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FOREWORD

The theory of beams and plates on elastic foundations occupies a

prominent place in contemporary structural mechanics. A very large

number of studies have been devoted to this subject, and valuable practical

methods for the analysis of beams and plates on elastic foundations have
been worked out.

However, the existing calculation methods fall short of perfection, and

leave unanswered many problems of practical importance. The large

majority of these methods are too cumbrous for practical use; in addition,

the assumptions made as regards the strains and stresses in natural soil
cannot be fully ccepted. Complex three-dimensional structures on elastic

foundations cannot be analyzed by existing methods. The hypothesis of a

foundation modulus, by which the elastic foundation is considered as a

system of separate unconnected springs, thus simplifying considerably the

analysis of structures on elastic foundations, leads frequently to incorrect
results.

On the other hand, by means of the hypothesis of an elastic isotropic °

semi-infinite space, we can describe correctly the physical properties of
a natural foundation. This, however, leads to cumbrous calculations; as

a result, practical solutions have been obtained only for a very restricted

range of problems.

Establishing more accurate foundation models, and developing simplified

methods for analyzing complex three-dimensional structures, taking into

account the elasticity of the soil, are among the problems which the modern

theory of structures on elastic foundations has to solve.

It can be expected that higher accuracy will be obtained by making

allowance for the elastic-plastic deformation of the soil.
Approximate methods are obviously best suited for analyzing complex

three-dimensional engineering structures on elastic foundations, since
they lead to relatively simple expressions.

A new theory for analyzing structures on elastic foundations, based on

Vlasov's general variational method, is proposed in the book. This theory

is more accurate than the well-known theory of Winkler and Zimmermann,

but is simpler than the theory of the elastic semi-infinite space.
This theory considers the elastic foundation (and, in general, the non-

homogeneous foundation) as a single- or double-layer model whose proper-

ties are described by two or more generalized elastic characteristics.

This model was proposed in 1949 by Vlasov in his book "Structural

Mechanics of Thin-Walled Three-Dimensional Systems. " The theory of

the single-layer foundation was further developed by Leont'ev ] 11, 55 ],

Ruchkin /68/, Kosab'yan ]45/, Cheche ]81, 82/, etc.

The basic differential equation describing the state of strain of a loaded

single-layer foundation has the same form as the solutions obtained by

vii
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Filonenko-Borodich /75, 76/ and Wieghardt. The models of Wieghardt and

of Filonenko-Borodich are therefore mathematically equivalent to the single-

layer model used here. An elastic-foundation model similar to the single-

layer model was also considered by Pasternak ]62].

A merit of the theory proposed here is that the solution of many problems

of practical importance is reduced to solving ordinary differential equations

whose integrals can be found from tables. The simplicity of the mathema-

tical methods and the clearness of the mathematical model make this theory

very adaptable; not only the basic problems of beams and plates on elastic

foundation, but also various more complex problems can be solved with its

aid. These problems include the analysis of shells, taking into account

additional transverse loads and the deformation of the underlying foundation,

and problems of the dynamics and stability of structures on elastic founda-

tions. The proposed theory can be applied to the determination of the

stresses and strains in single- and multilayer strata of horizontal or
inclined excavations.

The authors do not claim to have solved completely all problems of

practical interest; nor do they consider that the methods proposed by them

are universally applicable. Many problems are examined for the first time

in this book, and, as a result, have not been worked out to the stage of

formulas and tables for ready use. However, the extensive material,

collected so far on the analysis of structures on elastic single-layer

foundations, makes publication of such a book necessary. The authors hope

that the book will be of use both for engineering practice and for further

investigations.

