting (15.15) and (15.16) in the boundary conditions for y=#4, we

obtain:
o . _ 2p .
aul + ol u:ﬂ-—asma,c, (15.17)
ayru, +ag’u, =0,
where: - - -
o
ad" = 3 ol (va, Gy, ha) @i’ (1, Gu, By). (15.18)

Jm=1
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Diagram of ¢, Diagram of 4,
0.257p 10p
| 5

AN

B L @ |

AN
2.865p 1834p 173p 0654p
FIGURE 180.

e
2410p _}_ 0.166p o.aoag a772;?_ ' ' l
2791 NS \
%

All the unknown coefficients u? and uy, (n=24,6,...) can be obtained
from (15.17). It is then possible to determine the stresses and strains in
the plate.

The normal stresses U, = o, and U, =g, in the middle section x=%l of

the span are given in Figure 180. The plate considered has the following
dimensions and elastic characteristics:

h=h=31 G,=106, v=v=03

Two curves have been plotted in each graph; the full line represents the
sum of three terms of series (15.18), while the broken line represents two
terms of the series. It is seen from the diagrams that the normal stress " ' - I ‘
o, has a discontinuity at the contact plane of the layers.
It was assumed that there are no relative displacements between the
points of the lower and the upper layer at the contact plane. We shall now
assume that the contact plane is perfectly smooth, so that the shearing
stresses U, =t,, vanish there. The displacements ¢, =4 are discontinuous,
while the displacements U, =v and normal stresses Uy = o, are continuous
across this plane.

Representing the initial function of the lower layer by the series:

¥ (x) = § ul, sin anx, (15.19) : !
ne=2 4, 6

we obtain from the boundary conditions:

a? (1, Gy, Ay Ul + o (1, Gy, hy)ugs = 0,

. . g 2 .
a5 uin + 0" udn + a2 (v, Gy, By il = — =2 sinage, (15.20)
n

(n)*
Qg

Ui + 65" udn + &) (vy, Gy, hg) ul =0,
where the coefficients 4y are determined by (15,18).

The first and third equations (15.20) state that U, vanishes at the contact
plane of the layers and at the bottom of the plate, The second equation
expresses the equilibrium condition with respect to U, at the plate bottom.

These equations are sufficient for determining the stresses and strains in
the plate,
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The stresses U;=o0, and U, =0, in the middle section of the plate have
been plotted in Figure 181. The dimensions and elastic characteristics are
the same as in the preceding example. The diagrams represent the sums
of two terms of (15.16). The distributions of the normal stresses over the
middle section are practically linear, The stresses ¢, have a discontinuity
at the contact plane of the layers.

3.

A solution by trigonometric series is also possible in the three-dimen-
sional problem, provided one of the following conditions is fulfilled at the
longitudinal edges of the plate: 1) the shearing stresses in, and the displace-
ments normal to, the boundary plane vanish or, 2) the normal stresses in,
and the tangential displacements of, the boundary plane vanish in the two-
dimensional problem, The boundary conditions of the first kind correspond
to {(15.12), and those of the second kind, to (15.13).

Diagram of &, Diagram of &y
2326p 10p
5 |

- e

9%, _Sﬂ’:‘i aomp\ __ | ___ _’>
\ )
% % 1

8.211p 0.6545
FIGURE 181.

U]
1

When boundary conditions of the first type obtain on all sides of the plate
(x=0,x=a, y=0, y==5), the initial functions can be represented in the form:

-] (-] o -]
un=33 ulam sina.x cospmy, Ui=3 3 Ugnm CUS XX COS Bmy,
Na=] M=Q n=0 meQ
- -] ca o0 <
0= 33 USnm COSanxsin By, Us= by 2 U3nm COS %, X SiN By, (15.21)
nmQ m==] numQ M=)
(=] (-] (-] x
U= 2 3 Udm COS %X COS By, Us = 2 2 Ugnm SIT &y X COS Bmy,
nex0 M= Nnmmi mm=Q
where
Ax mr
&Ky = T N pm = T .

If boundary conditions of the second type are fulfilled on all sides, it is
necessary to interchange sines and cosines in (15.21). If conditions of the
first type are fulfilled on two opposite sides, and conditions of the second
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type on the remaining sides, the trigonometric functions of one argument
are unchanged, while in those of the other sines and cosines have to be
interchanged.

In the three-dimensional case, the stresses and strains in a multilayer
plate are determined in the same way as in the two-dimensional case. The
unknown coefficients in (15.21) are found from the boundary conditions at
z=0 and =4, ! l l

The stresses and strains in a plate, corresponding to (15.21) can be
represented as follows. Consider an [infinite] multilayer plate supported
by a large number of rows of columns (Figure 182) arranged in two ortho-
gonal directions. The distances between the centers of adjacent columns
are uniform, being q in one direction and p in the other.

//’{;?,%;/ // ///V/ 3
SRR \\\

FIGURE 182.

The planes passing through the centers of the columns in the direction
of the rows form two families of orthogonal planes of symmetry. If an
external load, symmetrical with respect to all these planes, acts on the
plate, all plate elements which form rectangular plates supported on four i
adjacent columns, will be under the same conditions. Boundary conditions -
of the first type will be fulfilled on all sides of each plate; the initial
functions determining the stresses and strains in the plate are then given
by (15.21). If the load acting on the plate is antisymmetrical with respect
to all planes of both families, boundary conditions of the second type will
be fulfilled on all sides of each plate element; the initial functions are then
obtained from (15.21) by interchanging the sines and cosines. If, finally,
the load acting on the plate is symmetrical with respect to all planes of one
family and antisymmetrical with respect to the other, the problem will be
of the mixed type: the functions of one argument in (15.21) remain unchanged
while sines and cosines are interchanged in the functions of the other
argument. The general case of a continuous plate subjected to an arbitrary
external load can be considered as a combination of the above-mentioned
symmetrical and antisymmetrical loads.
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§ 16. ELASTIC MULTILAYER FOUNDATION

The above theory of thick multilayer plates can also be applied to
determine the stresses and strains appearing in an elastic multilayer
foundation when an external load is applied to its surface (Figure 183).

FIGURE 183,

The displacements and stresses in the first layer, which is in a state of

: . - - - b
plane strain, can be represented in the form:
V=2 | e fie 0 R@+ Ba gt ol @rax )
k=l % .
(i=1,2...,5),
where f,(x, «) = sinax fori=1, 4; fe(x, @) =cosax , fori=2,3,5; g(x, a) = cosax for
i=1,4;g/(x,a) =sinax for i =2, 3, 5 ; the functions An are those entering in
(15.14):; . ' . I
ayshay 1 3 —4v -
Auzchay—i—m, A”=W_—\q)(—a—‘sh1y—ychay)

etc.; the functions B, are determined from expressions similar to (15.14)
but corresponding to a different representation of the initial functions
(Filon's form).

When the displacements and stresses across the contact planes of the
layers are continuous, the stresses and displacements in the m ~th layer of

an infinite plate are:
- 4
U= 3 § (4ita8 + Bagu) da, (16.2)
k=1 _"

where the matrices [4,| and | B;,| are the products of the matrices:

"A:‘)(a'v hlr Vis Gl)n and I As’km (av Y Ymy Gm)' ’
IBSQ (“v hlv ¥is GI) "and'Bsz" (“, Y Ym, Gm)l

=L2....m—1), (A <y<ln).

respectively.
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The unknown functions 4 and 4 have to be found from the boundary
conditions at y=0 and y=#.

Consider as example an infinite elastic foundation, on a bounded region
of which acts an external load (Figure 183)., It will be assumed that this
foundation lies on a rigid subsoil, and that there is no friction between the
foundation and the subsoil. In this case the vertical displacements {, and
the shearing stresses U, vanish for y=0, so that in (16.2) we must put: ! ' '
W=ul=uwl=ul"=0 . To determine the unknown functions u, u®, ul, uf, we
shall use the statical boundary conditions for y—#. Let only a normal
distributed load p(x), differing from zero in the interval o, <x<a,, act at
y=h (Figure 183). We represent p(x) as a Fourier integral:

oo ag

PUx) = o S dagp(x)cosa(x—x)dx. (16.3)
Equating the expressions for the stresses U, and U,, obtained from (16.2) ‘- . -

for y=#h, to the boundary value (16.3) and to zero respectively, we obtain:

ay
h A;x(ah)u?=—%g p(N)cosardh; X Ay(zh)ul=0;
=13 a, i=1,3

(16.4)

as
S Bueh = — £\ p0sinard T Bu@huf —o.
=1.

‘ 8 a; i=1,3

Having found u¢ and u%" (i =1, 3), from (16.4) we determine the stresses ' - ' ’ '
and strains in the plate from (16.2). The expressions for the displacements
and stresses cannot be obtained in finite form, since the integrals (16.2)
cannot be expressed in elementary functions and must be evaluated numeri-
cally.
The three-dimensional equilibrium problem of a multilayer foundation
extending to infinity in two directions can be similarly treated. We proceed
in this case from the sum of the four different representations of the initial
functions. One representation is (15.21), while the others are obtained

from (15.21) by suitably interchanging sines and cosines. In order to satisfy
the boundary conditions for z=#4 it is necessary to use a double Fourier
integral,
m - -
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TABLE

1

Function @,(z;=shzcosyz , where : = an

\ 01

0.2 0.3 0. 0.5 . 0.7 0. )

; \ 4 ) 0.6 8 0.9
0 0 0 0 0 i} 0 0 0 0
0.05 0.05000 | 0.05000 | 0.04999 | 0.04999 | 0.04998 0.04998| 0.04997| 0.04996| 0.04995
0.10 0.10019 | 0.10018 | 0.40015 | 0.10012 | 0.10007 0.10002( 0.09995| 0.09988) 0.09979
0.15 0.15058 | 0.15053 | 0.15045 | 0,15033 | 0.15017 0.14999] 0.14977] 0.14952| 0.14923
0.20 0.20130 | 0.20118 | 0.20008 | 0.20070 | ©.20033 0.18989| 0.19937| 0.19877[ 0.19808
0,25 0.25253 | 0.25229 | 0.25190 | 0.25135 | 0.25063 0.24977| 0.24875| 0.24757| 0.24624
0.30 0.30438 | 0,30397 | 0.30329 | 0.30233 | 0.30110 0.29960| 0.29783| 0.29579] 0 29349
0.35 0.35697 | 0.35631 | 0.35522 | 0.35370 | 0.35173 0.349341 0.34652( 0.34328| 0.33961
0.40 0.41042 | 0.40943 | 0.4078C | 0.40550 | 0.40256 0.398981 0.39475( 0.36990| 0.38443
0.45 0.464868 | 0.46345 | 0.46110 | 0.45782 | 0.45360 0.44848| 0.44243( 0.43551| 0.45098
0.50 0.52045 | 0.51849 | 0.51525 | 0.51071 | 0.50490 0.49782| 0.48950| 0.47996| 0.46922
0.55 0.57727 | 0.57466 | 0.57028 | 0.56422 | 0.55642 0.54695 0.53582| 0.52308| 0.50875
0.60 0.83550 | 0.63207 | 0.62636 | 0.681840 | 0.60822 0.59584| 0.58132| 0.56470| 0.54606
0.65 0.69527 | 0.89087 | 0,68354 | 0.67333 | 0.66027 0.64443| 0.62586] 0.60465| 0.58088
0.70 0.75672 | 0.75146 | 0.74191 | 0.72904 0.71259 0.69265( 0.66932( 0.64271 0.61295
0.75 0.82000 | 0.81308 | 0.80158 | 0.78559 | 0.76517 0.74046 [ 0.71157 | 0.67869| 0.64198
0.80 0.88527 | 0.87677 | 0.87154 | 0.84333 | 0.81800 0.78774| 0.75246 | 0.71235| 0.66769
0,85 0.95266 | 0.94233 | 0.92519 | 0.89182 | 0.87105 0.83444 | 0.79180| 0.74345| 0.68972
0.90 1,02236 | 1.00993 | 0.88933 | 0.98072 | 0.92433 0.88046 | 0.82946| 0.77175| 0.70778
0.95 1.09451 | 4,07969 | 1.05512 | 1.02104 | 0.97774 0.92565 | 0.86518| 0,79695| 0.72149
1.00 1.16933 | 1.18353 | 1.12271 | 1.08243 | 1.03133 0.96994 | 0.89884| 0.81877| 0.73052
1.05 1.24604 | 1.22631 | 1.19214 | 1.14489 | 1.08812 1.01190 | 0.93014 | 0.83690 | 0.73445
1.10 1.32758 | 1.30346 | 1.26358 | 1,20843 | 1.13867 1.05515| 0.95888 | 0.85101 ] 0.73326
1.15 1.41139 | 1.38337 | 1.33704 | 1.27309 | 1.19229 1.09578 | 0.98474| 0.86074| 0.72534
1,20 1.498681 | 1.46620 | 1.41270 | 1.33887 | 1.24582 113483 1.00750 | 0.86570| 0.71145
1.25 1.56941 | 1,55242 | 1.49059 | 1.40581 | 1.29809 147244 | 1.02801 | 0.86552( 0.69070
1.30 1.68404 | 1.84131 | 1.57085 | 1.47389 | 1.35203 1.20739 | 1.04238 | 0.85975| 0.66262
1.35 1.78270 | 1.73391 | 1.85538 | 1.54340 | 1. 40455 1.24047 | 1.,05380| 0.84796| 0.62669
1.40 1.88568 | 1.83015 | 1.73880 | 1.61344 | 1.45648 1.27104 | 1.06073| 0.82066| 0.38237
1.45 1.99310 | 1.83015 | 1.82666 | 1.68486 | 1. 50768 1.20886 | 1.06277| 0.80438]| 0.52911
1.50 2.10537 | 2.03419 | 1.91731 | 1.75738 | 1.55795 1.32858 | 1.05947] 0.77157| 0.46633
1.55 2,22261 | 2.09738 | 2.01072 | 1.83001 | 1.80714 1.34488! 1.05036| 0.73067| 0.39343
1.60 2.34721 | 2.25688 | 2.10888 | 1.80705 | 1.63648 1.36358 | 1.03586 | 0.68170| ©.31008
1.65 2.47338 | 2.37216 | 2,20646 | 1.98087 | 1 70144 1.37582 | 1.01281| 0 62230! 0.21486
1.70 2.60748 | 2.49417 | 2.30895 | 2.05716 | 1.74606 1.38464 | 0.98327] 0.55357| 0.10791
1.75 2.74774 | 2.62123 | 2.40064 | 2.13422 | 178882 1.38834 [ 0.94578| 0.47429 | —0.01172
1.80 2.89286 | 2,75358 | 2.52353 | 2.21485 | 1.82888 1.38673 | 0.89977] 0.38372| —0.14470
1.85 3.04832 2.89142 | 2.63575 | 2.20021 1.86642 1.37902 | 0.84451| 0.28119] —0.29171
1.90 3.20933 | 3.03501 | 2.70146 | 2.35889 | {.g0102 1.36475 1 0.77939| 0.16592 | —0.45346
1.95 3.37793 | 3.18466 | 2.87080 | 2.44781 | 1 93219 1.34337 | 0.70358| 0.03719 | —0.63066
2.00 3.55458 | 3.34055 | 2.99339 | 2.52687 | 1.95959 1.31423 | 0,61646 | —0,.10590 | —0.82402
2,05 3.73956 | 3.50301 | 3.10058 | 2.60579 | 1.98274 1.27666 | 0.51709 | —0.26412 | —1.03427
2.40 3.93350 | 3.67232 | 3.24978 | 2.68443 | 2.00116 1.22996 | 0.40472 | —0.43834 | —1.26210
2,15 4.13668 | 3.B4875 | 3.38350 | 2.76255 | 2.01429 1.17338 | 0.27840 | —0.62941 | —1.50822
2.20 4.34969 | 4.03257 | 3.52107 | 2.83985 | 2.02174 1.40616 | 0.13723| —0.83829| —1.77339
2.25 4.57290 | 4.22416 | 3.86240 | 2.91607 | 2 02269 1.02741 | —0.01970 | —1 06583 | —2.U5820
2,30 4.80697 | 4.42376 | 3.80763 | 2 8901 | 2 01670 0,93624 | —0.19348 | — 131303 | —2. 361347
2.35 5.05016 | 4.63179 | 3.95659 | 3.06402 | 2 00292 0.83173 | —0.38516 | —1 58087 | —2.08966
2.40 5.30957 | 4.84849 | 4.10957 | 3.13499 | { 98074 0.71290 | -0 59576 | _1.87027 | —4.03758
2.45 5.57919 | 5.07431 | 4.26623 | 3.20344 | { 94925 0.57873 | —0,82642 | _2 18223 | —3.40766
2.50 5.86210 | 5.30953 | 4.42687 | 3.26892 | 180775 0.42799 [ —1.07845| 2. 51779 [ —3.80055
2.55 6.15862 | 555456 | 4.59123 | 3.33099 | 1 85525 0.25061 | —1. 35284 87790 | —4.21674
2,60 6.46972 | 5.80982 | 4.75935 | 3.38901 | 1.79084 0,0723C | —1.65112 | 326355 | —4.65659
2,65 6.79584 | 6.07564 | 4.93115 | 3.44247 | 1.71345 |—0/13520 | —1.97442| _3 67583/ 5 12050
2.70 7.13793 | 6.35242 | 5.10662 | 3.49079 | 1.62204 | —0.36424 | —2.32416| —4 11566, —5.60891
2.75 7.49655 | 6.84058 | 5.28546 | 3.53325 | 1.51534 | —0.61629 | —2.70189| —4 sén3| —6.12180
2.80 7.87293 | 6.94089 | 5.46778 | 3.56906 | 1.39238 | —0.81092 ] —3.10842] —5 08194 | —6.65962
2.85 B.26730 | 7.25289 | 5.85318 | 3.59750 | 1.25157 | —1.19532 | —3.54581] —5 61029| —7.22196
325
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1
z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2,90 8.88123 | 7.57796 | 5.84188] 3.61784| 1.09168! —1.52563] —4.01547| —6.17010] —7.80934
2.95 9.11516 | 7.91821 6.03314| 3.62895] 0.94124| —1.88526| —4.51876] —6.76203 8. 42094
3.00 9.57047 | B.26815 | 6.22721| 3.63007| 0.70886{ —2.27606( —5.05752| —7.38707 —9.05686
3.05 10.04774 | 8.63418 | 6.42342] 3.62000| 0.48225( —2 60997| —5.63204] —8.04607| _9 71624
3.10 10.54843 | 9.01490 | 6.62183| 3.59763 0.23028| —3.15889] —6.24701| —8.73943 —10.39890
3.15 11.07336 | 9.41081 6.81606| 3.56177 | —0.04892| —3.65482| —6.90096| —9.46811| 11 10341
3.20 11.62428 | 9.82242 | 7.02326| 3.51114| —0.35758| —4.18993| —7.50685|—10.23253| _11 goga7
3.25 12.20160 | 10.25015 7.225371 3.44427 | —0.69761| —4.76636| —8.33604[—11.03313] 12 57552
3.30 12.80738 | 10.69479 7.42810| 3.35983 | —1.07112| —5.366451 —9.12047|—11.87028| _13 33901
3.38 13.44242 | 11.45675 | 7.36047] 3.25599 | —1.48060| —6.05250| —9. 95143/ —12_ 74411 —14.11966
3.40 14.10859 - 11.63661 7.83242| 3.13135| —1.92814} —6.76704|—10.83103]—13.65499| 14 91552
3.45 14.80615 1 12.13509 | 8.03268| 2.98386 | —2.41663 | —7.53249|—11.76030|—14 60255 —15.72362
3.50 15.53065 | 12.65246 | B8.23112] 2.81175 | —2.94872| —8.35155|—12.74163|—15 58680 —16.54197
3.55 16.30772 | 13.18962 | 8.42657| 2.61284 | —3.52681 | —9.22679|—13.77574|—16 60721 —17.36725
3.80 17.41336 | 13.74719 | B8.61848| 2.38479 | —4.15446 | -10.16123|—14 86516 —17.66339 —18.19696
3.85 17.95784 | 14.32540 8.80552 [ 2,12563 | —4.83434 (11 .15761|—16.01041 [—18.75430| _19_ 02671
3.70 18.84359 | 14.92543 | 8.98715| 1.83256 | —5.57003|—12.21873]—17.21375|—19.87902 —19.85355
3.75 19.77199 | 15.54752 | 9.16184| 1.50314 | —6.36465 |~13.34785|—18. 47581 |—21 03608 —20.67251
3.80 20.74572 | 16.19250 | 9.32871 | 4.13417 | —7.22211 |—14_54809|—19 79852(—22 22414 —21.47912
3.85 21.76625 | 16.86075 | 9.48736 | 0.72313 | —8.14585 | —15.82244|—21 . 18216|—23 41778 —22.26815
3,80 2283704 |17.55315 9.63323 | 0.26665 | —9.14015 |17 17414( 2262890 —24.68542| 2303433
3.95 23.95877 | 18.27058 | 9.76776 | —0.23881 |—10.20878 |18 60674|—24 . 13866|—25 95385 —23.77083
4.00 25.13565 | 19.01316 | 9.88877 | —0.79686 |—11.35670 |_20.12331|—25. 71311 |—27. 24325 —24.47251
4.05 26.08305 | 19.78177 9.99392 | —1.41098|—12.58750(—21.72760{—27.35201 | —28.55126{ _25. 13082
4.10 27.66204 | 20.57702 | 10.08130| —2.08569{—13.90873|—23.42279 20 05613| —29.87351| 25 73892
4.15 29.01701 | 21.39985 | 10.14882| —2.82496|—15.31867|—25.21255—30.82539| —31.20500| _26 12927
4.20 30.43847 | 22.25023 | 10.19471| —3.63325|—16.82051 |27 10023 —32.86062|—32.54361| 2677021
4.25 31.92756 | 2312937 | 10.21578| —4.51527|—18.44307(|—20.08957|—34. 55984 |—33.88206 27 17503
4,30 33.48928 | 24.03792 | 10.20996{ —5.47673|—20.16844/—31 1843836 5244235 21501 —27.49380
435 3512521 | 24.97606 | 10.17433 | —6.52260]|—22.00409| —33 3876638, 55151 | —36. 53586| —27 71408
4.40 36.84079 | 25.94430 | 10.10571| —7 65848|—23.96331/ 35 70350|—40.64193|—37.83841) _27 82675
4.45 38.63817 | 26.94355 | 10.00072| —8.89020|-—26.04930| —38. 13518/ —42.79222| —39. 11504 _27 81811
4,50 40.52296 | 27.97432 | 9.85611 |—10.22468|—28. 26954 |—40.68587| 4500121 |—40. 35690 —27.67685
4.55 42.49703 | 29.03708 | 9.86751 | —11.66820|—30.83003(—43.35051|—47.26550|—41 . 55555| 27 38829
4.80 44.56695 | 30.13175 | 9.43215|.43.22800|—33.13885| 4615954 —49. 58444 | —42.70082| _26 93062
4.88 46.73528 | 31.25016 | 914460 |14.91103(—35.80139| 4908927 —51.9598|—43.78207| 28 31484
4.70 49.00875 | 32.42019 |  8.80054 | —16.72708(—38.62728 | 52 1507854 .46493|—44 . 78877( _25 50014
4.75 51.38955 | 33.61402 | 8.30541 |—18.88222|—41.62283...55 3488056 81B14|—45.70843] _24 47719
4.80 53.88572 | 34.84139 |  7.92303 |—20.78564|—44.79654 |58 —59.30666|—46.52672| 2323084
4,85 56.49994 | 36.10361 7.37911 |23 04742|—48.15772, 62 16105 —61.82639|—47.23167| 21 74264
4.90 59.24087 | 37.39897 6.75641 |25 47672|—51.71414|—65.78156/—64 . 36824 |—47.80653( 19 99464
4.95 62.11104 | 38.72870 | 6.04834 |28 08B304(—55,47333| 89.54706—66.92416|—48. 23565| _17.96785
5.C0 65.11925 | 40.09199 |  5.24913 |__30.87966|—59.44716|—73.46043|—69.48834|—48.50219| _15 84204
5.08 68.26051 | 41.48935 | 4.34973 |33 87409i—63.64207 | _77.52282 72.04822|—48.58808| {2 08692
5.10 71.57158 | 42.92048 | 3.34510 | —37,08234 —68.07086 |81 .73482|—74.59685|—48 47241 —10 01152
5.15 75.02032 | 44.38440 |  2,22343 | 40.51314|—72.13951 | _86.09819(—77.11912|—48.13608| _g 66508
5.20 78.85344 | 45.88042 | 0.97884 |—44.18195(—77.86282 90, 61251 —79.60781|—47.557114| —2 93471
5.25 B82.44813 | 47.40872 | —0,40018 | —48.10236 —82.84640 | —95.27670—82.04319/—46.71222|  1.20149
5.30 86,42415 | 48,96811 | —1.02318 | 52.28761 |—88.30426 |-100.09179,—84 . 41582|—45.57648|  5.76755
5.45 9058638 | 50.55720 | —3.60130| —56. 75312 —94.04447|-105.05476 —86. 70498/ —44. 12540 10, 78600
5.40 94.94931 | 52.17668 | —5.44427) —61.51652-100.08141|-110. 16516 —88 89840 —42.33204| 16 28189
5.45 99.51624 | 53.82317 | —7.466741 —66.59204(-106.42205|-115, 41915 —90 96486(—40.16633| 22 57687
5.50 104.3006% | 55.49520 | —0.67985 —71.99940/-113.08248(-120.82217| 92 90797|—37.59996| 38 79734
5.55 109.31016 | 57.19076 |—42.74078| —77.7552(1-120.06896(-126 . 34031| —94 68256/~ 34.60179] 35 86609
5.80 114.55917 | 58.90888 | —14.73790) —83.87971|-127.33884|_131,99873| 96 27454|—31.13917| 43 50831
5.85 120.05195 | 60.36286 |—17.608801-90.39219-135.07799|-137 3551497 66570|—27.17793] 52 45681
5.70 1125 80683 | 62.40132 |~-20.73369( —87.314629-143.12450-14367740|_ 08 80147/ 22 68378 60.60664
5.75 131.82992 | 64.17122 | —24.128031-104.66842-151.54265(-149. 68205|—99 67912|—17.61806| 70 10779
5.80 138.14992 | 65.95031 |—27.81097 |- 112.47588-160.35236( 155.781061-100. 25986/ —11.94517| 80 27692
5.85 144.74345 | 67.73618 |—31.79946(-120.76017|-169. 55661)-161.96613|-100.50616| —5.62168| 92 02674
5.90 151.66098 | 69.52451 1—36.11B36-120.549001-179.177291_168.22260|-100.38820| —1.38896| 102 69704
5.95 158.91886 | 71.31240 |—40.78503-138.8678H-189.21598|_174.53559|_99 B6154| 9.13135| 114 98707
6.00  1166.48194 | 73.09278 |—45.82923\-148.74127 -199.69451|-180 888291 _068.89189| 17.64990| {28 (2532
6.05  1174.41552 | 74.85978 —51.27074|-159.20055_210.61336]-187.26183|_97. 43085| 26. 88616 14288289
6.10 148272274 {76.60912 (—57.13861-170.27668-221.99369] 193 6728|095 43537| 37.71910 156.40166
6.15  1191.41393 | 78.33169 |--63.459361-181.995101-233.83501| 199.99143|_92 85484| 48.30579 17165394
6.20 120051847 | 80.02212 |-70.26326|-19%.39116]-246.15164] 206.20593!_89 64054| 60. 38368 187.93125
6.25  1210.04306 |B81.66960 |—77.57990|-207.49963-258.96660|212.63320|_85 73602] 73. 46849 204.89921
6.30  1220.01447 {83.27021 |—85.44577-221.35412-272,27414, 218.65849|_81 08848| 8761488 222. 68014
6.35  1230.73200 |84.91484 | —94 01163\ 236.28727)-286.454331.224.92918| 75 72347 | 103.00238 241 .56037
6.40  1941,36929 |86.28027 |-102.96036]-251.44715-300.40710,_230. 46689|—69 30226 | 119. 29138 260.66739
6.45 253.10847 |87.77662 -112.824881-268.19688-315. 64004|236.36844{—62. 11387 | 137.09078 281.21333
6.50  1264.75237 88.96240 (-123.11078/_284 97596-330.81787| 241.42258|_53. 76993 | 155.81572 301 . 85056
6.55  1277.61038 |90.26258 |-134.44346|-303.511201-346.94296] 246.78423| 44 47143 | 176 24204 324.00713
6.60  1290.35838 |91.21779 |-146.23956|-322.27248)-362.94522[ 251 .17421|_33 90988 | 197. 60057 346.11525
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TABLE 2
Function ®, (z) = chz cos 1z, where z = &‘n
T
. 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9
0 1 1 1 1 1 1 1 1 1

0.05 | 1.00119 | 1.00145 | 1.00109 | 1.00100 | 1.00088 1.00075 | 1,00058 | 1.00040 1.00017 - - -
0.10 | 1.00495 | 1.00480 |1.00460 | 1.00419 | 1.00381 1.00320 | 1.00253 | 1.00179 1.00092
0.15 | 1.01119 | 1.01084 (1.01027 | 1.00948 | 1.00844 1.00720 | 1.00571 1.00402 1.00209
0.20 | 1.01987 | 1.01925 | 1.01823 | 1.01881 | 1.01500 1.01273 | 1.01010 | 1.00704 1.00359
0.25 | 1.03108 | 1.03012 | 1.02850 | 1.02625 | 1.02334 1.01982 | 1.01564 | 1.01085 1.00540
0.30 | 1.04487 | 1.04346 | 1.04111 | 1.03782 | 1.03360 1.02845 | 1.02237 | 1.01538 1.00747
0.35 | 1.06122 | 1.05928 | 1.05503 | 1.05050 | 1.04568 1.03857 | 1.02918 | 1.02053 1.00966
0.40 | 1.08020 | 1.07761 |1.07330 | 1.06726 | 1.05952 1.05009 | 1.03897 | 1.02619 1.01177
0.45 | 1.10184 | 1.09850 | 1.09292 | 1.08515 | 1.07515 1.08301 | 1.04868 | 1.03227 1.01373
0.50 | 1.12622 | 1.12199 | 1.11497 | 1.10516 | 1.09257 1.07727 | 1.05926 | 1.03861 1.01537
0.55 | 1.15334 |1.14812 |1.44770 | 1.12726 | 1.11169 1.09277 | 1.07052 | 1.04508 1. 01644
0.60 | 1.18334 | 1.18509 | 1.16631 | 1 15149 | 1.13253 1.10948 | 108244 | 1.05150 1.01679
0.65 | 1.21620 | 1.20850 |1.19568 | 1.17782 | 1.15497 1,12727 | 1.09478 | 1.05769 1.01610
0.70 | 1.25209 | 1.24289 |1.22759 | 1.20629 | 1.17907 14460 | 110747 | 1.06345 1,01421
0.75 | 1.29103 | 1.28014 | 1.26203 | 1.23686 | 1.20470 1,16580 | 1.12031 | 1.06855 1.01076 . i »
0.80 | 1.33315 |1.32035 |1.31247 | 1.26954 | 1.23185 1,18620 | 113315 | 1.07275 1.00550 ' ' '
0.85 | 1.371852 | 1.36358 | 1.33877 | 1.20049 | 1.26043 1.20746 | 1.14576 | 1.07579 0.99805 : -
0.90 | 1.42730 |1.40993 | 1.38117 | 1.34123 | 1.29043 1.22018 | 1.15798 | 1.07741 0.98811
0.95 | 1.47951 |1.45948 |1.42627 | 1.38020 | 1.32167 1.25128 | 1.16951 107728 0.97528
1,00 { 1.53536 | 1.51233 | 4.47417 | 1.42127 | 1 35418 1.27356 | 1.18024 1.07508 0.95919
1.05 | 1.59494 | 1.56855 | 1.52485 | 1.46440 | 1.39180 1.29428 | 1.18972 | 1.07046 0.93940
1.10 | 1.65844 |1.62831 |1.57849 | 1.50959 | 1.42245 131811 | 1.19785 | 1.06310 0.91600
1015 | 1.72593 |1.69166 |1.63501 | 1.55681 | 1.45800 1.33998 | 1.20420 | 1.05256 088698
120 | 1.79764 |1.75876 | 1.69460 | 1.60692 | 1.49441 1.36127 | 1.2085 | 1.03844 0°85342
1.25 | 1.87367 |1.82971 |1.75717 | 1.65724 | 1.53143 1.38174 | 1.2095% 1.0203 0.81423
130 | 1.95427 |1.90467 | 1.82291 | 1.71039 | 1.56800 1.40144 | 1.20965 | 0.997T1 0.76895
1.35 | 2.03958 | 1.98376 | 1.89185 | 1.76545 | 1.60694 1.41922 | 1.20564 | 0.97015 0-71760
1.40 | 2.12086 | 2.06714 |1.96306 | 1.82237 | 1.84509 1.43564 | 1.19809 | 0.93710 0.65779
1.45 | 2.22520 | 2,15493 | 2.03938 | 1.88106 | 1.68323 1.45012 | 1.18653 | 0 89805 059072
1.50 | 2.32599 | 2.24735 | 2.11823 | 1.94154 | 1.72109 1.46228 [ 1.17049 | 0’85242 051520
1.55 | 2.43232 | 2.34450 | 2.20043 | 2.00266 | 1.75278 147177 | 144947 | 0779961 043050
1.80 | 2.54455 | 2.44863 | 2.28618 | 2.06738 | 1.79574 1.47822 | 1.12205 | 0.73901 0.33615
1.65 | 2.66282 | 2.55384 | 2.37546 | 2.13259 | 1.83175 1.48119 | 1.09039 | 0.66996 0.23132
1.70 | 2.7B754 | 2.88640 | 2.46339 | 2.19922 | 1.86663 1.48026 | 1.05417 | ©.59180 0.11537
1.75 | 2.91887 | 2.78447 | 2.55015 | 2.26707 | 1.90002 1.47480 | 1.00468 | 0.50353 | —0.01245
1.80 | 3.05725 | 2.90828 | 2.66531 | 2.33592 | 1.93163 1,46464 | 0.95033 | 0.40528 { —0.15283
1.85 | 3.20288 | 3.03803 | 2.76939 | 2.40833 | 1.96105 1.44894 | 0.88733 | 029545 | —0.30650
1.90 | 3.35621 | 3.17301 | 2.87730 | 2.47731 | 1.98802 1.42720 | 0.81506 | (.17352 | —0.4742%
1.95 | 3.51750 | 3.31625 | 2.91750 | 2.54892 | 2.01203 1.39887 | 0.73266 | 0.02872 | —0.65672
2.00 | 3.88722 | 3.46521 |3.10509 | 2.62116 | 2.03272 1.36327 | 0.63946 | .—0.10986 | —0.85477
2.05 | 3.86738 | 3.62108 | 3.20509 | 2.69362 | 2.04957 1.31989 | 0.53452 | _0.27303 | —1.06913
2.10 4.05326 | 3.78413 | 3.34B73 | 2.76616 2.06208 1.26741 0.41704 | —0.45169 —1.20053
2.45 | 4.25047 | 3.95463 | 3.47858 | 2.83855 | 2.06970 1.20566 | 0.28606 |—n 64673 | —1.54971
2.20 | 4.45782 | 4.13282 | 3.60860 | 2.91044 | 2.07200 1,43366 | 0.14065 | ~0.85913 | —1.81748
2.25 | 4.67565 | 4.31807 | 3.7446B | 2.98160 | 2.06814 1.05050 | —0.04029 | _1 08078 | —2 10445
2.30 | 4.90460 | 4.51360 | 3.88496 | 3.05165 | 2.05765 | 0.95526 | —0.19741 | 1 33970 | —2 44147
2.35 | 5.14503 | 4.71682 | 4.02922 | 3.12027 | 2.03969 | 0.84700 | —0.39224 | _y 60989 | —2.73804
2.40 | 5.39769 | 4.92898 | 4.17777 | 3.18702 | 2.01362 | 0.72474 | —0.60565 | _1 00131 | —3.08800
2.45 | 5.66290 | 5.15044 | 4.33024 | 3.25150 | 1.97850 | 0.58741 | —0.83882 | _2 21497 | —3.45879 - - == -
2.50 | 5.94163 | 5.38157 | 4.48693 | 3.31327 | 1.93363 0.43380 | —1.09308 | _2 55105 | —3.85212
2.55 | 6.23417 | 5.62271 | 4.64756 | 3.37186 | 1.87801 0.26279 | —1.36944 | _2 91321 | —4. 26847
2.60 | 6.54150 | 5.87428 | 4.81216 | 342661 | 1.81071 0.07311 | —1.66944 | —3 29976 | —4.70825
2.65 | 6.86398 |6.13660 | 4.98063 | 3.47701 | 1.73065 |—0.13656 | —1.99423 | _2 71271 | —5 17188
2.70 | 7.20271 |6.41007 | 5.15206 | 3.52247 | 1.63676 |_0.36755 | —2.34525 | —4.15300 | —5.65080
2.75 | 7.55808 | 6.69508 | 5.32884 | 3.56225 | 1.52778 | —0.62135 | —2.72383 | _4.62166 | —G.17205
2.80 | 7.93137 | 6.99221 | 5.50837 | 3.59555 | 1.32019 |.—0 89947 | —3-13150 | —5.11966 | —6 70006
2.85 | 8.32286 |7.30164 | 5.60118 | 3.62168 | 1.25098 |_1.20335 | —3.56964 | —5.64799 | —7.27050