The book consists of seven chapters. The first six chapters are devoted

to problems of beams, plates, and spherical shells on elastic foundations,

and to the dynamics and stability of such structures. Chapters I to III are

mainly based on Leont'ev's thesis ]55/; Chapters IV and V make use of the

results of Ruchkin's studies ]68], kindly placed by him at the disposal of

the authors. The last chapter (Chapter VII) describes a new approach to

contact problems, based on the method of initial functions ]10, 13, 14],

with whose aid complex three-dimensional problems of the theory of elasti-

city are reduced to two-dimensional problems; several examples illustrating

this method are given. The bibliography indicates the main sources which

were used by the authors in writing this book. The list given is, of course,

incomplete. More complete bibliographies on the subject of structures on

elastic foundations are given in /42, 50, and 64],

This book is intended not only for research engineers, but also for

engineers working in design and planning firms. Tables, dimensionless

diagrams, and practical examples have been introduced in order to simplify
practical calculations. The basic aim of the book is, however, to make

available to the engineer an efficient variational method, with whose aid he

himself will be able in each case to select a certain scheme of calculations,

establish the corresponding model of the elastic foundation, and solve the

problem by relatively simple mathematical means.

Chapters I, II, III, IV, V, and VI of this book were written by N. N.

Leont'ev, and Chapter VII by V. Z. Vlasov. The editor was V.Z. Vlasov.

The authors acknowledge the help of V.P. Ruchkin,. V.V. Vlasov, E.I.

Silkin, A.N. Elpat'evskii, and L.V. Kosab'yan in the work on the manuscript,

and of V.V. Petrov and D.N. Sobolev in preparing the manuscript for print.

V.Z. V]asov, N.N. Leont'ev
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Chapter I

APPLICATION OF THE GENERAL VARIATIONAL METHOD

TO THE THEORY OF ELASTIC FOUNDATIONS

§ 1. FUNDAMENTALS OF THE VARIATIONAL METHOD

USED IN REDUCING COMPLEX TWO-DIMENSIONAL

PROBLEMS IN THE THEORY OF ELASTICITY

TO ONE-DIMENSIONAL PROBLEMS

Consider a thin rectangular plate loaded by forces acting in its plane

(Figure 1, a). Assume that the plate is deformed without bending, so that

its state of stress is determined by normal stresses a., % and shearing

stresses _, _. only. The stresses ax, %, _*v, _* are independent of the

coordinate z, it being assumed that the plate thickness _ is very small. In

the theory of elasticity this is called a problem of plane stress.

o) _-p(z,y) j___

FIGURE 1.

• gX

Problems of plane stress are two-dimensional since the displacements,

strains, and stresses are functions of the two coordinates x and y only.

Two basic methods are available for solving such problems: the method of

stresses and the method of displacements. The first method uses as basic

unknowns the stresses _x(x, y), %(x, y). _.u(x, y). _u.(x, y), which are determined

from the conditions of continuity of the deformations. This method is

similar to the method of forces used widely in the structural mechanics of

statically indeterminate strut systems. The second method adopts as basic

unknowns the displacements u(x. y), v(x, y), determined from the conditions

of equilibrium of the elastic system. This method corresponds to the method

of strains in structural mechanics.

We shall use here the method of displacements, adopting as principal

unknowns the displacements u(x, y) and v(x. y) of a certain point M(x, y) of the

111
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plate. The x-direction will be called longitudinal, and the u-direction,

transverse. The displacements u(x,y) and v(x,y) will accordingly be called

longitudinal and transverse displacements respectively. These displace-

ments will be considered as positive if they are in the positive direction of

the corresponding coordinate axis.

In the two-dimensional case, the stresses and strains are related as

follows :

_" = t-_ (e. + m,,,),

E

_w = I--_ ('uy+ _x), (I. 1 )

E

III

where E = modulus of elasticity, v = Poisson's ratio for the material of the

plate, ,x_ = sxx(x, y) and su_ ----suv(x,y) = strains in the longitudinal and transverse

directions respectively, '_v = _x_(x, y) = shearing strain.

The strain components szx, _uw,txu,are related to the unknown displacements

u and v as follows:

au au #u 8v

e,,--_, twv=_, tz_=_+_;. (1.2)

The system (I.I) and (1.2) defines the states of stress and strain in the

plate; when the displacements u and v are known, the problem can be

considered solved.

2

In order to obtain a simple approximate solution, the unknown functions

u(x, y) and v(x, y) are expanded in finite series:

u (x, y) = _ Ul (x) _t (Y) (i = 1, 2, 3 ..... m).

(I .3)n

v (x, y) = y, Vk (x) _k (y) (k = 1, 2, 3 ..... n).