327




M
. 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9

2,90 8.73395 | 7.62398 5.87735 3.63982 1.09831| —1.53490{ —4.03986] —6.20758] —7.B5677
2,95 9.16523 | 7,95970 8,06628 3.84889 0.91626! —1,89562] —4.54358| —6.79918] —8.46720
3.00 9.61804 | 8.30924 8,25818 3.64812 0.71249, —2.28737] —5.08266| —7.42379] —9.10187
3.05 | 10.09286 | 8.67300 8.45230 3.63628 0.48444| —2.71210| —5.65827] —B8.08225 —9.75992
3.40 | 10.59134 | 905157 8.84877 3.61226 0.23422) —-3.17174] —6.27241] —B.77497]—10.44120
345 | 1141410 | 9.44543 6.84114 3.54787| —0.04910] —3.66827| —6.92636| —9.50295|—11.14426
3,20 | 11.66298 | 9.85512 7.04664 3.52283| —0.35877) —4.20388] —7.62215] —10.26660 —11.86866
3.25 12.23835 110.28102 7.24713 3.45484) —0.69971; —4.78071] —8.36114] —11.06636/—12.61339
3,30 | 12.84227 [10.72392 7.44833 3.36898 —1.07380| —5.40113] —9.14532| —11.90262/—13.37535
3.35 | 13.47556 |11.18426 7.84928 3.26401| —1.48425] —6.06743] —9.97597| —12.77553] —14- 15447
3.40 | 1414006 [11.66257 7.84989 3.013611 —1.093244| _—6.78213| —10.85519, —13.68545| —14.94879
3.45 | 14.83603 {12.15958 8.04889 2.98988) —2-42151) —7.54769| —11,78403] —14.63202|—15.75535
3.50 | 15.56801 |12.67558 8.24614 2.65115) —2.95411| _.8.36662| —12.76488{ —15,61524]|—16.57216
3,55 | 16.33465 |13.21140 8.44048 2.61716| —3.53263| —9.24202] —13.97270] —16.63464j —17.39593
3.60 | 17.13893 {13.76773 8.683136 2.38835| —4.16066| —10.17641| —14.88737) —17.68978| —18.22415
3.65 | 17.98212 [14.34477 8.81742 2.12851| —4.84088| _-14.17270| —16.03206] —18,77966|—19.05244
3.70 | 18.86664 |14.94367 8.99814 1.83480| —5.57684, —12.23368| —17.23481| —19,90333| —19.87783
3.75 | 19.79175 |15.56473 9.17198 1.50480| —6.37169| —13.36262| —18.49626! -—20.84664|—20.69539
3.80 | 20.76649 |16.20671 9. 1,13531 | —7.22934| ..14.56266| —19.81351| —22 24639 —21 .50063
3.85 | 21.78597 |16.87603 9.49508 0.72379| —B.15323| —15.83678| —21.20135] —23, 46251 —22.28832
3.90 | 22.85577 [17.56755 9.84143 0.26688| -9.14765| —17,18823| —22.64746] —24.70567|--23.05322
3.95 | 23.97654 (18.28412 9.77500 | —0.23899| —10.21636| —18.62054| —24.15656] —25,97289(—23.78846
4.00 | 25.15252 |49,02502 9.89541 | —0.79740| —11.36432| —.20.13682] —25.73036; —27.26153| —24.48893
4.05 | 26.39907 [19,79378 9.99995| —1.41183) _12,59510| —21.74072| —27,36852] —28.56850| —25.14599
4.0 | 27 67724 |20.58833 1 10.08684 | —2-08684| —13.91437] —23.435668] —29.07209] —29.83992| —25.75306
4.15 | 20.03144 [21.41049| 10.15386| —2.82637| —15.32629] —25,22509| —30.84071| —31.22141| —26.14225
4.20 | 30.45245 (22.26023| 10.19930 —3.83489) __16.83708] —27.11242| —32.67531| —32 55825 —26.78225
4.25 | 31.04968 |23.14539| 10.22286| —4.51840| —18.45585 —20.10872] —34.58377| —34.25622| —27.19385
4.30 | 33.50182 |24.04677 | 10.21372| —5.47874| —20.17387] —31.19586| —36.53787) —35.22798] —27.50393
4.35 | 35.13691 (24.98438| 10.17771| —6.52477] —22.01142| —33.39873] —38.56435) —36.54802( —27.72331
4.40 | 36.85180 |25.95212| 10.40876 | —7.66079| —23.97053] —35.71425| —40.65418| —37,84981|—27.83514
4.45 | 38.84871 {26.950801 10.00345] —8.89271| —26.05641| —38.14558| —42.80389] —39.12572|—27.82570
4.50 | 40.53298 |27.98123 9.85854 | —10.22724| —28.27652| —40.68591] —45.01232] —40 36686 —27. 68368
4.55 1 42.50653 |29,04356 9.66967 | —11.67080| —30.63688| —43.36920{ —47.27606| —41.56483]—27.39444
4.60 | 44.07849 (30.13784 9.43405 | —13.23078| —33.14555] —46.16886| —49.59446 —42.70945] —26.94506
4.85 | 46.74282 |31 HNT17 9.14627 | —14.91466( —35.80794| —49.09825| —51.96047| —43.79007 | —26.31965
4.70 | 49.01685 [32.42555 8.80110 | —16.720841 —38.63368] —52.15940| —54.37392| —44,79618]|—25.50435
4.75 | 51.39724 |33.67685 8.39667 | —18.68:02| —41.62849] —55.35688] —56.82665| —45.71527 | —24.48085
4.80 | 53.89291 |34.84668 7.92423 | —20.78880| —44.80331] —58.69229| —59.31568] —46.53374|—23.23436
4.85 | 56.50687 |36.10803 7.38001 | —23.01831( —48.163631 —62.16867| —61.83397| —47,23746|—21.74530
4.90 | 5924635 |37.40256 6.75706 | —25.47916| —51.71610| —65.78787| —64.37441| —47.81111|—19.99656
4.95 | 62.11727 |38.73259 6.04894 | —2B.08676| —55.47889] —69.55404| —66.93088| —48.31108 | —17.96965
5.00 | 6512517 |40.09564 5.24962 | —30.88247| —59.45236| —73.42258| —69.40465| —48.50659(—15.641346
5.05 1 68.27512 [41.49276 4.45008 | —33.87777| —63.64730( —77.52139] —72.08414| —48,59207 |—12.99799
SA0 1 T1.57690 [42.92367 3.34535 | —37.08509| _68.07572] —81.74089| —74.60239| —48.47601 |—10.01227
5,15 | 75.03436 |44.38708 2,22358 | —40.51586( —.72.74439) —86.10997| —77,.12430| —48.13932] —6.66642
5.20 | 78 65823 |45.88321 0.97800 | —44.09400| —77.66750{ —90.61803| —79.61266| —47. 56003 | —2.93489
5.25 | 82.45267 (47.41136 0.40020 | —48.10601 | __82 85097} —95.28105| —82.04771] —46.71480] 1.20155
5. 86 -48845 [48.97055 1.92328 | —52.29021 —88.30866| —100.09677| —84.42003| —45,57876| 5.76784
5.7 90.59099 |51.61283 | —3.60148 | —56-75600| —94.04925| —105.06010 —86.70939| —44.12764] 10.78655
5. 94.95319 |52.17881 | —5.44449 | —61.51903| —100,08549| —110.16965] —88.90203| —42.33377| 16.28256
5. 99.51892 |53.82515 | —7.46702 | —66.594501 —106.42598| —115.42341] —90.96822 | —40.16782| 22.27769
5. 104.30412 [55.49706 | —9.68017 | —72.00180/—113.08626] —120.81621| —92.91108| —37.60121| 27.57979
5.55 ; 109.29647 |57.18560 | —12 73919 | —77.95556|—120.05392| —126.32449| —94.67074| —34.59745| 35.86160
5 114.56230 |58.91049 | —14.73709 | —R3.88201 | 127 _40232| —132.00234| —96.27717| —31,14003| 4350350
5 120.05493 |60.36435 | —17.60923 | —90.39443| _435.08134| —137.35854| —97.65817| —27.17860| 52.45811
5. 125.80964 162.40272 | —20.73416 | —97.31680(~143,12770 | —143.68061| —98.80368| —22.68429| 60.80800
5.75 | 131.83259 |64.17252 | —24.12851 [—104.67054| _151 54511 | —149-68508| —99.68114| —17.61842| 70.10921
5,80 138.14248 165.95152 | —27.81148 |—112.47794| —160.35530| —155.78391|—100.26170 | —11.94539| 80.27839
5.85 1 144.74585 |67.73731 | —31 79999 |-120.76217(_169,55943 | —161.96882|—100-50782| —5.62177 91.13242
5,90 1 151.66325 |69.52556 | —36_11890 [—129.55094| 179 17998 | —168.22513|—100. 38970 1.38898 | 102.69858
5.95 | 158.92101 (71.31337 | —40,78558 (—139-82915! _489.21854| —174-54715| —99.86289 9.13147 | 115.98864
6.00 | 166.48399 {73.09368 | —45,82979 —148-74309| 199 89647 | — 180.89052| —98.89312 17.65012 | 12802690
6.05 | 174.41745 |74.86061 | —51 27131 1~159.20231| _210.61570| —187.26390| —97.43203| 26.98646 | 142.88448
6.10 1182.72458 176.60990 | —57.13919 |—170.27840{ —221 99593 | — 193.63923| —05.43634| 37.19141 | 156.40324
.45 +101.41568 |78.33241 [ —63.45994 —181.99676/ _233.83714| —199.99324| —92.85568| 48.32967 | 171.76695
6.20 1 200.52042 180.92277 | —70,26384 |—194.39276| 246 ,16366| —206.29763| —B89.64128 | 60.38418 | 187 -93280
6.25 | 210.04462 |81.67021 | —77 58048 —207.50117| _258 96859 | —212.53110| —85. 73662 73.47003 | 204 .90074
6.30 [220,01596 (83.27077| —85,44634 —221.35561| —272.27598| —218,65997| —81.08703| 87.61647 | 222 .68165
6.35 | 230.74236 |84.92843 | —94.01549 |—236-29696| _286.45174| —224.93840] —75.72658 | 103.00660 | 241.57928
6.40 | 241 38666 86.286481-102.967771—251.465250 _300.42874( —230.48348| —69.30725| 119.29996 | 260.68616
6.45 1253.11772 187.77983 |- 112.82901 | —268.10668] _315.65198, —236.37709| —62. 11614 137.09580 | 281.22361
6.50 |264.75357 |88.96289 | .423.11134 (—284-97725| _330.61937| —241.42368 —53.77017{ 155.84643 | 301.85193
6.55 |277.61152 190.26295| _134.44401 |—303.51245) _346.94439| —246.78524| —44.47161| 176.24467 | 324.00846
6,60 | 290.35946 | 91.18137| —146.24010|—322.27367) _362 94656| —251.17534| —33.91000| 197 80130 | 346.11653
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TABLE 3

Function ® (2) = ch 2 sin yz, where 2 = @

-2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
z
0 0 0 0 0 0 0 0 0 0

0.05 0.00501 | 0.01000 = 0.01502 [ 0.02002 | 0.02503 [ 0.03004| 0.03504| 0.04004| 004503
0.10 0,01001 | 0.02002 | 0.03004 | 0,04003 | 0.05004| 0.06003 0.07002| 0.08000| 008000
0.15 0.01517 | 0.03034 ) 0.045491 0.06064 | 0.07577( 0,09090| 0.10600] 012106 | o0.13610
0. 20 0.02040 [ 0.04080 | 0.06116 | 0.08154 | 0.10183| 0112211 | 0.14234| 016252 | 018290
0.95 0.02578 | 0.05155 | 0,07727 | 0.10139 | 0.12859| 0.15413] 0.17958| 0. 20491 0.22942
0.30 0.03136 | 0.06268 | 0.09395 | 0.12514 | 0.15621 | 0.18715| 0.21791| 024848 | o 27885
0.35 0.03713 | 0.07421 | 0.11118] 0.14805 | 0.18471 | 0.22116| 0.25732| 0.29319| 0 32860
040 0.04323 | 0.08639 | 0.12941 | 0.17224 | 0.21478 | 0.25607| 0.20878| 0.34007| o 38083
0.45 0.04962 | 0.09913 | 0.14844 | 019746 | 0.24607| 0.20419( 0.34172| 0.38854 | 0.43450
0.50 0.05636 | 0.11257 | 0.16851 | 0.22403 | 0.27897 | 0.33323 | 0.38666{ 043912|  (.49048
0.55 0.06350 | 0.12680 | 0.18972| 0.25208 | 0,31423| 0.37430 | 0.43381] 0.49200| o0.54870
0.80 0.07108 | .144191 | 0.21223| 0.28179 | 0.35033 | 0.41760| 0.48339 | 0.54695 | 0.60950
0.65 0.07916 | 0.15799 | 0.23615]| 0.31333 | 0.38916 | 0.46337 | 0.53561| 0.60559 | 0.67300
0.70 0.08779 | 0.17515 | 0.26165| 0.34688 | 0.43040 | 0.51181] 0.50072] 0.66673 | 0.79947
0.75 0.09701 | 0.19348 | 0.28884 | 0.38260 | 0.48067 | 0.56315| 0.64815| 0.73103 | 0. 80901
0°80 0.10687 | 0.21308 | 0.31791 | 0.42071 | 0.52082| 0.617 0.71043|  0.79871 0.88187
0.85 0-14744 | 0.23406 | 0.34899 ) 0.46139 | 0.57046 | 0.67541 | 0.77547 | 0.86995 | 0 9814
0.90 0.12881 | 0.25657 | 0.38225| 0.50483 | 0.62335 | 0.73681 | 0.83570| 094495 | 1. 03797
0.95 0.44098 | 0.28069 | 0.41787 | 0.55127 | 0.67971 | 0.80201 | 0.91709] 1.02389 1.12445
1.00 0.15405 | 0.30656 | 0.45602( 0.60091 | 0.73980 | 0.87128 | 0.99408 | 1. 10694 1.20874
1.05 0-16808 | 0.33433 | 0.49689 | 0.65396 [ 0.80382 | 0.94485 | 1.07546| 1.19424 1.29985
1.40 0.18317 | J.38412 | 0.54067 | 0.71060 | 0.87212 | 1.02300 | 1.16152| 1.28600 | 1 39493
1.15 0.19938 { 0.39557 | 0.58759 | 0.77432 | 0.04484 | 1.10593 | 1.25236| {.38028 1.49301
1.20 0.21675 | 0.43039 | 0.63784 | 0.83659 | 1.02237 | 1.19931 | 1.34829 | 1.48327 1.59693
1,25 0.23543 | 0.46719 | 0.69167 | 0.90536 | 1.10489 | 1.28722 | 144944 | 1 58905 1.70384
1.30 0.25540 | 0.50668 | 0.74932| 0.97930 | 1.48277 | 1.38610 | 1.55603 | 1.69971 1.81472
1.35 0.27703 | 0.54902 ( 0.81102| 1.05827 | 1.28623 | 1.49083 | 1.66825| 4.81536 1,92940
1.40 0.30014 | 0.5B442 | 0.87075| 1.14254 | 1.38565 | 1.60165 | 1.78632 | 1.93802 2.04785
1.45 0.32496 ( 0.64306 | 0.94766 | 1.23241 | 1.49125 | 1.71886 | 1.91032| 2.06173 216984
1.50 0-35194 | 0.89518 | 1.02323( 1.32826 | 1.60350 | 1.84271 | 2.04053 | 2.1925 2.29536
1.55 0 0.75101 | 1.10335 ] 1.43044 | 1.72250 | 1.97348 | 2.17702| 2.32838 2742390
1.60 0.41064 ( 0-81079 | 1.19022 | 1.53926 [ 1.84897 | 2.11143 | 2.31998 | 2.460%6 2.55545
1.65 0.44339 | 0.87475 1.28235( 1.65512 | 1.98290 | 2.25687 | 248946 | 261507 2.68900
1.70 0-47849 | 0.94322 | 1.38073 | 1.87852 | 2012486 | 2.41004 | 262573 | 276570 2.82597
1.75 0-51609 | 1.01642 | 1 48565 | 1.90950 | 2.27513 | 2.57120 | 2.78871 | 2.92116 2.96413
1.80 0.55633 | 1.00467 | 1 59767 | 2.04900 | 2.43417 | 2.74066 | 2.95850 | 3'08093 3.10371
1.85 0.59041 | 1.17835 | 1.71705 | 2,19719 | 2.60229 | 2.91866 | 7 13536 | 3 24510 3.24403
1.90 0.64547 1 1.26770 1 1.84431 | 2.35454 | 2.78005 | 3.10545 | 431913 | 5. 41332 3.38468
1.95 0.60476 | 1.36316 | 1.97987 | 2.52160 | 2796770 | 3.30133 | 13 50875 | .58526 3.52478
2700 0.74744 | 1.46508 | 2.12420 | 2.89885 | 316578 | 3.50652 | 3.70746 | 3.76058 | 366382
2.05 0.80376 | 1.57384 | 2.27802 | 2.88681 | 337463 | 3.72125 | 3101182 | 393888 | 3 80057
2.10 0-86392 | 1.68988 | 2.44158 | 3.08602 | 3.50486 | 3.94576 | 412376 | 4 11961 3.93498
2.15 0.92822 | 1.81366 | 261562 | 3.20741 | 3.82676 | 4.18030 | 434118 | 4.30233 | 4 .06527
220 0.99685 | 1.94566 | 2.80068 | 3.52007 | 4.07133 | 4.25502 | 4.56576 | 4.48637 | 4. 18941
2,05 1.07016 | 2.08636 | 2.99733 | 3.75730 | 4.32771 | 4.68011 | 479647 | 4.67114 | 4 31090
2.30 1.14838 | 2.23627 | 3.20639 | 4.00761 | 4.50777 | 4.94579 | 503384 | 4.85578 | 4 42248
235 1.23183 | 2.39600 | 342833 | 4.27237 | 4.88141 | 5.22222 | 5.27587| 5.03960 | 4 53615
2740 1.32089 | 2.36609 | 3.66414 | 455220 | 517930 | 5.50049 | 552383 | 5.22139 | 4 81990
245 1.41984 | 2.74722 | 3.91430 | 4.84789 | 549175 | 5.84767 | 5.77667 | 5.38499 | 4 20219
2750 1.51743 | 2.04000 | 4.18001 | 5.16013 | 5.81941 | 6.11689 | 6.03410 | 557608 | 4 77933
2.55 1.82508 | 3.14514 | 4.46109 | 5.48980 | 6.16272 | 6.43724 | 6.20731 | 574634 | 4 82565
2.60 1.74018 | 3.36339 | 4.76051 | 5.83750 | 6.52235 | 6.76860 | 6.55992 | 5.91023 | 4 8606
2,85 1.86272 | 3.59550 | 5.07722 | 620452 | 6.80854 | 7.11106 | 6.82699 | 5.08640 | 4. 88219
2.70 1.99340 | 3.84241 1 5.41206 [ 6.50130 | 7.20201 | 7.46443 | 7.09596 | 6.21329 |  4.88047
2.75 2.13248 | 4.10483 | 5.76855 | 6.99892 | 7.70313 | 7.82870 | 7-16575 | 6. 34038 4.85368
2.80 2.28072 | 4.38377 | 6.14531 | 7.42828 | 8.13265 | B.20354 | 7.63550 |  6.42419 | 4 Borgi
2185 2-43845 | 4.88011 | 6.54416 | 7.88038 | 8.58070 | 8.58894 | 7.90403 | 6.tBt62 |  4.72807
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Y
(11 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

3

2.00 2, 60631 4 99497 7.01212 8.35625 9.04813 8.98442 6.67944 4.62027
2.95 2,78h04(  5.32046| 7.41330( B.85698| 9 53508 9,38967 6.74765 4,479314
3.00 2.47519F 5.68460 | 7.88630) 9.38346| 10.04239 9.80439 6.80030 4,30279
3.05 3. 17747 6.08174 8.40741 9.93695| 10.57013| 10.22730 6.82963 4.08726
3.10 3.30272| 6-46204] 8,91522| 10.51849] 11.11805| 10.65962 6,83272 3.83013
3.15 3.62280 6.88673 9.47419 | 11.12942] 11,68923| 11.08903 6.80712 3. 52800
3.20 3.86501 7.33759 ( 10.08510 ] 11.77086| 12.28137] 11.54515 6.74979 3.17757
3.25 4.12362 7.81576  10.6893B | 12.44395| 12,89545| 11.99714 6.65746 2.76830
3.30 4 .39876 8.32206 | 11,34891 | 13.15044| 13.53227| 12.45403 8.52702 2.31789
3.35 4.69105 8.86085| 12,04510| 13.89050| 14,19129| 12.91464 6.35494 1.80145
3.40 5.01693 9.431068 | 12.78058 | 14.686666 | 14.87365{ 13.37783 6.13763 1.22240
3.45 5.33208 | 10.03573 | 13.55646 | 15.47992| 15.57878| 13.84108 5.87128 0.57672
3.50 5.882821 10.67654 { 14.37% 16.33469| 16.30748] 14.30582 5.55173 0.13938
3.55 6.05520} 11.35854 | 15.23956 | 17.22328 | 17.05884| 14, 76745 5.17474| —0.92693
3.60 6.451041 12.07508 | 16.14931 | 18.15638 | 17.83390| 15.22488 4.73605| —1,79923
3.65 6.871211 12.83747 | 17.14200] 10.13232 | 18.83143| 15.87631 4.23084| —2.75126
3.70 7.31775( 13.64494 | 18.12539 | 20.45263 | 19.45247| 16.11840 3.65462] —3.79000
3.715 7.794441 14,52132 | 19.19315] 21.21891 | 20.20548| 16.55134 3.00195] —4.92028
380 8.20413 15,40548 | 20.318:8 | 22.33203 | 21.15715| 16.06891 2.26793] —6.14546
3.85 8.82B35| 16.36428 | 21,5080 | 23.40208| 22.04784| 17.37203 10.15254 1.44687] —7.47058
3.9 9.39500| 17.37900 | 22.75298 | 24.70987 | 22.95586| 17.75412 9.88627 0.53352| —8.89930
3.95 9.08607 | 18.45298 | 24 06772 25.97627| 23.88354| 18.11346 9.55318 —0.47824] —10.435868
4.00 | 10.62437| 19.58983 | 25.45236 | 27.29648 | 24.83137; 18.44562 9.14798 —1.59398( —12 08444
4.05 | 11.314317 20.79251 | 26.90921| 28.67270| 25.79651| 18.74711 8.66419f —2.82051| —13.84876
4.10 | 12.02942| 22.06496 | 28.44287 | 30.10630| 26.77913{ 19.01332 8.09597] —4.16372( —15.73292
4.15 12.79100| 23.41074 | 30.05552 | 31.59861 | 27.77640| 19, 23955 7.43599 —5.62999] —17.73992
4.20 13.59906 | 24.83423 | 31.75283 | 33.15180 | 28.78862] 19, 42109 6.67780 —7.22642| —19.87432
4.25 14.45065 | 26.34727 | 33.54641| 34.77736| 29.82023| 19.55775 5.81528] —8.96175] —22.14415
4.30 15.36444 | 27.93147 | 35.41337 | 36.44720| 30.84535] 19.62729 4.83506] —10.83586] —24.53475
4.35 16.32743 | 29.61448 | 37.38454 | 38.19239] 314.88537 19,64163 3.73663] —12,86318] —27.06657
4.40 17.34920| 31.39345 | 39.45749 | 40.00451 | 32.93147 19.58455 2.50703] —15.04787| —29.73649
4.45 | 18.43200( 33.27360 | 41.83407 [ 41.88585| 33.97798[ 19.45324 1.13856] —17.39791| —32.54482
4.50 19.57979| 35.26001 | 43.92118 | 43.83700| 935.02414f 19.23813| —0.37857] —19.91965| —35.49498
4.55 20,79590 | 37.36032 | 46.32206 | 45.85973 | 36.06181 18.,93191| —2.05375| —22.62109| —38.58500
4,60 | 22.08526| 39.57886 | 48.84427 | 47.95520 | 37.09697| 18.52585| —3.R9670[ —25.50886 —41.81798
4.65 | 23.45114| 41.92254 | 51.49085] 50.12536 ;38 41425 18.10657| —5.91796) —28.59039] —45.19112
4.70 | 24.89904 | 44.39814 | 54.26801 ] 52.37107 | 39.11528( 17.37749] —8.12007] —31.87302} —48.70458
4.75 | 26.43264| 47.01280 | 57.18267 | 54.69280 | 40.09226( 16.61533| —10.54092] —35.36335| —52.35493
4.80 | 28.05744| 49.77343 ] 60.24044 | 57.00250 | 41.04049| 15.71358] —13 46533 —39,06824| —56.14161
4.85 | 29,77811| 52.88011 | 63.44551| 59.56983 | 41.95315] 14.86102] —16.01324| —42.99430( —60.05827
4.90 | 31,60168 | 55,76609 | 66.80650 | 62.12584 | 42.82408| 13.41497) —19.10081| —47.14769| —64.06083
4.95 33.53285| 59.01621 | 70.33054 ] 64.76305 | 43.64643| 12.05342| —22.43383| —51.53568| —68.26434
5.00 | 35.57848 | 62.44545 | 74.02368 | 67.47911 | 44.41243| 10.47251| —26.03137| —56.16209| —172.54245
5,08 37.74339 | 66.06497 | 77.89192| 70.27483 | 45.11185 8.68769] —29.90528 —61.03382 —76.92302
5.10 40.03759 [ 69.88495 | 81.94593| 73.15075 | 45.73757 6.68414] —34.07026] —66.15413( —B1.40054
5.15 | 42.46527| 73.91524 | 85.18846| 76.10606 | 46.27788 4.44630] —38.53973f —71.52785 —B85.95998
5.20 | 45.03665| 78.16697 | 90.63344 | 79.13952 | 46.72434 1.95689] —43.32810] —77.15816| —90.59175
5.25 | 47.75722| 82.652771 95.28385| B82.25162 | 47.08354| —0.80135| —48.49684] —B83.04916) —95.27623
5.30 | 50.63939| 87.38509 {100.15287 | 85.43977 | 47-28387| —3.84656] —53.92099] —B89.20018 —100.00462
5.35 | 53.68948| 92.37488 | 105.24334 88, 70284 | 47.37108| —7,.19770{ —59.75513] —95.61516| —104.75155
5.40 | 56.91811( 97.63780 | 110.57152 | 92,03831 | 47.31330| —10,87681| —65.97160| —102.,29185| —109.50210
5.45 | 60.33435(103.18709 | 116.14032 | 95.44425| 47.09250| —14.90262f —72.57999| —109.22960 | —114.22818
5.50 | 63.95008 | 109.03777 | 121.965068 | 98.91837 | 46.69534| —19.30040{ —79.60328| —116,42637 | —118.91003
5.55 | 67.76486 | 115.18706 | 128.02845 |102.43947 | 46.094368| —24.21423] —87.03568| —123.85021 | —123.49784
5.60 | 71.82488 (161 .70706 | 134.40917 |106.05187 | 45.29569( —29,20840] —84.94125 —131.58047 | —128.02296
5.85 | 78.10719 | 128.55981 | 141.05011 |109.70232 | 44.53431| —34.94838| —103.28721] —139.52487 | —132.39191
5.70 | 80.63981 [ 135.78146 | 147,99033 |113.40351 | 42.95968( —41.06783] —142.11090] —147.70341 | —136.59289
5.75 | 85.43245]143.39178 | 155.23061 [117.14874 | 41.38561| —47.68520| —121.42021 | —156.10564 | —140 .66144
5.80 | 90.5062t | 151.41070 | 162.79293 {120.92873 | 38.51245| —54.82858| —131.20604| —164,65584 | —144.32736
5.85 95.87047 | 159.85035 | 170.67927 [124.73804 | 37.31084] —62.52528| —141.58516| —173.52835 | —147.77376
5.80 |101.54688 | 168.75991 | 178.90985 {128,56898 | 34.75548] —70,80887| —152.43166| —182.51462 —150.88572
5.95 |107.54760 | 178.43375 | 187.49164 {132,40923 | 31.817201 —79.70995 —183.84078| —101.66148 | —153.60215
8.00 |113.86041 | 188.00704 | 196.44078 {136.25085 | 28.46811] —80.26320| —175.81132| —200.94105 | —155.87778
8.05 |120.60993 | 198.40542 | 205,76382 |140.08107 | 24.66655| —99.50171| —188.34540| —210,33368 | —157.64792
8.40 |127.70991 | 209.35357 | 215.70485 |143.88794 | 20.38918{—110.46182| —201.46854| —219.80876 | -—158.85069
8.15 [135.08903 | 220.88173 | 225.60174 {147.65368 | 15.50430]—122. 17877 —215.17741 | —229.32805 | —159.43494
8.20 | 143 15404 |233.01706 | 236.14350 |151.36574 | 10.24429(-134.89104| —229 48806 —238 86109 —159.31874
8.25 |151.54263 | 245.79282 | 247.11376 |155.00815 4,296931-148.03825( —244.40454 | —248.36736 | ~158.42968
6.30 |160.41500 | 259.24161 | 258.53366 [158.56081 | —2.28093|-162.26119| —259.93321 | —257.80383 | —156.69565
8.35 |170.01148(273.74609 |270.75383 |162.21269 | —9.57284]-177.61825| —276. 42594 | —264.60020 | —154.22759
6.40 |179.72337 | 288.30975 | 282.78142 [165.32824 |{—17.56608|—-193, 50857 —292.85390| —276,28706 | —150.36333
6.45 |190.43458 | 304 .35324 |296.07320 |168.68285 {—26.38906 |-210.85914| —310.60286 | —285,55051 [ —145.75911
6.50 |201.26899 | 320.45266 | 308.94568 [171.44084 |—35.98424|-228, 73275 —328. 19493 | —292,81035 | —139.60024
8.55 |2143.24250 | 333.22089 | 323,20882 {174.42085 |—46.56147|-248.27300| —347.21743 | —302.45527 | —132.49976
6.60 |225,35119(356.05136 |337.20348 |176-72456 |—57,98074|—268.33220| —365.08988| —309.91302 | —123.67632
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TABLE 4