The functions _(y), elk(yl are assumed to be known, and the functions U,(x),

Vk(x)to be unknown. It is often convenient to introduce dimensionless

functions ¢pl(y),_k (y); the functions U_(x) and Vk (x)will then have the dimension

of length (displacement).

Because of the dimensions and physical meaning of expressions (1.3),

the functions Ul(x), V_(x) can be called generalized displacements. Indeed,

each of the m functions U_(x), calculated for a given section x = const of the

plate, determines in a generalized form the magnitude of the longitudinal

displacement u_(x, y) in this section. Similarly, each of the n functions Vk (x)

determines the magnitude of the transverse displacement v,(x, $1) for the

entire section x = const. The distributions of the longitudinal and transverse

displacements over the sections x = const are given respectively by the

functions ¢F_(/¢)and _k (Y), which are therefore called functions of the transverse

distribution of the displacements.

Provided they are linearly independent and express the physical meaning

of the problem, the functions Tj(y) and _,(y) approximating the state of strain

l vi
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in the plate in the transverse direction, can be chosen in different ways.

Some examples will make this point clear. Consider the bending of a

narrow plate (beam) with free lengthwise ends. Assume that the sections

remain plane during bending and that no transverse elongation takes place.

The unknown displacements u(x, y) and v(x, y) can be represented in this case

in the form:

u(x,y)= U,(x)_,(y)= Ux(x).y,
v (x, y) = V, (x)_x(y) = V, (x). 1 f (1.4)

(the coordinate y is measured from the center of the cross section). The

functions of the transverse distribution of the displacements are therefore

in this case:

_1 (Y) ---- Y. _1 (y) = 1,

the remaining functions _,(y) and _,(y) (i -- Z...m, k-- 2 ...n)are zero.

It follows from (1.4)that the generalized displacement U, (x) represents
the angle of inclination of the section, and the generalized displacement

V, (x), the plate deflection.

A second term can be added to the elementary solution (1.4), knownfrom

the theory of the strength of materials, for the bending of a narrow beam

acted upon by a load antisymmetrical with respect to the x-axis (Figure 2);

• 2,_g }

u (x, y) = UI(x)y + U, (x)s,n -B--'

,_y
v (x, y) = V, (x) I + V, (x)cos_-.

(1.5)

The following expressions have thus been selected for the functions _(y),

_k(y) :

• 2_y
¢h(Y)= y, ¢p,(y) = sm -B-,

_ (y) = l, 'h (y) = cos-_.

The first right-hand terms in (1.5) represent the displacements when

the sections are assumed to remain plane; the second terms are introduced

to correct the inaccuracies due to this assumption and that of zero

transverse elongations.

yl _-a--L.i.._ ¢{x) 3,
FIGURE 2.
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A different procedure can be adopted to find a more accurate solution

for a narrow beam. We imagine the beam to be divided into horizontal

strips each of which is assumed to remain plane, although this assumption

is not valid for the cross section as a whole. As an example, Figure 3

represents a plate with free upper edge and built-in lower edge (immovable

both horizontally andvertically). This plate is divided into three parts along

its height. It is assumed that the sections of each part remain plane, and

av
that the transverse strains _ =_ are constant [over each section of the

parts]. Equations (1.3) can then be written in the form:

u (x, y) = u, (x),_ (y) + u, (x),, (y) + u, (x)q_,(v), |
v (x, y) = v, (x)_ (y) + v, (x)_, (y) + v, (x)h (y). f (1.6)

The functions _I(Y), _,(Y)..... _,(y), _,(y) are represented in Figure 3. It

is seen that in the range of variation of y, the functions of the transverse

distribution of the displacements satisfy the continuity equations and the

geometrical boundary conditions for y = 0 and y = H. The generalized

displacement U, (x) determines the horizontal displacement on the plate

surface, and the generalized displacement V,(x) equals the deflection of the

upper edge of the plate. The remaining generalized displacements

determine the displacements of the interior points of the plate along the

lines y=h, and y=h,.

_l .... _::..............

L _ f,_
Y/////////>///////////////////////////'>//_

-

FIGURE 3.

f

The accuracy of the calculation increases with the number of parts into

which the plate is divided (i.e. with the number of terms in (1.3)); the exact

solution of the two-dimensional problem is obtained by passing to the limit

n---_ _ and m---* _.