Function @, (z) = shz sinyz,where z =39

1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
z
o 0 0 0 0 0 0 0 0 1]
0.05 0,00025 0.00050 0.00075 0.00100 0.00125 0 00150 0.00175 0.00200 0.00225
0.10 0.00100 0.00200 0.00301 0.00401 0.00501 0 00601 0.00701 0.00801 0.00901
0.15 0,00226 0.00452 0.00677 0.00903 0.01128 0 01354 0.01578 0.01808 0.02027
0.20 0.00403 0.00805 0.01207 0.014609 0.02010 0 02410 0.02809 0.03208 0.03601
0.25 0.00631 0.01262 0.01892 0.02522 0.03149 0 03775 0.04398 0.05019 0.05636
0.30 0.00913 0.01828 0.02737 0.03845 0.04551 0 05452 0.06348 0.07238 | 0.08122
0.35 0.01250 0.02498 0.03743 0.04984 0.06219 0 07446 0.08664 0.09871 0.11066
0.40 0.01643 0.03282 0.04047 0.08544 0.08160 0 09763 0.11351 0.12921 0.14469
0.45 | 0.02093 | 0.04182 | 0.06262 | 0.08331 | 0.10382 | 0 12412 | 0.14417 | 0.16392 | 0.18335
0.50 0,02604 0.05202 0.07787 0.10353 0.12892 0 15399 0.17868 0.20283 | 0.22666
0.55 0.03178 0.06347 0.09496 0.12817 0.15728 0 18734 0.21713 0.24626 0.27464
0.60 0.03817 0.07621 0.11308 0.15133 0.18814 0 22427 0,25960 0.29399 | 0.32733
0.65 0.04525 G.08032 0-13500 0.17912 0.22247 0 26559 0.306819 0.34620 | 0.38474
0.70 0.05305 0.10588 0.15813 0.20964 0.26012 0 30932 0.35701 0.40295 | 0.44691
0.75 0.06162 0.12289 0.18346 0.24301 0.30530 0 35768 0.41231 0.46431 0,51384
0.80 | 0.07097 | 0.14148 | 0.21110 | 0.27037 | 0.34585 | 0 41041 | 0.47175 | 0.53038 | 0.58560
0.85 0.08116 | 0.16176 0.24117 | 0.31886 | 0.39423 0 46676 | 0.53500 0.60120 | 0.66214
0.90 0.09226 | 0.18378 0.27380 | 0.38164 0. 44650 0 52777 0.60476 0.67687 | 0.74350
0.95 0.10430 0.20765 0.30913 0.40782 0.50284 0 58331 0.67844 0.75745 | 0.82962
1.00 0.11732 0.23348 0.34729 0.45765 0.56343 0 66356 0.75709 0.84304 | 0.92057
1.05 0.13140 0.26138 0.38847 0.51127 0.62843 0 73870 0.84084 0,03367 1.01624
1.10 0.14663 0.29148 0.43280 0.56891 0.69813 0 81891 0.92980 1,02944 | 1.11684
1.15 0.16305 | 0.32401 0.48051 | 0.83075 | 0.77285 0 90433 1.02413 1.13037 | 1.25307
1.20 0.18070 0.35880 0.53174 0.69704 0.85230 0 99531 1,12400 1.23853 | 1.33128
1.25 0.19971 0.30831 0.58673 0.76804 0.93727 1 09183 1.22954 1.34797 1.44553
1.30 0.22016 0.43662 0.84571 0.84389 1.02784 1 19444 1.34087 1.46468 | 1.56378
1.35 0.24214 0.47987 {).70888 0.92498 1.12423 1 30308 1.45814 1,58672 1.68639
1.40 0-26573 0.52627 0.77650 1.01154 1.22679 1 41802 1.58152 1.71406 | 1.81306
1.45 0.29106 0-57598 0,84881 1.10386 1.33570 1 53957 1.71106 1.84688 1.94351
1.50 0.31820 0.62904 0.92617 1.20228 1.45140 1 66793 1.84698 1.98457 | 2.07764
1.55 0.34729 0.68627 1.00877 1.30711 1.57407 1 80333 1.98933 2.12764 | 2.23753
1.60 0.37879 0.74791 1.09791 1.41988 1.70557 1 94768 2.14005 2.27776 2.35726
1.65 0.41185 0.81252 1.19112 1.53737 1.84183 2.09631 2.29377 2.42903 | 2.49778
1.70 0-44759 0.88229 1.29154 1.66355 1.98761 2.25437 2.45612 2.58706 | 2.64343
1,73 0.48584 0. 95683 1.39855 1.79764 2.14175 2.42046 2.62522 2.74981 2.79035
1.80 0.52674 1. 03635 1.51269 1.94001 2. 30489 2.59488 2.80121 2.91704 2.93881
1.85 0.57048 1.12149 1.63419 2.00117 2.47672 2.777182 2.98406 3.08851 3.08749
1.90 0.61722 1,21222 1.76360 2.25150 2.65839 2.96955 3.17387 3.26394 | 3.23656
1,95 0.66719 1.30907 1.90131 2.42154 2.84994 3.17033 3.37049 3.44300 | 3.38492
2,00 0.72055 1. 41237 2.04787 2.60176 3.05189 3.38038 3.57409 3.62530 | 3.53202
2,05 0.77755 1.52252 2,20374 2.79268 3.268459 3. 59992 3.78436 3.81045 | 3.67665
2,10 0,83840 1.63995 2.36944 2,99484 3.48864 3.82917 4.00143 3.99789 | 3,81872
2,15 0.90336 | 1.76511 2.54559 | 3.20884 3.72431 4, 5.22496 418715 | 3.95643
2,20 0.97267 1.89846 2.73274 3.43527 3.97258 4.31769 4,45501 4.37755 4.08779
2,25 1,04665 2.04052 2.93146 3.67473 4.23264 4.57727 4,69108 4.56849 4.21548
2.30 1.12552 2.19176 3.14257 3.92784 4.50626 4.84735 4.,93316 4.75913 4.33445
2.35 1.20963 2.35281 3.36653 4.19535 4.79341 5.12808 5.48076 4.94875 4.44456
2,40 1.29982 2.46953 3.80432 4.47788 5.09474 5.41955 5.43365 5+13634 4.54451
2.45 1.39491 2.70661 3.85652 4.77623 5.41057 5.72181 5.69128 5.30538 | 4.63268
2,50 1.49683 | 2.90085 4. 12406 5.08106 35.74152 6.03501 5,95334 5.50145 | 4.70748
2,55 1,60538 | 3.10703 4.40761 5.42326 6.08803 6.35923 6.22089 5.87670 4.76714
2 60 1.72108 | 3.326848 4,70827 | 5.77353 6.45077 6.80433 | 6.48793 | 5.84537 | 4.80089
2.85 1.84422 | 3.55978 5.02678 | 6,14280 6.83001 7.04041 | 6.75017 | 6.00813 | 4.88389
2.70 1,97547 | 3.80785 5.36428 6.53202 7.220844 7.39730 7.03217 6.15742 | 4.83850
2.75 2.41512 | 4.07141 5.72159 6.94195 7. 7.76497 7.30579 6-20769 | 4.81615
2.80 2.26302 | 4.35147 8.10003 7-37355 8.07273 8.14310 7.57925 8.42509 | 4.77040
2.85 2,42217 | 4.64888 6.50047 7.827177 8.52342 8.53160 7.85128 6.53768 | 4-69650
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0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9

2

2.90 | 2.59058{ 4.96482| 6.92449| 8.30580| 8.99352 8.93019|  8.13014 6.63368 4.59238
2.95 | 2.76982 5.30034( 7.37280| 8.80858| 9.48297 9.33837  8.38683 6.71078 4.45483
3.00 | 2.96048] 5.65649| 7.84730| 9.33705| 9.99272 9.75590{  8.84752 6.76666 4.28144
3.05 3.16325] 6,03461| 8.36978| 9.89247| 10.52282 10.18152|  8,90122 6.70906 4,06896
310 3.37898 6.43586] 8.87910| 10.47588| 11.07401 10.61644| 9. 14682 6.80504 3.81462
345 | 3.60835| 6.86148| 9.43946| 11.08862| 11.64638 | 11.05834]  9.3818% 6.78217 3.51506
3.20 | 3.85219 7.31324] 10.03170; 11.73180| 12.24061 11.50884|  9.60469 6.72740 3.16703
3.25 4.-11124]  7.79229( 10-65728| 12.40659| 12.85672 | 11.96108] 9.81289 6.63746 2.76700
3.30 | 4.38681] 8.30034| 11.31807| 13.14441| 13.49551 12.42019]  10.00463 6.50028 2.31159
3.35 4.679511 8.83906] 12.01548| 13.85634| 14.15639 | 12.88289| 10.17661 6.33032 1.79702
3.40 5.00576/ 9.41007| 12.75213] 14.63403 | 14.84065 | 13.34805| 10.32715 6.12397 1.21968
3.45 5-32135| 10-01552] 13.52915| 15.44874| 15.54740 | 13.81410| 10.45262 5.85940 0.57556
3.50 5-67247| 10.65709] 14.34941| 16.30193 | 46.27778 | 14.27976{ 10.55023 5.54161| — 0.13912
3.55 6-04522! 11.33682| 15.21444| 17.19480{ 17.03071 14.74310[ 10.81843 5.16621| — 0.92840
3.60 6.44142| 12,05707| 16.12704{ 18.12930| 17.80729 | 15.20246| 10-84817 4.72899] — 1.79855
3.65 6.86193| 12,82013| 17.08890| 19-.10649 | 18.60628 | 15.85545| 10-64106 4.22512| — 2.74754
3.70 7.30881( 13.62827| 18.10325) 20.12802] 19.42871 16.09971| 10-59152 3.65016] — 3.78537
3.75 7.78279| 14.48402( 19.47192| 21.10544 | 20.27304 6.53304( 10.49520 2.99863| — 4.91484
3.80 8.28613| 15.39007) 20.29826( 22.31059 | 21.13598 | 46.95293| 10,34738 2.26568| -— 6.13962
3.85 8.82036( 16-34947] 21.48442| 23.47485| 22.02788 | 17.35831| 10.14332 1.44558] — 7.48382
3.90 9.38731| 17.36476] 22.73933| 24.68960 | 22,93704 | 17.73857  9.87817 0.53308] — 8.89201
3.95 9.988661 18.43931| 24.04088( 25.95702 | 23.86584 | 18.10004| 9.54608| __0.47789| —10.42813
4.00 | 10.62724| 19.57670] 25.43530| 27.27818 | 24.81472 | 18.43325| 944185 _1.59201| —12.07633
4,05 | 11.30444| 20.77089| 26.89297| 28.65540 | 25,78084 | 148.73579| 8.85896] — 2.81880' —13.84040
4.10 [12.022821 22,05284 28.42725/ 30.08977| 28-76443 | 19.00288]  8.09152( — 4.18143, —15.72428
4.15 | 12.78480| 23.39911( 30.04059 31.68202| 27.76260 | 19.22099|  7.43230| — 5.82710 —17.73110
4,20 [ 13.59295| 24.82307| 31.73856! 33.13699 ) 28.77568 | 19.41236] 6.67480| — 7.22317| —19.86539
4,25 | 14.44964| 26.32003 33.52319] 34.75320 | 20.79960 | 19.54421 5.81126| — 8.95554| —22.12882
4.30 [ 15.35879 27.92118 35.40033| 36.43378| 30-83400 | 49.62006|  4.83418| —10.83187| -—24.52572
4.36 | 16.32199 29.60462( 37.37210| 38.17967 | 31.87475 | 10.63404|  3.73539] —12.85889| —27.05756
4.40 | 17.34308{ 31.38399| 30.44560] 39.99246 | 32.92155 | 19.57865  2.50627] —15.04334| —29.72753
4.45 | 18.42697) 33.264521 41.62271| 41.87442| 33.06871 | 19.44793|  1.13825] __17.39317] —32 53594
4.50 | 19.57496] 35.25221| 43.91034; 43.82618| 35.01549 | 19.23339| — 0.37847] —19.91473| —35.48622
4,55 | 20.79078) 37.35197| 46.31171| 45.84948 | 36.05376 | 18.92768( — 2.05329| —22.61694| —38. 57638
4.60 | 22.08080| 39.57086| 48.83440| 47.94560 | 37.08047 | 18.52244| — 3.89591] —95.50371| —41.80953
4,65 | 23.44685| 41.91487) 51.48143) 50.11620| 38.10728 | 18.00736| — 5.91688| _28.58517 | —45. 18286
4,70 | 24.80493( 44.39080| 54.25994| 52.36241( 30.10882 | 17.37461| — 8.12772| —31.86775] —48.69652
4.75 | 26.42868 47-00577| 57.17411| 54.68461| 40.08625 | 16.61284] —10.53934| —35.35806 | —52.34710
4,80 | 28.05318| 49.76587) 60.231291 57.08332  41.03426 | 15.71119] —13.16333| —39.06232| —56.13309
4.85 | 29.77446| 52.68266] 63.43774| 59.56233 | 41.94801 | 14.65923| —16.01128| _42.08303 | —60.05091
4.90 | 31.59865{ 55.76074] 66.80009] 62.11968 | 42.81995 13.44368) —19.00606| —47.14317 | —64.09497
4.95 | 33.53372| 59.01020/ 70.32348| 64.75653 | 43.64205 | 12.05221| —22.43158] _51.53051 | —68.25749
5.00 | 35.57524| 62.43977) 74.01696| 67.47208 | 44.40839 | 10.47156| —26.02900| _56.15699 | —72.61007
5.05 | 37.74028| 66.05954| 77.88556| 70.26885| 45.10814 8.88607 | —29.90282| —61.02880 —76.91670
5.10 | 40.03462| 69.87976| B1.93984| 73.14581| 45.73417 6.88384 [ —34.06773| —66.14922 | —B81.39449
5.45 | 42.46241| 73.91028| B6.18268| 76.10094 | 46.27475 4.446001 —38.53714| —71.52304 | —85.95421
5.20 | 45.03390| 78.168221| 90.62792] 79.13470 | 46.72150 1.95677) —43.32546] —77.15346 | —90.58623
5.25 | 47.75450| 82.64822) 05.27860| 82.24709 | 47.06095 | — 0.80131 | —48.49397| _83.04459 | —95.27098
5.30 [ 50.63687 87.38073| 100.44788| B5.43551 | 47,2813f |— 3.84637] —53-94831! —89.19574 | —99.99963
5.35 | 53.68675) 92.37019105,23799) 88.60833 | 47.36868 |— 7.19733|— 59.75210|_ 95.61030 | —104.74623
5.40 | 56.91579| 97.63381(110,50670| 92.03456 | 47.31137 |— 10.87637— 65.96891 | _102.28768 | —109 .49763
5.45 60.332131103.18328(116.13603| 95.44072 | 47.09076 |— 14.90206~ 72.57731| 109.22556 | —114.22396
5.50 | 63.947941109.03412| 121 .96098| 08.91508 | 46.69378 {— 10.29975— 80.82406|_116.42247 | —118.90605
5:55 | 67.516121115.20200] 128.04446| 102.45231 | 46.10013 |— 24 .08865(— 87,04658] _123.87473 | —123.51331
5.60 { 71.822021121.70374| 13440549 | 106.04897 |  45,20445 (— 29.297601— 94.93865|_131.57687 | —128.01946
5.85 | 76.10530/128.55643) 141 04662 109.69961 | 44.33370 (— 34.94752[103.28465|_139.52141 | —132.38863
5.70 | 80.63800|135.77843| 447.98702| 11340008 |  42,93872 |— 41.06691(—112.10839|_147.70011 | —136.60478
575 | 85.273621143.38889 155.22747 | 117.14637 | 41,38177 |— 47,68423(—121.41775|_ 15610248 | —140.65859
9.80 | 90.50455/151.40793| 162.78995  120.92652 | 39.51172 | 54.82757—131.49874|_ 164 71558 | —144.32472
5.85 95.868881159.85670| 170 .67644 | 124,73597 37.31002 |— 62.52424|-144.56281|_173.52547 | —147.77151
5.90 1101.54538|168.75738) 178.90717  128.56705 | 34.75496 |~ 70.82586|-152.42037| 182 51188 | —150.88345
5.95  (107.54614(178.13134| 187.48910| 132.40744 | 31.81677 |- 79.70877|-163.83854|_191 85855 | —153.60007
6.00 ]113.85901|188.00473| 196.43836  136.24017 | 28.46576 |— 89.26211|—175.80916|— 20093858 | —155.87586
6.05 120.60860|198.40322| 205.76154 | 140.07952 | 24.F628 |— 99.50061|—188.34331 | 210 33133 | —157 .64618
6.10  1127.708621209.35145) 215.47974 [ 143.88648 | 20..8897 |—110-46070]—201.46650|—219-80454 | —158.85600
6.15 1135.09780|220.87972|225.59969 | 147.65234 | 15.50415 | -122.47766|—215. 17546 —229 32597 | —159.43350
6.20 1143.15286)|233.01514| 236.14162 | 151.36449 | 10.24421 |—134.68093|—229.48707|_23g 85012 | —150.34743
6.25 1151 .54150(245.79099| 247.11192 { 15500699 4.27100 |—148.03721]—244,40282(_248.36554 | —158.42845
6.30  1160.41400/259.23985 | 258.53191 | 158.55974 | — 7.73562 |—162.26010|—258.84232|_257 80219 | —156.69458
6.35 1170.00452(273.73487 | 270.74273 | 162.20604 | — 9.57255 |—177.64097(—276.41461 | 287 45530 | —154.22127
8.40  1179.71043|288 .28900 | 282.76107 | 165.31433 | —17.56480 |—103.49264(—292 83290276 26717 | —150. 35254
8.45 1190.427621304 .34211 | 206.06237 | 168.67668 | —26.38810 |—210.85140|—310-50151 285 54008 | —145.75378
6.50 1201.26807|320 -45121 { 30894428 | 171-43987 | —35.98408 |—228.73171|—328.19344| _293 80902 | — 13959961
6 55 213.24162(338.21950| 32320549 | 174.42014 | —46.56128 |—248.27188|—347.21600 —302.45053 | —132.49713
6.60 1225.35036(356.05004 | 337.20224 | 176.72390 | —57.98052 |{—268.33130 —365.98851—309.91188 | —123.67586

332

TTITRRRTITITIEITILNI



TABLE 5 X (§) = sin pE.Both beam ends simply supported (case 1)

uy = 3.1416 g = 6.2832
First term of expansion Second term of expansion
X b N2 b , LAY x|, byt b , b\ .

E=3X-—<I)X mX (m)x = X (m)x e (H:.)X S S -
0.0 0,0000 1.0000 0.0 0.0000 1.0000
0.1 0.3090 0.9511 0.1 0.5878 0.8090
0.2 0.5878 0.8090 0.2 0.98511 0. 3090
0.3 0.8090 0.5878 0.3 0.9511 —0.3090
0.4 0.9511 0.3090 0.4 0.5878 —0.8090
0.5 1.0000 0.0000 0.5 0.0000 —1.0000
0.8 0.9511 —0.3090 0.6 —0.5878 —0.8090
0.7 0.8090 —{0.5878 0.7 ~0.9511 —0.3090
0.8 8%;8 —0.8090 0.8 -—8-951é (.3090
0.9 . —0.9511 0.9 —0.587 0.8090 - -
1.0  0.0000 —1 1.0 0.0000 1.0000 K -K XK

uemm 9 4248 Ky = 12.5664
Third term of expansion Fourth term of expansion
x LA bY ety _ X (BN e By (B

=3 XE_(T,)X s (u-)x =% X (m)x o <M¢)X
0.0 0.0000 1.0000 0.0 0.0000 1.0000
0.1 0.8090 0.5878 0.4 0.9511 0.3090 2
0.2 0.9511 —0.3090 0.2 0.5878 —0.809%0
03 0.3090 —0.9511 0-3 —0.5878 —0.8090
0.4 —0.5878 —0.8090 0.4 - 0.9511 0.3090
0.5 —1.0000 0.0000 0.5 0.0000 1.0000
0.8 —0.5878 0.8090 0.6 0.9511 0.3090
0.7 0.3090 0.9511 0.7 0.5878 —0.8080
0.8 0-9511 0.3090 0-8 —0.5878 —0.8090
0.9 0.8090 ~0.5878 0.9 —0.9511 0.3090
1.0 0.0000 —1. 1.0 0-0000 1.0000

HE - == -
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TABLE 12
Kinematic and force factors for a circular plate

13 uo(E) vo(€) 0:(5) 0(E) MB) | MBY | ME | M | aE Qs 12)
@ = 46°
0.00 1. 0000 0.00001  0.0000] 0.0000 |[—0.0349| 0.9904 | —0-0174| 0.4947 0.0000| 0.0000
0.05 1.0000 | —0.0006| —0.0009| 0.0250 |-—0.0343( 0.9895 | —0.0172| 0.4997 —0,0249 1 _0.0017
0.10 1.0000 | —0.0024 | —0.0016 | 0.0500 | —0.0324 | 0.098¢ | —0.0168| 0.4997 —0,0499| —0.0034
0.15 1.0002 | —0.0056 | —0.0024| 0.0749 |—0.0293 | 0 9998 | —0.0160 0.4998 | —0,0748 | —0. 0050
0.20 1.0003 | —0.01001 —0.0030| 0.0999 |—0.0249 | 1.0001 |—0-0149| ¢ 4999 —0,0998 [ _0.0065
0.25 1.0005 | ~0.0156 | —0.0034| 0.1249 |—0.0493 | 1.0004 |—0.0155] 0.5000 —0.1248 | —0.0077
0.30 1.0007 | —0.0225| —0.0035| 0.1500 {—0-0125 | 1.0008 |—0.0118 0.5001 | —0.1498 | _0. 0088
0.35 1.0008 | —0.0306 | —0-0034| 0.4751 |—0.0044 | 1.0013 | —0.0088 0.5002 | —0.17481 _0.0095
0.40 1.0010 [ —0,0400 1 —0.0030| 0.2002 0-0050 | 1,0018 |—0.0074| 0.5003 | —0.1999 | —0.0100
0.45 1.0012 1 —0.0508 | —0.0021 ] 0.2253 0.0157 | 1.0023 |—0.0048| 0.5005 |-—0.2250 | —p.0100
0.50 1.0012 | —0,0626]1 —p.0009| 0,2504 0.0275 | 1.0029 |—0.0018| 0.5008 [ —0.2501 | —0. png7
0.55 1.0012 | —0.0770| 0.0008] 0. 2754 0.0406 { 1,0033 0.0015| 0.5008 | —0.2753 | —0.0089
0.60 1.0011 | —0, 0.0030[ 0.3005 0.0554 | 1,0037 0.00501 0.5008 | —0-3004 | —0.0065
0.85 1.0011 | —0-1058| 0.0058 | 0.3257 0.0708 | 1.0040 0.0089| 0.5010 { —0-3257 [ —0.0056
0.70 1.0006 | —0.1227 | 0.0082| 0.3509 0.0877 | 1,0042 0.0133| 0.5012 | —0.3510 | —0. 0030
0.75 1.0000 | —0.1404 1 0.0132] 0.3760 | 0.1058 | 1 0043 0.0178 | 0.5013 | —0.3762 0.0001
0.80 0.9992 | —0.1802| 0.0180( 0.4012 0.1253 | 1,0044 0.0227 0.5M4 |—0.4015| 0.0040
0.85 0.9982 | —0.1810 1 0.0236{ 0.4263 | 0-1459 | 1.0038 0-0277 1 0.5015 | —0.4269| 0’0089
0.90 0.9969 | —0.2028 | 0.0300 | 0 4514 0-1680 | 1.0033 0.0333| 0 5015 | —0.4522| 0 0141
0.95 0.9951 | —0.2261 | 0,0371 | 0.4764 | 0.1912 | 1.0025 0.0391 { 015015 |—0.4778  0.0204
1.00 0.9932 | —0.25041 0.0453 | 0.5015 | 0.2151 | 1.0012 0-04521 0-5015 1—0.4923, 0.0276
¢ =47°
0.00 1.0000 0.0000 1 0.0000[ 0.0000 [—0-0898 [ 0.9976 |—0.0349| 0.4988 0.0000 |  0.0000
0.05 1.0000 0.0008 | —0.0017 | 0.0249 '—0.0892 | 0.9977 |—0.0347| 0. 4988 —0.0247 | —0.0035
0.10 1.0001 0.0024 [ —0.0034 | 0.0489 |—0.0873 | 0.9979 {—0.0343| 0. 4989 —0.0495 | —0.0089
0.15 1. 0004 0.0056 1 —0.0050 | 0.0748 (—0.0642 | 0.0984 |—0.0335 0.4990 —0,0743 | —0.0102
0.20 1.0007 0.0100 | —0.0065 | 0.0999 |—0.0599 | 0.9990 |—0.0324| 04991 —0.0991 | —0.0134
0.25 1.0011 0.0156 | —0.0077 | 0.1248 |_—0.0543 | 0.9997 |—0.0310| 0.4993 |-.0.1240 —0.0165
0.30 1.0016 0.0224 | —0.0088 | 0.4498 | _0.0475( 1.0006 |—0.0293{ 0.4996 | -—0.1488 —0.0193
0.35 1.0021 0.0305 | —0.0098 | 0,4750 1..0.0395| 1.0017 |—0.0273| 0.4999 | —0.1738 —0.0218
(4,40 1.0026 0.0399 [ —0.0100 | 0.2000 } —0.0301 | 1.0028 |—0.0250 0.5001 | —0.1989 —0.0239
.45 1.0029 0.0508 | —0.0104 } 0.2253 1_0.0196 | 1.0040 |—0.0224 | 0.5005 | —0.2279 —0.,0257
.50 1.0034 0.0624 | —0.00981 0.2504 | _—0.0077 | 1.0053 |—0.0194| 0.5008 |—o0.2480 —0.0272
0,55 1.0039 0.0756 | —0.0089 | 0, 2756 0.0054 | 14,0067 |—0.0162 0.5012 | —0.2744 | _o 58y
0.60 1.0043 0.0901 | —0.0075| 0.3010 0.0197 | 1.0081 |—0.0127 0.5046 |—0.2897 | o (g
0.65 1.0048 0.1058 | —0.00568 | 0,3263 0.0354 | 1.0095 }—0.0087] 0.5020 —0.3251 [ _0. 0283
0.70 1.0048 0.4227 | —0.0031 | 0.3518 | 0.0523 | 1,0108 [—0.0045| 0.5025 | —0.3506 —0.0276
0.75 1.0049 0.1409 { 0.0000| 0,3772 0.0703 | 1.0124 0.0001 | 0.5029 |—0.3763 | _o 262
0.80 1.0049 0.1804 | 0.0040] 0.4027 0.0898 | 1.0138 0-0049 | 0.5034 | —0.4019 | 0245
0.85 1.0045 0.1811 [ 0.0087| 0.4283 | 0.1107 | 1.0147 0-0101 | 0.5038 | —0.4276 [ _o 0213
0.80 1.0040 0.2032 [ 0-0140| 0.4538 | 0.1326 | 1.0157 0.0156 | 0.5041 | —0-4537 [ _o 0156
0.95 1.0030 0.2285| 0.0203| 0.4798 | 0.1559 | 1.0165 0-0214| 0.5045 | —0.4796 | ' (131
1.00 1.0018 0.2511 | 0.0275] 0.5052 0.1810 | 1.0170 0.0265 [ 0.5050 | —0-5056 | _¢ o078
P = 48°
0.00 1.0000 0.0000 | 0.0000] 0.0000 [ —0.1045| 0.9845 |_0.0522| 0-4877 0.0000] 0.0000
0.05 1,0000 0.0006 | —0.0026 | 0.0249 | —0.1039| 0.9946 | _0.0520 0-4977 | —0 0244 | —0.0052
0.10 1.0002 0.0024 | —0.0051 | 0.0497 | —0-4021 | 0.9950 |_o.0516] 0.4978 | 0 0489 | —0.0103
0.15 1.0006 0.0508 | —0.0076 ) 0.0746 —0.0890| 0.9957 |_0.0508 | 0.4980 —0.0734 | —0.0154
n.20 1.0010 0.0089 | —0.0100( 0.0996 | —0.0947 | 0.9966 [_0.0498| 0.4982 —0.0979 | —0.0203
0,25 1.0018 0.0155 | —0.0122 | 0.1245 [_0.0802 | 0-9977 | _0.0484 | 0. 4985 —0.1225 1 —0.0251
.30 1.0022 0.0226 | —0.0139| 0.1495 | _0.0825 | 0.9991 | _0.0467| 0.4980 —0+1472 | —0.0296
0.35 1.0030 0.0304 | —0-0157 | 0.1746 | —0.0745 | 1.0007 | _0.0447 | 0.4993 —0-1720 | —0.0339
0. 40 1.0038 0.0399 | —0,01701 0.4997 {_0.0853 | 1.0024 | _0.04:4| 0.4997 —0-1968 | —0.0378
0. 45 1.0047 0.0504 | —0,0179 | 0.2250 | —0.0548 | 1.0044 }__0.0398( 0.5001 —0.2218 | —0.0414
340
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14 uo (§) v, (§) 8, (%) 0, (§) M (§) My () Mi(E) | Mi(E) Q) Qi (8)
0.50 1.0056 0.0623 { —0-0185  0.2501 [—0.0431 [ 1.0066 | —0.0369 | 0.5007 |—0, 2468 | —0.0446
0.55 1.0085 0.0755 | —0.0185 | 0.2756 |—0.0304 | 1.0089 |—0.0336 | 0.5014 |—0,2721 | —0:0473
0.60 1.0074 0.0899 [ —0.0182 | 0-3009 |—0.0159 | 1.0143 | —0.0301 | 0.502¢ | —0.2975 | —0-0495
0.85 1.0083 0.1056 | —0.0171 | 0-3265 |—0.0003 | 4-0148 |—0.0263 | 9.5028 |—0.3229 | —0.0512
0.70 1,0091 0.1226 | —0.0155 | 0.3522 0.0184 [ 1.0164 |—0.0220 | 0.5035 | —0 3485 | —0.0522
0.75 1.0099 0.1407 | —0.0132 | 0.3778 0-0344 | 1.0190 |—0.0176 | 0.5042 | —0.3743 | —0.0527
0.80 1,0105 0.1603 | —0.0102 | 0.4036 0.0539 | 1.0247 |—0.0128 | 0.5050 [—0.4003 | —0-0524
0.85 1.0109 0.1812 [ —0, 0084 | 0. 4229 0-0746 | 1.0242 [—0.0076 | 0-5058 | —0.4265 | —0-0514
0.80 1.0111 0.2033 0.0001 | 0.4555 0.0966 | 1-0268 | —0.0022 | 0.50685 [—0.4528 | —0.0496
0,95 1.0111 0.2267 | 0.0035 | 0.4876 0.1198 | 1-0203 0-0006 | 0.5074 |~--0.4793 | —0.0470
1.00 1.0107 0.2514] 0.0097 | 0,5077 0.1444 | 1.0314 0-0097 | 0.5082 | —0-5059 | —0.0435

® = 49°
0.00 1.0000 0.0000 1 .0p00 [ 0.0000 | —0.1392! 0.9903 | —0.0696 | 0.4951 0.0000| 0-0000
0.05 1.0000 | —0.0006 | .35 | 0-0248 | —0.1386 [ 0.9905 | —0.0695 | 0-4951 | —0.0240 | —0.0068
0.10 1.0003 1—0.0024] 0 009 | 0.0495 | —0.1368 | 0.9910 | —0.0690 | 0-4953 | —0.0480 | —0.01:8
0.15 1.0007 | —0.0056 | _p.0102 | 0-0743 | —0.1338 | 0.9918 |—0.0882 | 0.4955 | —0. 0722 | —0.0205
0.20 1.0013 | —0.0099 | . 0434 | 0-0991 [ —0.1296{ 0.9930 | —0.0672 | 0.4958 | —0 09863 | —0.0272
0.25 1.0021 | —0.0155 _q.0165 | 0-4241 |—0.1242| 0.9946 | —0.0658 | 0.4962 { —u.1206 | —0.0337
0.30 1.0028 | —0.0223 | _g. 0108 | 01491 [ —0.1176 | 0.9964 | —0.0642 | 0.4966 | —0,1449 | —0.0338
0.35 1.0038 |—0.0304|.—0,0218 | 0.1740 | —0.1079 | 0.9985 [—0.0622 | ¢.4972 | —0.1693 | —0. 0468
0.40 1.0049 | —0.0397 | _g 0240 | 0-1992 | —0.4006 | 1.0009 [—0.0600 | 0-4977 | —0-19:145 | —0.0515
0.45 1.0061 | —0.0503 | _n_ o258 | 0.2245 {—0-0902 | 1.0036 |--0.0574 | 0.4985 | —0.2186 | —0- 0568
0.50 1.0073 [—0.0622 [ _p 0273 | 0.2496 | —0-0787 | 1.0066 |—0.0545 | 0.4993 | —0.2434 | —0.0618
0.55 1.0087 | —0.0753 1 __0.0283 | 0.2752 | —0.0656 | 1.0098 | —0.0513 | 0.5001 | —0-2684 | —0-.(G62
0,60 1.0400 | —0.0896 | _0.0287 | 0-3006 | —0.0519 | 1.0133 | —0.0479 | 0-5010 | —0.2937 | —0. 0703
0.65 1.0112 | —0.1054 | _o.0286 | 0-3263 | —0,0366 | 1.0169 | —0.0440 | 0.5020 |—0.3182 | —0.0737
0.70 1.0125 | —0.1213 | _g.0279 | 0-3552 | —0,0200 | 4.0207 |—0.0400 | 0.5029 |—0-3447 | —0.0787
0.75 1.0138 [ —0.1406 | _0.0267 | 0.3781 | —0.0020 | 1.0245 | —0-0355 | 0.5040 |—0.3707 { —0.0790
0.80 1.0149 (—0.1602 | —0.0246 | 0-4042 0.0474 | 1.0285 |_0.0308 | 0.5054 |—0.3968 | —0.0805
0.85 1.0160 |—0.1810 | —0.0219 | 0-4306 0.0376 | 1.0326 | _0.0257 | 0-5063 |—0-4231 | —0-(814
0.90 1.0168 |—0.2032 | —~0.0182 | 0.4568 0.0594 | 1.0367 | __0.0202 | 0.5074 |—0.4498 | —0-0815
0.95 1.0174 [—0.2266 | —0.0140 | 0.4835 0.0826 [ 1.0407 | _0.0145 | 0.5087 [—0,4757 | —0-C809
1.00 1.0178 1—0.25151.—0.0085 | 0.5100 0.1070 | 1.0447 |_0.0084 | 0-5089 | —0.5038 | —0.0795
% =50°
0.00 1.0000 0.0000{ 0,0000| 0-0000 |—0.4736 | 0.9848 |—0.0868 | 0.4924 0.0000 | 0.0000
0.05 1.0001 [ —0.0006 | —0.0043 | 0.0245 | —0.1730 | 0.9850 |—0.0867 | 0.4924 | —0.0233 | —0.0085
0.10 1.0004 | —0.0024 [ —0.0087 | 0.0491 | —0. 4743 { 0.9856 |—0:0862 | 0-4926 | —u.0469 | —0.0170
0.15 1.0010 | —0.0055| —0.0129 [ 0.0738 | —0.4683 | 0-9866 |—0-0855 | 0-4929 | —0.0705 | —0. 0255
0.20 1.0017 | —0.0098 1 —0.0168 | 0.0986 | —0.1643 | 0.0881 |—0-0845 | 0-4932 —0,0841 | —0.0338
0.25 1.0026 | —0.0154 | —0.0208 | 0.1233 | 01588 | 0.9829 [—0-0831 | 0-4937 |—0. 1178 | —0.0418
0.30 1.0038 | —0.0222 | —0.0248 | 01485 | —0.1524 | 0-9922 |—0-0815 | 0-4843 | —0-1419 | —0.0502
0.35 1,0051 | —0.03021 —0.0278 { 0-1731 |—0.1448 | 0:9994 |—0.0796 | 0.4950 |—0.1658 —0,0575
0.40 1.0066 [—0.0395 | —0.0309 [ 0.4939 |—0.1358 | 0-9980 |—0.0774 | 0.4957 | —0.1899 | —0 0648
0.45 1.0082 | —0.0501 [ —0.0336 | 0.2241 | —0.1258 | 1,0014 |—0.0749 | 0.4966 |—0.2141 | —0.0719
0.50 1.0099 | —0.0619 [ —0.0360 | 0.2494 |—0.4144 | 1.0052 |—0.0721 | 0.4976 | —0.2386 (- -0.0783
0.55 1.0118 | —0.0749 | —0.0379 | 0.2748 |[—0.1019 | 1.0093 |—0.0690 | 0.4987 | —0.2633 | —0.0849
0.60 1.0137 | —0.0893 | —0,0392 [ 0.3004 | —0.0881 | 1.0138 |—0.0655 | 0.4899 | —0.2883 | —0.0907
0.65 1.0157 | —0.1049 | —0.0399 [ 0.3262 | _—0.0730 | 1.0484 |—0.0618 | 0.5010 | —0.3125 | —0.0960
0.70 1.0177 | —0.4218 [ —0.0404 | 0.3521 |—0.0567 | 1,0228 |—0.0577 | 0.5024 |—0.3390 | —0.1008
0.75 1.0197 | —0.1401 | —0.0402 | 0.3784 |—0.0391 | 1.0285 |—0.0534 | 0.5037 | —0.364% | —0.1050
0.80 1.0247 | —0.1596 [ —0.0389 | 0.4047 | —0-0203 | 1.0338 |—0-0487 | 0.5052 | —0.39.1 | —0.4071
0-85 1.0238 | —0.1805 | —0.0374 | 0.4306 1.0393 (—0.0437 | 0.5066 | —0.4176 | —0.1113
0.90 1,0254 | —0.2027 | —0.0345 | 0.4572 1.0450 {—0.0385 | 0.5082 | —v. 4443 | —0.1135
0.95 1.0271 | —0.2263 | —0.0311 | 0.4843 1.0507 |—0.0328 | 0.5099 | —0.4714 | —0.1147
1.00 1.0285 1—0.2511 | —0.0267 | 0.5114 1.0565 |—0-0268 | 0.5116 | —0.4990 | —0.1153
@ = 51°
0.00 1.0000 0.0000 {  0.0000 [ 0.0000 [ —0.2079 [ 0.9781 | —0.1039 | 0.4800 |—0.0000 | 0.0000
0.05 1.0001 0.0008 | —0.0052 | 0.0244 |—0.2073 | 0.9783 |—0.1038 | n.4891 |--0.0228 | —a. 0102
0.10 1,0005 0.0024 | —0.0104 | 0.0489 | —0,2056 | 0.9791 |—0.1033 | 0.4802 |—0.0457 | —0.0203
0.15 1,0012 0-0055 | —0.0454  0.0733 |—0,2028 [ 0.9804 |—0.1026 { 0.4896 |—v 0686 | —0.0303
0.20 1.0021 0-0098 | —0.0204 | 0.0980 | —0.1988 | 0.9832 {0 1016 [ 0.4900 {—0'0916 | —u 0405
0.25 1.0032 U-0153 | —0.0259 | 0.1227 (—0.1936 | 0.9844 |—0.1003 | 0.4906 |—0.1147 | —0.0500
0.30 1.0046 0.0220 } —0.0297 | 0-1474 (—0.1873 | 0.9871 [—0.0987 | 0.4913 |—0-1380 | —0.0596
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g 14 (%) o (£) 61 (8) 6 (€) Mg M; (§) M1 (§) Ma(§) Qi1 (8) Qs (%)
0.35 1.0062 | 0,0300 |—0.0340 0.1723 1-0.1798 | 0.9913 |-—-0.0969 0.4921 | —0.1614 [ —0.0690 )
0.40 1.0080 [ 0.0393 |—0.0380| 0 1972 —0.1712 | 0.9947 |__0.0948 | 0.4931 | —0.4850 | —0.0776
0.45 1.0100 | 0.0498 |—0.0416 02224 |_0.1613 | 0.9992 | _0.0922 0.4840 [ —0.2088 | —0.0869
0.50 1.0121 0.0615 [_—0.0449| 0:2476 |—0.1502 1.0027 | —0.0895 0-4952 |—0.2330 | —0.1008
0.55 1.0144 0.0745 [—0.0476 | 0.2731 |—0.1380 | 1.0087 —0.0865 [ 0.4965 | —0-2572 | —0.1033
0.60 1.0169 0.0888 |- 0.0500| 0.2987 |—0.1245 | 1.0141 —0.0832 | 0.4978 | —0.2818 [ —0.1109
0-65 1.0194 | 0.1044 | __0.0517| 0.3247 —0.1088 | 1,0188 {_—0.0795| 0.4993 | —0.3069 | —o 1181
0.70 1.0224 04213 1_0-0529| 0.3507 (—0.0938 | 1.0259 —0.0755 [ 0.5009 | —0.3320 { —0.1247
0.75 1.0247 0.1394 | _0-0535| 0.3770 |—0.0766 1.0322 | —0.0713 | 0.5026 {—0.3577 | —0.1308
0.80 1.0274 0.1590 10.053( 0.4035 {—_0.0581 1.0383 |--0.0868 | 0.5044 (—0-3836 | —0.1362
0.85 1.0300 0.1799 1_0.0526] 0.4304 [—0.0382 1.0448 | _0.0619 | 0.5063 | —0.4100 | —0.1410
0.90 1.0326 0.2021 §0,0509| 0.4509 |-_0.0170 1,0519 | —0.0567 | 0.5082 |—0.4369 | —0.145¢
0.95 1.0351 0.2256 | —0.0486( 0.4848 {_0.0055 1.0583 | —0.0536| 0.5102 | —~0-4641 | —0.1484
1.00 1.0433 0.2505 | —0.04541 0.5123 | —_0.0004 | 1.0668 —0.0453 | 0.5123 | —0-4917 | —0.1509