The manner in which, in this example, the functions _i(Y) and +k(y)were

chosen for a homogeneous isotropic thin plate may also be applied to a thin

plate consisting of several horizontal layers having different elastic

coefficients E and _ and thicknesses 8.

Depending on the problem and the accuracy required, the functions ;,(y),

and _ (y)can be obtained as linearly independent and continuous functions of

the coordinate y by many other methods also.

The representation of the unknown displacements by means of finite

series (1.3) is equivalent to reducing the plate to a system having a finite

number of degrees of freedom in the transverse direction and an infinite

number of degrees of freedom in the longitudinal direction. Such systems

II!
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can be called discrete- continuous, in contrast to the two- dimensional models of

thin plates whose behavior is described by partial differential equations, in

which the plates are considered as two-dimensional deformable solids possess-

ing an infinite number of degrees of freedom in both the x - and y- directions.

It also follows from the series expansions (1.3) that the two-dimensional

problem of the theory of elasticity has been reduced to a one-dimensional

problem, since it suffices to determine m functions Ut(x)and n functions

V_,(x) of the same variable in order to obtain the longitudinal and transverse

displacements u (x, g; and v (x, y).

3.

The functions U_(x)and V_(x)can be obtained from the equilibrium conditions

for an elementary strip of length dx = I, delimited by the sections x = const

and x + dx = consi (Figure 1, b). In accordance with Lagrange's principle of

virtual displacements, the equilibrium conditions are obtained by equating

to zero the total work of all internal and external forces acting on this strip

over any virtual displacement.

In accordance with (1.3), the virtual longitudinal displacements of the

elementary strip are ul=(pj(g ) for Uj---- 1, where i can have m different values.

The virtual transverse displacements of the strip are given in the form

=¢h(y)for Vh = 1, the subscript h denoting any of the n virtual displace-

ments. Thus the vertical strip considered possesses (m + n) degrees of

freedom in the plane of the plate, m corresponding to longitudinal displace-

ments (parallel to the x-axis), and , to transverse displacements (parallel

to the _-axis ).

The external forces acting on this strip are caused by the normal stresses

agj

a,, _, + _-dx, by the shearing stresses _w,. _u* + _dxa_ , due to the interaction

between the strip and the remainder of the plate, and by the given

distributed load whose x and y components [per unit height] are p(x. y) and

q(,, g) respectively. The internal forces acting in the strip are caused by

the normal stresses ou and the shearing stresses _*w. The work done by

all the external and internal forces of the strip over any of the rn + n virtual

displacements is given by the following expressions:

[- _ (1.7)

I + ..... .), ..8)
where dF = 8dy = element of plate cross section, _ = plate thickness.

In each equation (1.7) the total work done by all external and internal

forces acting on the elementary strip in the longitudinal direction has been

equated to zero. The first term represents the work of the external forces

-_dxdF.The second term represents the work of the internal shearing forces

**,dF. Byvirtue of (1.2) and (1.3), the shearing strains are given by the

derivative _)(y) when U/= I. In each equation (1.8) the total work done by
all forces acting on the elementary strip in the transverse direction has

been equated to zero. As in (1.7), the first term represents the work of the

forces _ dF ; the second term represents the work of the internalexternal

normal forces a_dF.

II!
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The last terms in equations (1.7) and (1.8) correspond to the virtual work

done by the given loads.

The following expressions are obtained by inserting (1.2) and (1.3) into
(1.1):

E m

°,= ,_,.[Z "x, +* y v,,;],
i=I k_l

E n m

o,= _ [ E v,,; +, y, u'_,],

E ,n_',=',.= =(-_[2 u,<+ _ vi,,]
A=I k_l

(1.9)

Substitution of (1.9) in (1.7) and (1.8) leads to a system of ordinary

differential equations in U_(x) and Va(x); this system consists of m equations

corresponding to the m degrees of freedom of the strip in the longitudinal

direction, and n equations corresponding to the n degrees of freedom of the

strip in the transverse direction. This system can be written down as
follows :

m 1_ m nz.,,.,--,-y_,,.,+y (.,,,-_c,.)v.+%%:o
(j = ], 2, 3..... m),

i=l k=l

4

-- _ s,,V, -{--t _ v._.__'qh= 0 (h = 1, 2, 3 ..... n).
k=l

(1.10)