¢ = 52"
0.00 1,0000 | 0.0000 0.00001 0.0000 | —0.2419 | 0.9703 |—0.1208 | 0.4851 0.0000 0. 0000 LGNS -
0.03 1,001 0.0006 [—0.0060] 0.0242 [—0.2414 | 0.9705 |—0.1208 0.4852 {--0.0200 | _p.0147 ’
0.10 1.,0006 0.0024 |—0.0120 0.0485 | —0.2398 | 0.9744 |—0.1204 0.4854 | —0.0441 —0.0235
0.15 1,0013 | 0,0054 |—0.0179| 0.0729 | —0.2369 | 0.9729 |—0.1197 0.4858 | —0.0601 | _p 0350
0.20 1.0024 [ 0.0153 [—0.0238 0.0972 | —0.2331 | 0.9753 |—0.1187 0.4863 | —0.0886 | —0 0466
0.25 1,0038 [ 0.0207 |—0.0203| ©.1218 |—0.2281 [ 0-9775 |—0.1175 0.4869 | —0.1106 | —0.0580
0.30 1.0053 | 0.0218 |—0.0348 | 0.1463 | —0.2219 | 0.9808 |—0.1159 0.4877 [ —0.1335 | —0.0692
0.35 1.0072 | 0.0298 {—0.0399( 0.1713 {—0.2148 | 0.9845 |—0.1142 0.4887 | —0.1518 | —0.0802
0.40 1.0093 { 0,0400 {—0.0449f 0.1960 {—0.2063 | 0.9888 |—0.1121 0.4898 | —0.1793 [ —0.0909
0.45 L0117 | 0.0484 |—0.0484| 0.2210 | —0.1968 | 0.9936 |—0.1096 0.4909 | —0.2000 | —0.1014
0.50 1.0142 | 0,0610 |—0.0536| 0.2463 [—0.1861 | 0.9989 |—0.1070 0.4923 | —0.2259 | —0.1115
0.55 1.0169 0.0742 [—0.0572] 0.2716 | —0.1742 | 1.0051 | —0.1040 0.4938 | —0.2468 | —0.1213
0.60 1.0199 | 0,0892 | —0.0606| 0.2973 | —0.1612 | 1.0110 |—0.1008 0.4955 | —0.2728 | —0.4307
0.65 1.0229 | 0.4038 | —0.0633| 0-3231 | —0.1468 | 1.0178 | —0.0973 0.4972 [ —0-3013 | —0.1369
0.70 1.0262 | 01206 |—0.0654| 0.3494 | _—0.1313 | 1.0250 | —0.0835 0.4990 | —0.3231 | —0.4480 - T
0.75 1.0294 | 1, 1387 | —0.0670| 0.37:8 |—0.1145 ] 1.0325 | —0.0894 0.5010 | —0.3473 | —0.1560 - ' - ' - .
0.80 1.0328 [ 1,182 | —0.0680] 0-4025 | —0.0064 | 1.0406 —0-0849 1 0 5031 [-—0.3741 —0.1633
0.85 1.0362 1 0.4790 | —0.0671] 0.4295 [—0.0771 | 1.0489 |—0.0801 0,5053 | —0.3951 [ —0 1699
0.90 1.0395 | 0.2011 [—0.0677] 0.4569 | —0.0464 | 1.0576 | —0.0751 0.5076 | —0.4270 | 0 1761
0.95 1.0429 | 0,2247 [ —0.0663| 0.4845 | —0.0344 | 1.0663 |—0.0697 0.5100 [ —0.4547 | —0.1814
1.00 1.0477 | 0.2496 | —0.06401 0.5125 | —0.0110| 1.0756 | —0.0640 05125 1 —0.4818 | —0.1861

@ =53°
0.00 1, 000U 0.0000 00000 0.0000 | —0.2756 | 0.9613 | —0.1378 | 0.480% 0-0000 0.0000
0.05 1. 0002 0.0006 | —0.0069] 0.0240 | —0.2751 | 0.9618 —0.1377 | 0.4807 | —0-0200 | —0.0132
0.10 1.0007 0.0024 1—0.0138| 0.0481 | —0.2735 [ 0.9626 —0.1373 | 0,4809 | —0.0424 { —0.0265
0.15 1.0015 0.0054 | —0,0205] 0.0722 [ —0.2708 ( 0.9643 —0.1366 | 0.4813 | —0.0602 | —0.0396
0.20 1.0027 0.0096 | —0.0272| 0.0964 | —0.2671 | 0.9666 —0.1357 | 0.4819 | —0.0852 | —0.0527
0.25 1.0043 0.0150 | —0.0336 0.1207 | —0-2623 | 0. 9696 | —0.1345 | 0.4827 | —0 4107 —0.0656
0.30 1.0061 0.0216 {—0.0399( 0.1451 |—0.2564 | 0.9731 —0.1330 { 04836 | —0.1284 | —0.0784
0.35 1.0082 0.0295 {—0.0459| 0.1696 | —0.2496 [ 0.9774 —0-1313 | 0.4846 | —0.1520 { —0.0909
0.40 1.0107 0.0286 {—0.0517| 0.1944 | —0.2414 | 0.9822 —0.1203 | 0.4859 | —0.1726 | —0.1033
0.45 1.0134 0.0490 [—0.0572| 0.2193 | —0.2322 | 0.9877 ~0.1270 | 0.4872 1 —0.4942 | —0.1154
0.50 1.0164 0.0608 | —0.06822{ 0.2444 | —0.2219 0.9938 | —0.1245| 0.4888 | —0.2178 | —0.1272
0.55 1.0196 | 0.0735 | _D.0669| 0.2697 —0.2142 | 14,0005 | —0.1216 | 0.4904 —0.2377 { —0.1387
0.80 1.0243 0.0876 | __0.0742| 0.2954 |—0.1978 | 1.0077 —0.4185 | 0.4923 | —0.2643 | —0.1498
0.65 1.0267 0.1030 | —0.0749| 0.3213 [—0.1839 1,053 | —0.1151 | 0.4943 | —0.2826 | —0.1604
0.70 1.0305 | 0.1197 [ _o.0790] 0.3475 | ¢ -1689 | 1.0237 [_0.1113 | 0.4965 {—0-3124 | —0-1708
0.75 1.0344 0.1378 | —0.0804| 0.3741 | —0.1527 | 1.0324 —0.1074 | 0.4987 | —0.3393 | —0-1805
0.80 1.0385 0.1571 {_0.0824( 0.4008 |—0.1352 | 1.0417 —044031 | 0.,5011 | —0.3626 | —0.1898
0.85 1.0427 | 04778 |_0.0837| 0.4100 |—o0.1164 | 170515 | o .0986 0.5036 | —0-3881 | —0.1985
0.90 1.0468 0.1998 | _0.0843| 0.4557 |—0.0964 | 1.0616 —0-0926 [ 0 5063 | —0-4148 | —0,2066
0.95 1.0511 0.2234 | _0.0840( 0.4857 | _0.0748 | 1.0720 —0.0884 | 05091 [_0-4390 | —0. 2141
1.00 1.0553 0.2482 | _—0.08291 0.5120 |—0.0522 | 1.0829 —0.0829 | 0.5120 | —0.4693 | —0.2208

9 = 54°
0.00 1.0000 | 0.0000 0.0000]  0.0000 {—0.3090 | 0.9511 [—0.1545 0.4755 0.0000 0.0000 - - == -
0.05 1.0002 0.0008 | —0.0077| 0.0238 {—0.3085 | 0.9515 [_o¢ 4544 | 0.4756 | —0.0202 | —0.0149
0.10 1.0008 0.0023 [ —0.0454( 0,0475 | —0.3070 { 0.9525 —0.1550 | 0.4759 [—0.0404 | —0.0299
0.5 1.0017 0.0053 | —0.0230{ 0:0714 [—0.3045 | 0.9544 —0-4534 { 0.4763 |.—(-0609 | —0.0447
0.20 1.0031 0.0095 | —0.0305] 0.0954 | —0.3009 | 0.9570 |—o0 1525 { 0.4770 | —0.0813 | —0.0595
0.25 1.0048 0.0148 | —0.0378( 0.1195 |—0.2964 | 0.9603 —0-1543 | 0.4778 [ —0.1019 | —0.0741
0.30 1.0068 0.0215 | —0.0449( 0.1437 {—0.2907 | 0.9642 ~0.1500 | 0.4788 | 0.1227 | —0.0887
0.35 1.0093 0.0292 | —0.0519( 0.1680 {—0-2840 | 0.9690 —0-1483 | 0.4800 | —0 4438 | —0.1030
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vo (£} 61(5) | 64(E) ME | M) | M) | M) | QB Q1 ()

Al
&
°
—
ol
—

0151 0.0485 [ —0-0849 | 0.2173 | —0.2676 | 0.9804 |—0.1442 | 0.4828 |_—0,18686 | —0.1312
-0185 0.0800 (—0.0703 | 0.2424 | —0.2576 | 0.9872 |[—0.1418 | 0.4848 |—0.2090 | —O0. 1448
.0223 0.0727 | —0.0785 | 0.2675 | —0.2487 | 0.9947 |—0.1388 | 0.4865 |—0.2309 | —0.1584
0262 0.0868 | —0-0816 ( 0.2031 | —0.2346 | 1.0028 | —0.1362 | 0.4885 [—0.25%6 | —0.1712
0304 0.1021 | —0.0863 | 0.3191 | —0.2214 | 1.0116 |—0,1327 | 0.4907 |—_0,2787 | —0.1838
.0348 0-1187 | —0.0905 | 0.3452 | —0.2089 [ 1,0208 |—0.1292 | 0.4931 [_0.3003 | —0.1962
0.1367 | —0.0944 | 0.3748 |—0.1912 | 1.0307 [—0.1254 | 0.4957 |_0.3245 | —0.2081
L0441 0.1559 | —0.0970 | 0.3987 | ~0.1744 | 1.0412 |—0.4213 | 0.4084 | —0.3492 [ —0,2195
0491 0.1765 | —0.0994 | 0.4261 | —0.1563 | 1.0521 |—0.1169 | 0.5012 | —0.3745 | —0.2304
0544 0.1985 | —0.4010 | 0.4538 [ —0.1370 | 1.0639 [—0.1123 [ 0.5042 |—0.4003 [ —0.2407
0591 0.2219 | —0.4019 | 0.4821 | —0.1163 | 1.0759 }—0.1072 | 0.5074 |—0.4270 —0.2506
-0643 0.2466 | —0.1019 | 0.5108 | —0-0943 | 1.0884 [—0.1018 | 0.5107 | —0.4542 | —0-2597

1.0121 0.0382 [-~0.0581 | 0.1925 [ —0,2763 | 0.9744 |—0.1464 | 0.4814 |—0.1655 { —0,1173 l l l

roocoooooooos
BEERBIAIRZNBES
e e em e e

1]

§=1

(<)

¢ = 55°
0.00 1.0000 0.0000 | 0.0000{ 0.00c0 | —0.3420 | 0.9397 |—o0.1710 | 0.4698 0-0000 | 0.0000 i
0.05 1.0002 |—0.0006 [ —0.0085| 0.0234 | —0.34151 0.9400 |—0.1709 | 0.4699 | —0:0191 | —0.0160 - T E  =.
0.10 1.0008 |—0.0023 | —0.0170 | 0.0470 | —0.3401 | 0.9412 | —0.1705 | 0.4702 | —0.0383 | —0.0321
0.15 1.0019 1—0.0053 | —0.0255 | 0.0706 | —0.3376 | 0.9433 |—0-1699 | 0.4707 | —0.0586 | —0. 0481
0.20 1.0034 [—0.0094 | —0.0339 | 0.0942 [ —0.3344 | 0,9481 |—0.1691 | 0.4714 | —0.0770 | —0.0641
0.25 1.0053 |—0.0147 | —0,0420 | 0.1181 | —0.3300 | 0.9496 |—0.1680 | 0.4723 | —0.0965 | —0.0798
0.30 1.0076 |—0.0212 | —0.0500 | 0.1420 | —0.3247 | 0.9539 |—0.1667 | 0.4732 | —0.1164 | —0.0055
0.35 1.0103 1—0.0289 | —0.0577 [ 0.1662 | —0-3183 | 0.9592 |—0.1652 | 0.4747 |—0.1304 | —0_t111
0,40 1.0134 1 —0.0378 { —0.0654 | 0.1905 | —0.3110 | 0.9851 |—0.4634 | 04762 | —0.1566 | —0 1265
0.45 1.0168 |—0.0480 [ —0.0725 | 0.215¢ { —0.3026 [ 0.9719 |—0,1613 | 0.4779 [ —0-1773 | —0.1418
0.50 1.0206 |—0.059: [ —0,0795] 0.2407 | —0.2933 | 0,9794 |—0.1580 | 0.4797 [—0.1981 | —0.4578
0.55 1.0247 | —0.0720 | —0.0860 | 0.2651 | —0.2827 | 0,9875 |—0.1563 | L-4818 |—0.2197 | —0 1714
0.60 1.0292 —0.0859 | —0.0920 [ 0.2904 | —0.2713 | 0,9965 |—0.1535 | 0.4841 |—0.2414 | —0 4858
0.65 1.0340 |—0.1010 [ —0.0877 | 0.3162 [ —0.2587 | 1.0061 |—0.1504 | 0.4866 |—0.2637 | —0.2000
0.70 1.0390 ]--0.1175 | —0,1029 | 0.3424 | —0.2449 | 1,0165 |—0.1471 | 0.4802 |—0.2865 | —0.2138
0,75 1.0442 |--0.1353 [ —0.1075| 0.3690 | —0.2300 | 1.0275 |—0.1434 | 0.4990 |—0.3100 | —0.2268 - :
0.80 1.0497 | —0.4544 | —0.1145 | 0.3960 | —0.2139 | 10392 |—0.4395 | 0.4950 |—0.3339 | —0.2402 . - ' - '
n.85 1.06564 [—0.1749 | —0.1150 | 0.4234 | —0.1965 | 1.0516 |—0.1353 | 0.4981 | —0.3585 | —0.2528
0,90 1.0812 | —0.1967 | —0.1171 | 0.4543 | —0.1781 | 1.0845 |—0.4308 | 0.5015 |—0.3838 | —0.2649
0.95 1.0671 [—0.2200 | —0.1232 { 0.4826 | —0.1582 | 1.0780 [—0.1261 | 0.5050 |—0.4110 | —0.2814
1.00 1.0732 | —0.2447 1 —0.1203 ¥ 0.5087 | —0.1380 | 1.0922 1_0.1210 | 0.5087 |—0.4366 | —0.2876

@ = 56°
0,00 1.0000 0.0000 | 0.0000 | 0.0000 |—0.3764 | 0.9272 } —0.1873 | 0.4636 0.0000 | 0,0000
0.05 1.0002 1—0.0006 | —0,0094 [ 0.0232 | —0.3760 | 0.9276 | —0.1872 | 0.463G |—0.0180 | —0.0174
0.10 1.0009 |—0.0023 | —0.,0188 | 0.0464 | —0.3746 | 0.9289 | —0.1869 | 0.4640 |—0.0359 | —0.0347
0.15 1.0021 -0 0052 {—0.0281 | 0.0696 | —0.3724 | 0.9311 |—0.1863 | 0.4646 [—0.0541 | —0 0520
0.20 1.0037 | —0.0083 [—0.0373 | 0.0930 | —0,3692 | 0,9341 |—0.1855 | 1.4653 |—0,0723 | —0.0693
06.25 1.0058 | —0.0145 | —0.0463 | 0.1162 [-—0.3652 | 0,9380 |—0.1845 | 0.4663 |—0.0807 | —0 0864
0,30 1.0083 [—0.0210 | —0.0553 | 0.1403 | —0-3601 | 0.9428 |—0.4833 | 0.4675 |—0.1094 | —0.1035 ‘
0.35 1.0113  [—0.0285 | —0.0640 | 0,1642 | —0,3542 | 0.9484 | —0.1B18 | 0.4689 |—0.1282 | —0.1205 )3
0.40 1.0147 ]-0.0874 [—0.0724 | 0.1882 | —0.3472 | 0.9548 |—0.1800 | 0.4705 | —0.1475 | —0. 1376
0.45 1.0185 |—0.0473 | —0 0806 | 0.2125 | —0.3394 | 0.9721 |—0.1781 | 04726 [--0.1670 —0.1540
0.50 1.0227 1—0.0587 | —0.0884 | 0.2372 | —0.3306 | 0.9702 |—0,1760 | 0.4743 [—0.1859 | —0.1704
0,55 1.0273 | —0.0711 [—0.0959 | 0.2622 |~0.3207 | 0.9791 |—0.1735 | 0.4766 |—0.2073 | —0.1867
0,60 1,0323 |—0.0848 —0.1030 | 0.2875 | —0.3099 | 0,9889 [—0.1709 | 0.4791 [—0.2280 | —0. 2027
0,65 1.0376 |—0.0998 | —0.1097 | 0.3131  —0.2979 | 1.0095 |—0,1680 | 0.4818 [-—0.2454 | —0.2185
0.70 1.0428 |—0.1162 | —0.1159  0.3392 | _0.2849 | 1.0108 |—0.1647 | 0.4847 |—0.2713 | —0.2340
0.75 1.0491  [—0-1358 [—0.1215  0.3658 |—0.2708 | 1-0328 [—0.1613 | 0.4877 |—0.2938 | —0. 2492
6,80 1.0852 1—0-1527 | —0.1268 | 0.3928 | —0.2555 | 1.0356 |—0.1576 | 0:4910 |—0.3170 | —0.2640
0.85 1.0617 1—0-1732 | —0.4314 | 0.4204 | —0.2391 [ 1.0592 |—0.1537 | 0.4945 [—0.3408 | _0. 2784
0.90 1.0882 1—0.1947 | —0-4352 | 0.4482 [—0,2245 | 1.0635 |—0.1494 | 0.4981 |—0.3653 | —0.2926
0.95 1,076 [—0.2179 | —0.1385 | 0.4768 | —0.2025 | 1.0884 |—0-1449 { 0.5019 [—0-3906 | _0. 3062 AN
1.00 1.0820 1—0.2424 1—0-1409 | 0-5080 | —0.1823 | 1.0942 1—0.1400 | 0.5059 '—0.4155 | _0.3199

®=>57°

HE - == -

0,00 1. 0000 0.0000 | 0.0000] 0.0000 [—0,4067 | 0.9135 |—0.2033 | 0.4567 0.0000 | 00000
0.05 1.0002  |—0.0006 | —0.0102 | 0.0228 | —0.4063 | 0.9140 |—0.2032 | 0.4568 |—0.0167 | —0.0186
0-10 1.0010  p—0.0022 | —0.0203 | 0.0457 |—0,4050 | 0.9154 [—0.2029 | 0.4572 | —0 0335 | —0.0373
0-15 1.0023 1-0,0051 {—0,0304 [ 0,0686 | —0.4030 | 0.9177 [—0.2024 | 0.4577 |-—0.0503 | —0.0558
0:20 1.0041 1-0,0094 | —0.0404 [ 0.0917 | —0.4000 | 0.9209 |—0.2016 | 0,4585 | _0 0674 [ —0.0743
0.25 1-0063 [—0.0143 | —0.0502 [ 0.1189 | —0.3963 | 0-9251 {—0-2007 | 0-4596 | _0.0845 | —0.0028
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13 uo (§) v () 6, (8) 61 (§) My (E) M; (8) M (§) My (§) Q1(8) Q1 (§)
0.30 4.0090 | —0.0206 [ —0.0599 | 0,1:82 |—0.3916 0.9302 | —0.1996 | 0.4609 | —0.1019 | —0.1113
0.35 1.0122 | —-0.0282 | —0.0694 | 0.1619 |—0.3860 | 0.9362 [ —0.1982 | 0.4G24 —0.4195 | —0,1296
0.40 1.0468 § —0.03¢8 [—0.0786 | 0.1837 | —0,379% 0.9431 | —0.1965 | 0.4641 | —0.1376 —0,1478
0.45 1.0202 | —0.0467 | —0.C877 | 0.2007 | —0.3722 0.9508 | —0.1948 [ 0.4664 | —0.1559 [ —0.1650
0.50 1.0247 1 —0.0578 [—0.0964 | 0.2242 [—0.3640 | 0.9596 | —0.1927 0.4683 | —0.1746 | —0, 1838
0.55 1.0297 | —0.0702 [—0.1048 | 0.2:89 | —0.3548 0.9693 | —0.1905 0.4706 } —0.4939 [ —0.2016
0.60 1.0352 | —0.0837 [—0.1126 | 0.2840 |—0.3446 0.9798 | —0.1680 | 0,4733 | —0.2135 | —0.2191
0.65 1.0410 | —0.0086 | —0.1204 | 0.3095 | —0.3334 0.9911 | —0.1853 1 0.4762 | —0.2337 { —0.2365
0.70 1.0473 | —0.1147 [—0.1276 | 0.3355 | —0.3211 1.0034 | —0.1823 | 0.4792 | —0.2548 | —0.2528
0-75 1.05:8 | —0.1222 [—0.1343 | 0,3620 [—0.3079 1.0464 [ —~0.1790 | 0.4826 | —0.2761 | —0.2707
0.80 1.0607 | —0.1500 [—0.1405 [ 0,3889 | —0.29:p 1.0303 | —0.1756 | 0.4863 [ —0.2982 | —0.2873
0.85 1.0677 | —0.4711 [—=0.1460 | 04164 |--0.2782 1.0450 | —0.1719 | 0.4898 | —0.3210 | —0.3037
0.99 1,0757 | —0.1926 | —0.1510 } 0.4444 | —0.2645 1.0606 | —0.1679 | 0.49:8 |—0.3447 | —0.3197
0.95 1.0829 | —0.,2154 |—0.1585 [ 0.4731 | —0.2436 1.0770 | —0.41637 | 0.4980 | —0.3690 | —0.3353
1.00 1.0908 |-—0.2399 1—0.1590 [ 0.5023 |—0.2245 1.0941 | —0.1591 1 0.5023 | —0.3942 | —0.3506

= 58°
0.00 1.0000 0. 0000 0.0000 | 0.n000 |—0.42 0.8988 | —0.2192 | 0.4494 0.0000 0.0000
0.05 1.0003 | —0.0006 | —0.0110 | 0.0225 |—0.4.80 0.8993 | —0.2191 | 0.4495 | —0.0153 | —0.0197
0.10 1.0010 | —0.0022 | —0.0219 | 0.0449 |—0.4:60 0.9007 | —0.2188 | 0.4499 | —0.0309 | —0. 0395
0.15 1.0025 [ —0.0050 [ —0.0328 | 0.0676 |—0.4349 0.8032 | —0.2483 | 0.4505 | —01.0463 —0,0592
0.20 1.0044 1 —0.0090 [ —0.0425 | 0.0903 | —0.4223 0.9087 | —0.2477 | 0.4514 | —0.0621 | —0.0789
0,25 1.0068 | —0.0140 | —0.0542 | 0.1434 | —0.4287 0.9111 | —0.2168 | 0.4545 | —0.0778 | —0. 0986
0.20 1.0098 | —0.0203 [ —0.0648 | 0.4361 | —0.4245 0.9165 | —0.2128 | 11,4538 | —0.0939 { —0.1180
0.35 1.0133 [ —0.0277 | —0.0751 | 0.1594 | —0.4194 0.9229 | —0.2145 | 0.4554 [ —0.1103 | —0.1375
0.40 1.0173 | —0.0362 | —N.08:2 | 0.1829 | —0.4134 | 0,9302 | —0.2130 | 0. 4573 | —0.1270 [ —0.1570
0.45 1.0218 [ —0.0460 1 —0.0951 | 0.2067 |[—0.4066 { 0.9286 | —0.2113 0.4594 | —0,1441 | —0.1763
0.50 ( 1.0268 | —0.057C | —0.1047 [ 0.2308 | —0.3989 [ 0.9578 | —0.2094 | 0.4617 | —0 1615 | —0.4955
0.55 1.03:2 | —0.0691 [ —0.4141 [ 0.2554 | —0.3904 | 0.9581 [ —0.2074 | 0.4643 | —0.1795 | —0.2447
0.60 1.0382 | —0.082¢ | —0.1265 | 0.2802 | —0.3810 | 0.9693 | —0.2051 | 0.4670 | —0.1979 | —0.2337
0.65 1.0448 ] —0.0971 | —0.4316 | 0.3055 |—0.3706 | 0.9814 | —0.2025 | 0.4701 | —0.2170 —0.2525
0.7C 1.0514 | —0.1130 | —0.1398 | 0.3314 {—0.3593 | 0.9945 | —0.1998 | 0.4734 -0.2355 [ —0.2712
0.75 1.0585 | —0.1303 1 —0.1476 | 0.3577 |—0.3470 | 1.0085 | —0.1968 | 0.4769 —0.2568 | —0.2898
0.80 1.0661 | —0.1488 [—0-1549 | 0.3620 |—0.3336 | 1,0235 | —0.1936 | 0.4807 | —0.2778 | —0.3082
0.85 1.0741 | —0.1687 [—0.1617 | 0.4120 [—0.3192 1.0392 | —0.4902 | 0.4847 | —0..996 | —0.3262
0,90 1.0823 |—0.1901 |--0.1679 | 0.4400 |—0.3037 | 1.0561 —0.1864 | 0.4889 | —0.3:21 | —0.3440
0.95 1.0008 | —0.2127 | —0.1734 | 0.4687 [—0.2870 | 1.0737 —0.18:5 | 0.4934 |--0.3455 | —0.3017
1.00 1.0996 |-—-0.2369 |—0.1784 | 0.4986 |—0.2681 1.0922 {—0.1783 | 0.4981 | —0.3695 | —0.3790

v = 59.
0.00 1.0000 0.0000 } 0.0000 | 0.0000 }|—0.4605] 0.8829 | —0.2347 | 0.4414 0.0000 | 0.0000
0.05 1.0003 1-0.0005 | —0.0117 | 0.0221 |—0.4692 | 08834 | —0.2346 | 0.4415 | —0.0140 | —0 0207
0.10 1.0011 | —0,0022 | —0.0235 | 0.0441 |—0.4681 0.8850) | —0.2344 | 0.4419 | —0.0280 —0.0414
0.15 1.0026 | —0.0050 | —0.0351 | 0.0864 | —0.4664 0.8874 | —0.2339 | 0.4426 | —0.0421 —0.0622
0.20 | 1.0050 |—0.0088 | —0.0466 | 0.0887 |—0.4639 | 0.8912 | —0.2333 | 0.4435 | —0.0564 | _0 082
0.25 1.0073 | —0,0140 | —0.0582 | 0.1112 —0.4607 | 0.8958 | —0.2325 | 0.4446 | —0.0n9 —0.1035
0.30 1.0107 [—0.0200 [ —0.0685 | 0.1338 |-—-0.4568 | 0.9015 | —0.2316 | 0.4461 —0.0856 | —0, 1241
0.35 1.0443 10,0272 | —0.0807 | 0.1567 | —0.4522 | 0.9083 | —0.2304 | 0.4477 ~0.1006 |.—0.1448
0.40 1.0186 |—0.0356 | —0.0917 | 0.1799 |—0.4467 0.9161 | —0.2290 | 0.4497 | _0.1158 —0.1654
0.45 1.0234 | _—0.0452 | —0.1024 | 0.2024 |[—0.4406 | ©.9248 ~—0.2276 | 0.4519 | —0.1315 —0.1859
0.50 1.0288 | —0,0560 | —0.1129 | 0.2272 |—0,4338 | 0.9348 | —0.22¢ 0.4543 | —0.1476 {—0.2063
0.55 1.0355 (—0.0680 | —0.1232 [ 0.2514 |—0.4258 | 0.9455 | —0.2240 | 0.4571 —0-1641 )—0.2268
0.60 1.0411 10,0811 | ~—0.1331 | 0.2761 |—0,4172 | 0.9573 | —0.2219 0.4600 {--0.1813 |—0.2471
0.65 1.0481 [-0,0955 | —0.1427 [ 0.3011 (—0.4076 | 0.9702 ~0,2185 [ 0.4633 | —0,1989 [._0.2673
0.70 1.0554 |-—0.1112 { —0.1519 ( 0.3268 |—0.3973 | 0.9840 | —0.2170 0.4667 | —G.2172 |—0.2875
0.75 1.06832 |-0.1282 | —0-1608 ] 0.3528 |—0.3860 0.9989 | —0.2143 | 0.4704 | —0.2361 —0.3075
0.80 1.0715 1—0.1466 { —0.1691 | 0.3796 |—0.3738 1.0147 | —0.2113 | 0.4744 —0.2¢58 |—~0.327%
0.85 1.0801 | —0.1662 | —0.1769 | 0.4069 —0.3603 1.0317 | —0.2082 | 0.4787 —0.2763 |—0.3472
0.90 1.0893 |—0,1873 | —0.1843 | 0.4349 |—0.3460 1.0495 | —0.2048 | 0.4832 —0.2975 {—0.3668
0.95 1.0086 |—0.2097 | —0.1910 | 0.4636 [—0.3306 1.0683 | —0.2012 | 0.4879 —~—0.3197 |—0.3863
1.00 1.1083 |—0.2336 | —0.1972| 0.4929 |—0.3140 1.0881 | —0.1973 | 0.4929 —0-3427 1—0.4058

9= 60°
0.00 1. 0000 0.0000 | 0.0000| 0.0000 |—0. 0.8660 | —0.2500 | 0.4330 0.0000 | 00000
0.05 1,0003 [—0.0005 | —0.0125 1 0-0216 |—0.4957 | 0.8664 —0.2499 | 0.4331 ] —0.0125 {—0.0108
0.10 1.0012 {—0.0022 { —0.0250 | 0.0432 |—0.4988 | 0.8:80 —0.2497 ] 0.432 —0.0250 |—0.0216
0.15 1.0028 | —0.0049 | —0.0374 [ 0.0850 |—0,4973 | 0.8708 —0.2493 | 0.4342 [ -0.0377 [—0.0324
0.20 1.0050 | —0.0087 | —0.0408 | 0.0870 | —0.4950 | 0.8745 —0.2488 | 0.4352 | —0.0:05 [—0.0433
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£ o (&) oo (§) 0, (8) 0; (£) M, (&) My (B) M, (8) My (8) Qi (&) Q1 ()
0.25 1.0078 (—0,0136 { —0.0620 | 0.1090 |—0.4921 | 0.8793 |—0.2481 | 0.4384 —0.0634 | —0.0541
0.30 1.0142 | —0.0196 | —0.0741 | 0.1312 | —0.4886 | 0.8853 |—0.2472 | 0.4379 —0.0788 | —0.0649
0.35 1.0152 1 —0.0267 | —0.0862 | 0.1537 |—0.4839 | 0.8924 |—0.2462 | 0.4398 —0.0901 | —0.0757
0.40 1.0198 | —0.0350 | —0,0979 | 0.1765 | —0.4796 | 0.9005 | —0.2449 | 0.4416 —0.1040 | —0.0885
0.45 1.0250 [ —0.0444 | —0.4096 | 0.1998 | —0.4740 | 0.9097 |—0.2438 | 0.4439 | —o 1182 | —0.0974
0.50 1.0307 | —0.0550 | —0.4240 | 0.2232 |—0.4678 | 0.9200 |—0.2420 | 0 4485 |—o 1328 | —0.1082
0.55 1.0371 | —0.0667 | —0.1322 | 0.2471 |—0.4607 | 0.9314 {—0.2404 | 0 4494 | —0.1479 | —0.1190
0.80 1.0440 | —0.0797 | —0.1430 | 0.2768 |—0.4530 | 0.9438 |—0.2385 | 0 4525 —0.1636 | —0.1298
0.85 1.0544 | —0.0039 | —0.4535 | 0.2062 {_—0.4444 | 0.9573 [—0.2365 | 0.4558 —0.1798 | —0.1405
0.70 | 1.0583 | —0.1093 [ —0,1633 [ 0.3215 | —0.4350 | 0.9719 |—0.2341 | 0.4595 |—0 1968 | —0 1513
0.75 1.0678 | —0.1281 [ —0.1738 | 0.3476 {—0.4237 | 0.9876 |—0.2317 | 0.4834 —0.2142 | —0.1621
0.80 1.0767 | —0.1441 | —0.1832 [ 0.3741 | —0.4135 | 1.0043 |—0.2289 | 0.4676 —0.2324 ;| —0.1728
0.85 1.0861 1 —0.1635 | —0.1021 | 0.4012 | —0.4015 | 1.0222 |—0.2261 | 0 4721 —0.2514 | —0.1835
0.90 1.0850 | —0.1842 | —0.2006 | 0-4200 |—0.3884 | 1.0410 |—0.2230 | 04788 —0.2713 | —0.1941
0.95 1.1061 1-—0.2084 [ —0.2088 1 0.4578 | —0.3743 | 1.0811 |—0.2188 | 0.4818 —0.2920 | ~0.2047
1.00 1.1367 | —0.2300 | —0.2164 | 0.4870 |—0.3591 | 1.0821 |—0.2162 | 0 4871 ~—0.3138 | -0:2153
o= 61°
0,00 1. 0000 0.0000 0.0000 [ 0.0000 | —0,5299 | 0.8480 |—0.2649 | 0.4240 n0.0000{ 0.0000
0.05 1.0003 1—0.0005 { —0.0132 | 0.0218 | —0.5296 | 0.8486 |—0.2648 | 0.4241 ~—0.0109 | —0.0225
0.10 1.0013 1-0.0021 | —0,0265 | 0.0425 |—0.5288 | 0.8502 |—0.2646 0 4248 | —0.0220 [ —0.0449
0.15 1.0030 | —0.0048 { —0.0396 | 0.0838 |—0.5274 | 0.8531 |—0.2643] 0 4253 1 —0.0331 | —0.0874
0,20 1.0053 | —0.0085 [ —0.0528 | 0.0852 |—0.5255 | 0.8570 | —0.2638 | 0.4262 —0.0443 | —-0.0899
0.25 1.0083 | —0.0132 | —0.0658 | 0.1069 ~—0,5230 | 0.8620 |-—-0.2632| 0.4275 | —0.0558 | —0.1124
0,30 1.0119 | —0.0182 | —0.0788 | 0.1287 |—0.5199 | 0.8682 | —0.2625 | 0.4290 —0.0675 | —0.1350
0.35 1.0161 1.-0.0262 | —0,0015 | 0.1508 —0.5163 | 0.8755 |—0.2616 | 0.4309 | —0.0794 { —0.1576
0.40 1.0210 1 —0.0343 | —0.1042 | 0.4732 | —0.5120 | 0.8840 }—0.2604 | 0.4330 —0.0917 | —0.1802
0.45 1.0265 | —0.0435 { —0.4167 | 0.1959 | —0.5071 | 0.8936 |—0.2503 | 0.4354 —0.1043 | —0.2028
0. 50 1.0327 1 —0.0539 | —0.1290 | 0.2170 | —0.5015 | © 3 | —0.2579 | 0.4380 | —0.1174 | —0.2254
0.55 1.0385 | —0.0654 | —0.1410 | 0.2425 | —0.4954 | 0.9161 —0.2565 { 0.4410 [ —0.1309 | —0.2482
0.60 1,0468 | —0.0781 | —0,1529 | 0.2665 |—0.4885 | 0.9292 |—0.2548 | 0.4442 —0.1450 | —0.2708
0.65 1.0547 | —0.0021 | —0.1644 | 0.2910 | —0.4808 | 0.9433 |—o0.2529 | 0.4477 —0.1597 | —0.,2937
0.70 1,0833 (—0.1073 | —0.1757 | 0.3161 —0,4725 | 0.9586 |—0.2509 | 0,456 [ —0.1750 | —0.3165
0.75 1.0722 1 _0.1236 { —0.1865 | 0.3418 | —0.4634 | 0.9748 |—0.2488 0.4557 |—0.1930 ) —0.3393
0.80 1.0819 10,1414 | —0.1972 | 0.3681 | —0.4525 | 0.9926 |—0.2463 | 0 4600 —0.2077 | —0,3621
0.85 1.0019 10,1605 | —0.2073 | 0.3950 |—0.4425 | 1.0112 |—0.2439 | 0 4847 —0.2262 | —0.3851
0.90 1.1026 | 0,1809 | —0.2170 | 0.4227 |—0.4308 | 1.0311 }—0.2411 | 0 4697 —0).2435 | —0.408
0.95 1.1136 1--0.2027 | —0.2260 | 0.4511 [—0.4182 | 1.0524 [—0.2382 0.4749 | —0.2617 | —0.4309
1.00 1.1252 1-0.2260 | —0.2349 | 0.4805 | —0.4045 | 1.0742 | _0.2350 0.4805 1—0.2829 | —0.4539
¢ =62°
0.00 1.0000 0,0000 0.0000 | 0.0000 | —0.5592 | 0.8290 |—0.2796 | 0.4145 0.0000 | 0.0000
0.05 1.0003 |—0.0005 | —0.0132 | 0.0207 |-—0.5590 | 0.8286 |—0.2795 | 0.4146 |—0.0084 | —0.0232
0.10 1.0013 §-—0,0020 | —0.0265 | 0.0415 | —0.5583 | 0.8313 [—0.2794 | 0.4151 | —0.0188 | —0.0464
0.15 1.0030 |—0.0046 | —0.0396 | 0.0624 |—0.5571 | 0.8342 [—0.2791 | 0.4158 |—0.0283 | —-0.0695
0.20 1.0053 1 _0.0083 | —0,0527 | 0.0834 |—0.5555 | 0.8383 |—o0.2787 0.4168 |—0.0380 | —0,0028
0.25 1.0083 |_0.0129 | —0-0658 | 0.1045 | —0.5533 | 0.8435 | _—0.2782 0.4181 [—0.0477 | —0.1164
0.30 1.048 |_0.0187 | —0-0788 | 0.1259 |-—0.5507 | 0.8499 |—0.2775 0.4197 | —0.0578 | —0.1394%
0.35 1.0181 | _0.0256 | —0.0016 | 0.1478 | —0.5475 | 0.8574 | —0.2768 0.4216 | -0.0682 | —0.1629
0.40 1.0211 | _0.0336 | —0-1043 | 0.1695 | —0.5438 | 0.8662 |—0.2758 0.4238 | —0.0788 { —0.1862
0.45 1.0268 | _0.0426 | —0.1169 | 0.1918 | —0.5386 | 0.8760 | _0n.27i8 0.4262 | —0.0899 | —0.2098
0.50 1.0327 {_0.0527 | —0.1363 | 0.2144 | —n.5348 | 0.8871 |—0.2736 | © 4290 | —0.1013 | —0.2334
0.55 1.0395 [0 —0.1415 | 0.2376 [—0.5205 | 0.8994 |_—0.2724 | 0.4220 |--0.1133 —0.257T1
0.60 1.0468 | _0.0765 | —0.1535 | 0.2612 |—0.5235 | 0.9128 |—0.2709 0.4255 [—0.1257 | —0.2809
0.65 1.0549 (—0.0002 | —0.1653 | 0.2884 |—0.5189 | 0.9275 |—0.2693 0.4391 | —0,1387 | —0.3047
0.70 1.0834 | _0.1050 | —0.1768 | 0.3103 |—0.5096 | 0.9434 —0.2676 | 0.4430 | —0.1524 | —0.3287
0.75 1.0725 {__0.1212 | —0.1881 | 0.3354 | —0.5017 | 0.9604 |_—_0.2657 0.4473 | —0.1667 | —0. 3528
0.80 1.0822 [_p, 1385 | —0.1680 | 0.3615 | —0.4n31 | 0.9785 |—0.2637 0.4518 [—0.1817 | —0.3770
0,85 1.0024 |_0,4572 | —0.2004 | 0.3881 | _0.4835 | 0.9981 |_0.2615 0.4567 [—0.1976 { —0.4013
0.90 1.1031 10,1774 | —0.2195 | 0.4155 [—0.4732 | 1.0188 [—0.2590 | © 4618 | —0.2163 | —0-4256
0.95 1.1143 |_0.1987 | —0.2293 | 0.4439 |—0.4621 1-04‘06 —0.2565 | 0.4672 | —0.2318 | —0.4501
1.00 1.1261 |_0.2216 | —0-2387 | 0.4729 | —0.4500 | 1.0637 |—0.2538 | 0.4729 | _o.2503 —0.4748
» = 63"
0.00 1.0000 0.0000 | 0.0000 | 0.0000 |—0.5878 | 0.8090 |—0.2939 | 0.4045 0.0000 | 0,0000
0.05 1.0004 |—0.0005 | —0.0447 | 0.0202 |—0.5876 | O 8086 | —0.2039 | 0.4048 |—0-0077 | —0.0278
0.10 1.0014 |—0.0020 | —0.0294 { 0.0405 |—0.5870 0.8114 |—0.2937 | 0.4051 |—0.0156 |--0.0475
0.15 1.0033 | —0,0045 | —0.0440 | 0.0609 {—0.5861 | 0.8143 |—0.2035 | 0.4058 |{~0.0234 -0.0714
0.20 1.0059 | —0.0081 |—0.0586 | 0.0844 [—0.5847 | 0.8185 [—0.2931 | 0.4069 |—0.0315 —0.0953
0.25 1.0082 | —0.0126 | —0.0732 | 0.1020 |—0.5830 | 0.8238 |—0.2827 | 0.4082 |—0.0396 —0.1192
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4 uq (£) o (€) 6, (§) 6, (£) ME) | M(B) | Mi®) | Mi(E) Q%) Qe (8) ! l '
0.30 1.0132 | —0.0183 | —0.0877 | 0.1229 | —0. 0.8304 | —0.2922| 0.4098 | —0.0480 | —0.1432
0.35 1.0179 | —0.0250 | —0.1021 | 0.1441 | —0.5783 | 0.8382 | —0.2016{ 0.4118 | —0.0567 | —0.1672
0.40 1.0234 |—0.0828 | —0.1162 | 0.4656 | —0.5754 | 0.8474 | —0.2007| 0.4140 | _0,0857 | —0.1824
0.45 1.0295 | —0.0i15|—0.1305 | 0,1874 | —0.5720 | 0.8573 | —0.2809 0.4185 | —0.0751 | -0.2158
0.50 1 —0.0515 | —0.1414 | 0.2008 | —0.5684 | 0.8687 '| —0 0.4104 | —0.0849 | —0.2402
0.55 1.0440 |—0.0625 [—0.1583 | 0.2324 | —0.5643 | 0.8813 | —0.2879| 0.4226 | —0.0051 | —0.2646
0.80 1.0523 |—0.0747 | —0.1719 | 0.2555 | —0.5507 | 0.8852 | —0.2867{ 0.4200 ! —0 1059 | —0.2804
0.85 1,082 |—0.0880 [—0.1853 | 0.2793 | —0.5548 | 0.9103 | —0.2854{ 0.4207 | —0 11714 | —0.3143
0.70 1.07 —0.1072 | —0.1987 | 0.3036 | —0.5495 | 0.9286 | —0.2839| 0.4338 ! —p 4201 | -0.3392
0.75 1.0810 [—0.14185|—0,2117 | 0.3287 | —0.5437 | 0.9442 | —0.2823| 0.4381 | —0 1417 | —0.3644
0.80 1.0919 | —0.1355 | —0.2244 | 0.3543 | —0.5376 | 0.9681 | —0.2808[ 0.4428 | —0.1550 | —0.3898
0.85 1.1035 | —0.1538 | —0.2368 | 0.3807 | —0.5310 | 0.9882 | —0.2787| 0.4478 | —0.1691 [ —0.4154
0.90 1.1156 | —0.1735|—0.2489 | 0.4078 | ~0.5239 ;1 1.0047 | —0.2767| 0.4531 | —0.1839 | —0.4412 - - -
0.85 1.1284 | —0.1945| —0.2607 | 0.4359 | —0.5165 | 1.0273 | —0.2746| 0.4587 | _0, 1997 | —-0.4672
1.00 1.1417 | —0,21691-0.2721 | 0.4847 | —0.5085 1 1.0543 | —0.2722] 0.4647 | _0.2163| —0.4933