When the functions _i(y), _/(Y)(i,J= 1,2,3 .... ,m), and @k(y), _h(y), (k,h =

= 1, 2, 3 ..... n) have been chosen, and their derivatives are thus known, the

coefficients in (1.10)are obtained from the following equations:

ap. = at/= I_idF,

_,,=_,,= S,;_;dP,
c,,=S,;_,_F,
Ilk = I ,/_'k eF,

r_ = r_ = I £Ph_,dF,

¢hi= Iq_hCdF,

t. = ] *'h,, dF.

(1.11)

The integrals are taken over the entire width of the strip; in the general

case $ can be a function of y.

The expressions (1.11) can be easily obtained from graphs of the

functions _(y), _,(y), and their first derivatives.

Ifp(x,y), andq(x,y), are given the free terms p/=p/(x)(j=l,2,3 .... ,m),

and q,,=qn(x)(h___l,2,3,...,n) in (1.10) are obtained from the equations:

v_= f p(x.v),_dv, q,= I q(x.v)_,du (1.12)
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The loads p (x, y) and q (x. y) are considered positive when acting in the positive
directions of the coordinate axes.

In the general case it is assumed that the loads p(x, y) and q(x, y) are

distributed over the plate height as arbitrary functions of y. Expressions

(1.12) may also apply to the external load acting at the longitudinal edges

of the plate, which in the general case consists of given shearing and

normal forces. In accordance with the physical meaning of these expres-

sions (virtual work done by the loads), the concentrated forces must be

included. Thus, if shearing and normal forces p(x, 0), q (x, 0) per unit length

act at the upper edge of the plate in addition to the loads p(x,y) and q(x,y),
we obtain for (1.12):

P� = P(X)?](O) "t- Ip(x, y)_,j(y)dy, I
(1.13)fqh = q (x) _h (0) + I q (x, y) _ (y) dy.

Such integrals, extended both over distributed and concentrated loads, are

called Stieltjes integrals.

4

The most efficient modern method of integrating a symmetrical system

of ordinary differential equations with constant coefficients is Krylov's

method, by which such a system can quickly be reduced to a single equivalent

differential equation. In our case, the order of this equation will be 2(m W n).

Hence, the unknown functions Ui(x). V,(x) satisfying (1.10)will contain

2(m + n) arbitrary integration constants. The number of these constants is

equal to the number of independent geometrical conditions to which the end

sections x= 0 and x = l of the plate can be subjected (l=plate length in the

longitudinal direction).

The position after deformation of all points of an arbitrary section

x = ¢onst is in fact defined by m + n independent magnitudes: m functions

U,(x)determine the positions of these points in the longitudinal direction

(displacement from the plane x = const), and n functions V,(x) determine these

positions along the height. Hence, m + n magnitudes can be arbitrarily

specified for one end section of the plate. The number of independent

conditions for the two end sections x= 0 and x=! is thus 2(m_-n), which is

equal to the number of arbitrary integration constants. By varying these

constants we can obtain a solution for the most varied geometrical boundary

conditions in respect to the longitudinal and transverse displacements.

Consider a plate with the boundary conditions at x = 0 and x = l given as

stresses or, in the case of a mixed boundary problem, partially as displace-

ments.

When the functions _i(y) and _,(y) have been selected, the stresses _, and

_, at x = consl can be expressed through m + n independent generalized statical

magnitudes. The virtual work done by the normal and shearing forces a,dF

and ,:u, dF over anyofthe m + n virtual displacements of the points of the

section considered is:

Tj (x) = I a,_j,'tF (j = 1, 2, 3 ..... m), }

Sh (x) = I "_fl/h dF (h = l, 2, 3,... , n), I
(1.14)

where dF = 6dy.
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The integrals in (1.14) are taken over the entire cross section of the

plate. The magnitudes T;(x)and S_(x) represent generalized longitudinal and

transverse (shearing) forces acting in the section x----constof the plate.

Considering these magnitudes as internal forces, we can express them

through the functions U_(x) and Vk(x). It follows from (1.9), (I.II), and

(I .14) that:

Tl(x)=E__ja#iU;,+'+ lihV,) (/,j= 1,2,3 ..... m),
I'_l I--I

t=l I=I

(1.15)

Using (1.15), it becomes possible to impose 2(re+n) generalized boundary

conditions expressed as stresses on the plate edges x = 0 and x =/.

Let a given system of distributed normal force pO(xo,y) and distributed

shearing forces qo(xo, y) act at edge x=xo (Figure 4).

We imagine an elementary strip dx to be cut from the plate; from the

principle of virtual displacements, we obtain the following equilibrium
conditions:

(}= ],2,3 ..... m), t

f(h= I, 2, 3 ..... n). (1.16)

Inserting (1.14) into (1.16) yields:

S°h(x) = Iq°di_dY • T°(x) = fP°_idY , (1.17)

We have thus obtained the relationship between the generalized forces

(1.15) and the specified external loads at x = x0.

I ..........

I..... x°_

P-'[GUKE 4.

II

' l
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After obtaining the general integral of (1.10), it is possible, with the aid

of (1.17) and (1.15), to determine the strains and stresses in the plate for

any boundary conditions at x = 0 and x =l , expressed as stresses, displace-

ments, or both.
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§ 2. TWO-DIMENSIONAL DEFORMATIONS OF ELASTIC

FOUNDATIONS. CALCULATION MODELS

Consider now the inverse two-dimensional problem. Let the elastic

foundation be a compressible layer of thickness H placed on a rigid

foundation (Figure 5). The dimensions of this compressible layer in the

z-direction are assumed to be large. We also assume that the external

load is independent of the z coordinate and acts in planes parallel to the xg

plane. The thickness of the elastic foundation, its support conditions, the

elastic constants and all the other conditions are constant in the z-direction.

In the theory of elasticity this is called plane strain, since the displacements

of all points occur in planes perpendicular to the z-axis.

FIGURE 5.

"l' -" _ -:1

We imagine a narrow plate of thickness 8 to be cut from the elastic

foundation by two planes parallel to the xg plane (Figure 5). The stresses

_, %, _, %x , the strain components _,,.¢w_, _-u, and the displacements u and

_, of this plate are functions of x and 9 only, and are, as in plane stress,

related by (1.1) and (1.2). In the case of plane strain, the following have to

be substituted forE and_ in (1.1):

| i 1

E_ "s (2.1)Eo-- 1--',2 ' Vo-- t
-- v S

where E s and ,% are the modulus of elasticity and Poisson's ratio for the
foundation material (soil) respectively.

In order to determine the strains and stresses in the plate by the method

of displacements, we express u (x, g) and v(x, y) by expansions (1.3). As in

section 1, we obtain the following system of (m + n) ordinary differential

equations in I/_(x)and V_ (x)from the conditions of equilibrium of an elementary

strip of width dx = ] (Figure 1):

m m ,i I _. _ Vo \, ,,

E aj,u; - _-,__°,_vI,,,u, + ._ (_ot,_- -v- c_; _,,+
t t _ I #=1

I -- v,_

+ -F.-EZ-Pi = 0 (] = l, 2, 3 ..... m),

• _-_° ' '-_° _' r,,,,V'_--E _,V_-+ (2.2)

'[ -- v_

+_qh=:O (h=- 1,2,3 ..... n).

- J _ I

I !1 ]

l-l_llllllllllI[[[ [l]



|AA

The system (2.2) differs from (1.10) only by the elastic constants. The

coefficients al_, bji ..... c_, th_ are again determined from (1.11) and depend

only on the functions _ (g) and _k (Y)"

AS before, the free terms p] and qh represent the work done over the

displacements _/(y) and _h (Y) respectively, by the given horizontal and

vertical distributed loads p(x, y) and q(x. y) , and are obtained in the general
case from (1.13).

The volume forces distributed over the foundation are usually neglected

when the deformation of an elastic foundation is considered; only surface

forces (the loads applied to the foundation surface) are taken into considera-

tion. The free terms in (2.2) are in this case:

p/= p(x)._/(O), |

qn = q (x)"'_h(0)' I (2.3)

where p (x) and q (x) are the shearing and normal surface forces respectively;

_/(0) and _h(0) are the values of the functions q,/(y) and 4/h(y ) at the foundation
surface y=0.