? =64°
0.00 1.0000 | —0.0000 { —0.0000 | 0.0000 | —0,6157 | 0.7880 | —0.3078| 0.3940 | 0.0000 | ©.0000
0.05 1,0006 | —0.0005 | —0.0154 § 0.0197 | —0.6156 | 0.7886 | —0.3078 | 0.3941 | —0.0060 | —0.0242
0.10 1.0045 | —0.0019 | —0.0308 { 0.0395 | —0.6145 | 0.7904 | —0.3077| 0.3946 |—0.0121 { —0.0485
0.15 1.0035 | —0.0044 | —0.0461 | 0,0583 | —0.6143 | 0,7834 | —0.3075| 0.3954 |—0.0183 {—0.0729
0.20 1.0061 | —0.0079 | —0.0615 | 0.0793 | —0.6433 | 0.7977 | —0.3072| 0.3964 |—0.0246 | —0.0972
0.25 1.0086 | —0.01231—0.0768 | 0.0994 | —0.6149 | 0.8032 {—0.3080| 0.3978 | --0.0340 { —0,1217
0,30 1.0138 | —0.0178 | —0.0019 | 0.1198 | —0.6403 | 0.8098 | —0.3065| 0.3994 | —-0.0378 |—0.1662
0.35 1.0188 | —0.0243 | —0.1074 | 0,1405 | —0.6083 | 0.8178 | —0.3060| 0.4014 | —0.0447 [--0.1709
0.40 1,0245 | —0.0319 | —0.1221 | 0.1615 | —0.6060 | 0.8270 | —0.3054 | 0.4037 |~0.0520 | —0.1857
0.45 | 1.0310 | —0.0405|—0.1371 | 0.4828 | —0.6034 | 0.8374 |—0.3047| 0.4063 |—0-0506 | —0.2208 ' - . .
0.50 1.0383 | —0.0501 | —0 1549 | 0.2046 | —.0.8006 | 0.8400 |—0.3040] 0.4093 | —0.0877 | —0.2458

0,55 1.0463 | —0.0810 | —0.1667 | 0.2268 | —0.5974 | 0.8620 | —0.3031| 0.4124 | —0.0761 | —0.2708
0.00 1.0540 | —0.0720 ] —0.1812 | 0.2406 | —0.5937 | 0.8764 | —0.3021 | 0.4159 | —0,0851 {—0.2065
0.65 1.0643 | —0,0858 | —0.1958 | 0.2728 | —0.5899 | 0.89168 |—0.3011| 0.4188 | —0.0946 | —0.3222
0.70 1.0745 | —0.1001 | —0.2089 | 0.2968 | —0.5858 | 0.9083 | —0.2099 | 0.4239 | —0.1047 | —0.3481
0.75 1.0853 | —0.1156 | —0.2239 | 0.3213 | —0.5811 | 0.9256& |—oO. 0.4284 | —0.1153 | —0.3743
0.80 1.0060 | —0.1323|—0.2379 | 0.3465 | —0.5763 | 0.9458 | —0.2072| 0.4332 | —0.1248 | —0.4007
0.85 1.1091 | —0.1502 | —0.2513 | 0.3725 | —0.5712 | 0.8664 | —0.2058 | 0.4383 | —O0.1389 | —0.4275
0.90 1.1220 | —0.1692 | —0.2647 | 0.3094 | —0.5656 | 0.9886 | —0.2040| 0.4438 | —0.1519 | —0.4544
0.95 1.1355 [ —0.1800 | —0.2776 | 0.4271 | —0.5506 | 1.0120 | —0.2928| 0.4496 | —0-1857 |—0.4848
1.00 1.4408 | —0.2119 ] —-0.2003 | 0.4556 | —0.5533 | 1.0387 | —0.2908| 0.4557 | —0.4802 (—0.5093

¢ = 85°

0.00 1.0000 | 0-0000| 0.0000 { 0.0000 | —0.2588 | 0.7660 |—0.3214 | 0.3830 | 0,0000 | 0.0000
0.05 1.0004 | —0.0005 [ —0.0181 |—0.0190 | —0.2588 | 0.7685 |—0.3244 | 0.3831 |—0.0043 | —0.0245 5
0. 10 1.0016 | —0.0019 | —0,0322 |—0.0382 | —0.2578 | 0.788% |~-0.3213 | 0.3836 |—0.0087 | —0.0483
0.15 1.0038 | —0.0043 | —0.0481 {—0.0576 | —0.2565 | 0.7715 |—0.3212 | 0.3B44 |—0.0132 | —0.0749
0.20 1.0084 | —0.0077 [—0.0858 |—0.0770 | —0.2546 | 0.7758 |—0.3210 | 0.3855 |—0.0177 | —0.0996
0.25 1.0100 | —0.0120 | —0.0848 [—0.0974 | —0.2523 | 0.7814 |—0-3207 | 0.3868 |—0.0221 |-—0.1262
0.30 10144 |—0.0174 |—0.0061 |—0.1485 | —0.2493 | 0.7881 |—0.3204 | 0.3885 |—0.0257 |—0.1485
0.35 1.0198 | —0.0237 | —0.112¢ |—0.4366 | —0.2458 | 0.7962 |—0.3201 | 0.3905 |—0.0327 |—0.1736
0.40 1.0256 | —0.0310 | —0.1278 |—0.1571 | —0.2417 | 0.8055 |—0.3196 | 0,3928 |—0.0356 | —0.4990
0.45 1.0324 | —0,0394 | —0.1436 |—0.1780 | —0.2371 | 0.8181 |—0.3191 | 0.3955 |—0.0415 |—0.2244
0.50 1.0340 | —0,0488 | —0,1593 2022 | —0.2347 | 0.8280 |—0.3186 | 0.3885 |—0.0476 |—0.2510
0.55 1.0483 —0.4748 |—0.2209 | —0.2250 | 0.8411 |—0.3179 | 0.4017 |—0.0544 |—0.27590
0.60 1.0575 | -0.0709 | —0.1903 [—0,2433 | —0.2183 | 0.8556 |—0.3172 | 0.4054 |—0.0814 |—0.3021
0.65 1.0874 | —0,0837 | —0.2056 |—0.266C | —0.2122 | 0.8742 {—0.3184 | 0.4082 |—0.0690 {—0.3285
0.70 1.0780 | —0.0976 | —0.2209 | —0.2895 | —0.2043 | 0.8884 |-—-0.3156 | 0~4135 |—0.0772 | —0.3552
0.75 1.0895 | —0.1126 | —0.2359 | —0.3134 | —0.1958 | 0.9068 |—0.3146 | 0.4180 |—0.0839 | —0.3822
0.80 1.1016 | —0.1289 | —0.2508 |—0.3383 .1865 | 00268 |—0.3438 | 0.4229 |—0.0954 |—0.4086
0.85 1.4145 | —0.1485| —0.2655 | —0.3830 | —0.1764 | 0.9478 | —0.3124 | 0.4282 |—0,1056 |-—0.4372
0.90 1.1282 | —0.1653 | —0.2800 | —0.3895 | —0.1654 | 0.9703 | —0.3111 | 0.4337 | —0.1165 | —0.4653 - = -
0.95 1.1425 | —0.1855 | —0.2943 | —0.4176 | —0.1537 | 0.9943 |—0.3096 | 0.4395 | —0.1281 | —0.4939
1.00 1,1576 { —0,2071 | —~0.3083 | —U.4458 | —0-1410 | 1.0188 |—0.3084 | 0.4455 | —0.4434 | —0.5228
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SUBJECT INDEX

Assumption of equality to zero of
transverse elongations, 3

Beam, infinite, 59, 81

—, finite, 81, 92

— long, 133

— rigid, 65, 81, 89, 133, 228

—, short, 133

Bending, axisymmetrical, 162

—, cylindrical, 129

— of a beam, 3

— of a thick plate, 294, 303

—, of a narrow plate, 3

Bessel functions, 166

Betti theorem, 106

Bimoment, 278

Bottom of a cylindrical reservoir, 208

Boundary condition, geometrical, 277

——, kinematic, 216

——, mixed, 216, 271

Bubnov-galerkin method, 138, 152, 290

Buckling, flexural, 260

—, torsional, 260

Characteristic numbers, 217

—of elastic, 9, 26, 49, 50

—of a beam, elastic, 49, 75

—of a foundation, generalized, 96

—of a plate, generalized, 96

—of a single-layer foundation, 96

Components of displacement vector, 265

—of intensity vector, 265

— of stress tensor, 265

Concentrated reactions, 71, 74

Contact plane, 284, 319

Deflection, generalized, 48, 98, 107

—of a beam, 64

Deformation of a shell, 186, 189, 190

— —with bending, 187, 190

Differential operators, biharmonic, 271

—~—, harmonic, 271

——, polyharmonic, 271

Discrete-continuous system, 15

Displacement, 2, 30, 265

—, dynamic, 226

—, generalized, 2, 3, 30, 48

- longitudinal, 2

— of a shell, 187

—-—— normal, 185

Elastic foundation, double-layer, 27

—layer of finite thickness, 284

——of uniform thickness, 277

——of variable thickness, 277

~ line, 226

Equation, biharmonic, 190

—, characteristic, of a homogeneous
boundary value problem, 216

—, geometrical, of a shell, 186

—of a spherical shell, 188

—of a beam bending, 47

—of bending of a circular plate, 161

——of thin plates, 95, 97,

Equilibrium conditions, 5, 31, 138

——, generalized, 48, 99, 103

—— variational, 142

Factors, kinematic, 55, 38

Factors, static, 55, 58

Fictitious reactions, 140, 144

Flexibility index of beam, 179,

——of plate, 146

Force, critical, 255, 256, 258, 261

—, —, Euler, 258

—, external, 5

fictitious, 104, 199

generalized, 8, 27

—, compressive, 256

—, internal, 107

inertia, 228, 232, 267
internal, 5
surface, 10

o

Forces and moments, annular (peripheral),

162
—— generalized, 53
——in a shell, 186
—, internal normal, 5
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— —shearing, 9 —, transformation, 54
Foundation, elastic double-layer, 25, 89 —, unitary, 53
— — multilayer, 322 Method, mixed, 266
—, —single-layer, 95 — of Cauchy-Krylor, 310
—, —three-dimensional, 30 — of displacements, 2, 211, 265
—modulus, 15, 64 — of forces, 212 ! l l
— with two characteristics, 34 — of foundation modulus, 64, 207
Fourier coefficients, 309 — of fundamental functions, 116
Frequency of free vibrations of a plate, — of initial functions, 267
241, 244 —— parameters, 52, 75, 119
— of natural vibrations of a beam, 109 —of krylov, 7, 255
— of vibrations, 216, 220, 231 — of strains, 211
Function, hyperbolic-trigonometric, 172 - of stresses, 266
— of bending of a beam on an elastic — of trigonometric series, 320
foundation, 50 —, symbolic, 268 B B X
Functions, eigen, 217, 220 Model of elastic foundation, multilayer, 13
—, initial, 290 ———, plane, generalized, 10, 13
—of beam bending, 52 ———with two characteristics, 13, 34
——vibrations, 109 — ——— foundation moduli, 15
— of natural vibrations, 216 —of Winkler-Fuchs, 15
— of transverse distribution of the Modulus of elasticity, 2
displacements, 2, 4, 15 Moment, bending, 60, 97, 137
—, trigonometric, 112 —, generalized, 187 - == -
Fundamental system of functions, 110 —of inertia, 258, 260
Gauss curvature, 184 —, torsional (torque), 97
Gorbunov-Posadov method, 73, 81 Momentary impulse, 222, 224, 231
Hankel functions, 166 Navier theorem, 98
—— modified, 194 Number of degrees of freedom, 5, 31
Hypothesis, foundation modulus, 15 Orthogonality of eigenfunctions, 217
Hypothesis, Kirchoff-Love, 283 Plate, circular, 161, 163, 168, 181, 182
Influence coefficient, 53 —, finite, 178
— functions, 54, 58 —, infinite, 175 { i l
Initial parameters, 53, 55, 57, 75, 123 —, multilayer, 313, 321
Integral-differential form of operators, —, multispan, 316
272, 295 —, rectangular, 117, 256, 260, 298, 301
Laplace operator, 95 —, rigid, 169
Laplacian, 36, 162 —, thick, 1587
Length, characteristic, 75 — undergoing plane stress, 301
Levy problem, 98 Poisson ratio, 2
Load, 56 Problem, axisymmetrical, 175
— antisymmetrical, 3, 68, 113, 123, 155 —, temperature, 40 - - -
Loading, antisymmetrical, 68 —, three-dimensional, 265
— symmetrical, 65 —, two-dimensional, 1, 290
Maclaurin series, 268 —, Vlasov, 98

Matrix of direct transformation, 54, 275 Principle of virtual displacements, 8
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Properties of a foundation, 15, 34

Punch, annular, 173

— circular, 169

— symmetrical, 69

Reaction, uniform, 67, 74

Rectangular strip, 306

Reduced half-length of beam, 80

Reduction of three-dimensional to two-
dimensional problem, 277

— of two-dimensional to one-dimen-
sional problem, 98, 99

Rigidity of a cylindrical plate, 138

Shell, cylindrical, 212, 212

—, spherical shallow, 184

Slope, 199

Solution, Filon, 310, 313, 316

-, Filonenko~Borodich, 15

— Ribiere, 299, 313, 316

~—, Sadovskii, 69

— Wieghardt, 15

State of plane stress of a shell, 195

—of strain, 5, 9

—of stress, 9

—— plane, 49, 293

Stieljes integral, 7, 33

Strain, bending, 186

— compression, 187

- plane, 9

—, temperature, 40

—, transverse, §

— shearing, 1, 186

Stresses, 31

~— normal, 1, 5, 30

—, shearing, 5, 30, 107

Stresses, thermal (temperature), 41
Theory of plates,
approximate, 280
-——, bimoment, 278, 283
——, exact, 280

——, moment, 283
Thomas function, 204

Torsion of a narrow plate, 129

Transformation, direct, 275

—, inverse, 275

Two-dimensional problem of the theory of
elasticity, 5

Vibration, simple harmonic, 215

Vibrations, antisymmetrical, 248, 253

—, free, 240
— of a beam, 213, 215, 229
—, — forced, 225

—, of an elastic beam, 229

— of a foundation, 213

—, of a plate, 232

~, of a rigid beam, 227

— symmetrical, 247

Vertical displacements of the foundation - -
surface, 74

Vietes theorem, 165

Wieghardt solution, 15

Winkler hypothesis, 15

Winkler-Zimmerman hypothesis, 97

— =~ —model, 13

Work forces, 5, 32

—of internal forces, 100, 142

— done by external load, 100, 142

——stresses, 37, 102, 141

—, virtual, 5, 7, 107
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