After the functions U_(x)and V,(x)have been determined from (2.2) and

the corresponding boundary conditions, the displacements of the elastic

foundation u (x, y)and v(x,y) can be found from (1.3), and the stresses _x, %, _x,

from (1.9); the elastic constants are given by (2.1).

The system of ordinary differential equations (2.2) thus defines the plane

strain of an elastic foundation considered as a linearly deformable medium

of finite thickness H. Because of the limited number of terms in expansions

(1.3) the solution obtained will be an approximation of the exact solution of

the theory of elasticity. At the same time, the system (2.2) can be

considered as defining a generalized model of the elastic foundation, based

on the general variational method. Different models can be obtained by

selecting different expressions for the functions _(y) and _, (y). Although

only approximations from the point of view of the theory of elasticity, these

models are nevertheless sufficiently accurate for practical application.

Their accuracy can be increased at will by increasing the number of terms
in (1.3).

Increasing the number of terms in (1.3) is, however, undesirable, since

an increase in the order of the differential equations (2.2) results. The

accuracy of the solution can also be increased by a better selection of the

functions _(y) and _k (Y)" Since this selection is based on experimental data

or on a more rigorous theoretical analysis, a sufficiently accurate solution
can be obtained even with a minimum number of terms in (1.3).

Consider for example an elastic foundation in which the horizontal

displacements are either zero or negligible. In this case:

u (x, y) = O, tv (x, y) = _, Vk (x) +, (y).
k=l

System (2.2) then becomes:

k_l '" k_l

(2.4)

(2.5)

II!
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where

rh_ _ i'_n_, dF, snk = f _'h_/'kdF.

In this model the load may spread due to cohesion: reactions may appear

even outside the region of load application. The model described by

(2.5) can be represented schematically as a system of elementary elastic

columns (springs) mutually interacting as a result of internal friction and

adhesion (Figure 6).

YS_.///////////////////_

FIGURE 6.

['l._q {z)

FIGURE 7.

!!!

The properties of this model depend on the functions _k(Y) and on the

number of terms in (2.4). Since this is a particular case of the generalized

model described by (2.2), we can obtain from it even simpler models of the

elastic foundation by the introduction of additional hypotheses. Assuming,

for example, that the elastic foundation forms a thin compressible layer

whose base is fixed, we can write:

v (x, y) = v_ (x)_ (u), (2.6)

_I (Y) H -- y (2.7)_---_.

The function V,(x)thus represents the settling of the foundation surface

(Figure 7).

From (2.6) and (2.7)we obtain for (2.5)the single differential equation:

t -- vo • t -- v_

2 rnVa_snVa+_ql=O, (2.8)

where

H

H

0

(2.9)

Assuming that the external distributed load q(x) is applied only to the

foundation surface, the term q_ given by (2.3) will be:

ql = q (x).

i-i-I
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The model described by (2.8) can be called a model with two character-

istics, or simply a single-layer model (/11/).

The stresses in this model are obtained approximately by substituting

(2.4), (2.6), and (2.7)in (1.9):

o. = _ v,_ (__E-_)HV_(x),

'%, = 'c,,v = _ Vx_l - 2 (1 + "o)

(2. lO)

The normal stresses % thus remain constant over the height of the

foundation, while the shearing stresses _wx vary linearly.

If the thickness H of the compressible layer is large, the behavior of the

elastic foundation will be described only approximately by (2.7) since in

this case % cannot be assumed to remain constant over the height. In order

to increase the accuracy without increasing the number of terms in (2.6),

it is necessary to select for _, an expression more closely describing the

actual decrease of the displacements and stresses with depth. We may,

for instance, write {Figure 8)

¢_a = sh 1'(H -- .u)
$h_'H ' (2.11)

where ,/ is a constant determining the rate of decrease of the displacements

with depth. In this case the solution is given by (2.8), but the coefficients

ru and sl_ are found from (2.11).

Q 11(411 _ I" l

l rf
" " / " ". 2, -

HGURE 8.

If horizontal displacements in the foundation cannot be neglected, and if

the foundation is sufficiently thin and fixed to its base, we can write:

!11

talk , ! !

i l l

ill

where

u (x, y) = U_, v (x, y) = V,q_,,

H--y "_x = •cPl= H '

System (2.2) then becomes:

• I (_Otll___Cll) Vl +_ pl _O 'ax_U_ -- _ bllU1 + _ , t -- _,_

_ (%in I -- vo \/I' I --Vo I -- _-- --_ clx) vL -- _ r.V1 -- s.Vx + _ ql = O.

(2.12)

(2.13)

I I
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The coefficients in (2.13)can be found by inserting (2.12)into (1.11). We

can also write:

sh"r(H --y) sh7 (H -- y)
_I -- sh7H _, (2.14)sb_H

or other suitable expressions.

If the foundation consists of several horizontal layers having different

elastic properties, the functions ¢Pi(Y),_k(g) can be selected as in section 1

(Figure 3). The modulus of elasticity can then be assumed to vary over the

height. This model of the elastic foundation is thus called a multilayer

model. A multilayer model can be used for ahomogeneous elastic foundation

when the thickness H is considerable; the solution obtained is far more

accurate than that obtained from the single-layer model described by (2.8)

or (2.13).

By selecting the functions %(y) and_k (y)differently, we obtain from (2.2)

an infinity of different models of the elastic foundation describing with

sufficient accuracy the peculiarities of the problem under consideration.

Since the selection of the correct model of the elastic foundation is very

important in the design of structures resting on such foundations, the

advantages of the general variational method are obvious.

Most models obtained by this method are simpler than the model of an

elastic semi-infinite plane based on the methods of Zhemochkin and

Gorbunov-Posadov. Henceforth only the simplest, i.e., the single-layer

model, will be considered. This simple model makes better allowance for the

elastic properties of the soil than the well-known model of Winkler and

Zimmermann, while permitting the design of beams, plates, and more

intricate structures resting on elastic foundations by simple mathematical

methods.

Ill

IU" I
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§ 3. PLANE MODEL OF THE ELASTIC FOUNDATION

WITH TWO CHARACTERISTICS

1. Basic differential relationships

Let the elastic foundation be a compressible layer of thickness tt

(Figure 9). Assume that the displacements in this layer due to the surface

load, are approximately:

u(x,v)= o, v(x,y)= V,(x)_,,(y), (3.1)

where _,(y) is a function of y, selected according to the nature of the

problem.

According to (1.2) and (3.1)the strain components are as follows:

_._= v, (x),_ (u), /

Exx _ O_ ]
(3.2)

Ill
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The normal and shearing stresses are obtained from (1.9):

*° Ieo V_(x)_, (y).
(3.3)

The constants E, and v0 are as follows [cf. (2.1)]:

E S V$

Eo = t -- _ ' vo= { __-_-, (3.4)

where E s and 'vs are the modulus of elasticity and Poisson's ratio respective-

ly for the material of the foundation.

!11

4

_--F '_'._
FIGURE9.

The system (2.2) is in this case reduced to a single equation [cf. (2.8)]

containing the only given function of y, _1 (Y) :

-- V0 • J -- ,a_0

2 rllV]--s.Vl+_ql=O (3.5)

The free term in (3.5) represents the work done by the distributed

surface load q(x) and is:

q, (x) = q (x)¢h(o). (3.6)

The coefficients in (3.5) are:

H

r,, = I _ (y) aF,
o

/-/

_" = I *_(y)aF,
o

(3.7)

where dF = 8dy.
Eo

After multiplying each term by --_,t- (3.5) can he written:

2tV_ -- kV1 "+ q_ = O, (3.8)

where

EO'511 /

k = t_---_

EOrll

t = _-_ ¥_,o)" (3.9)

I IgB "l
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Differential equation (3.8) relates the vertical displacements of the

foundation to the load applied at its surface. It differs from the well-known

relationship obtained by assuming a direct proportionality (foundation-

modulus hypothesis) by the presence of a term containing the second

derivative of the generalized displacement V,. This term, multiplied by

2t, makes allowance for the shearing stresses in the elastic foundation.

This model of the elastic foundation thus differs basically from the

Winkler-Fuss model;:-'. Since allowance is made for the shearing stresses,

the load can spread, i. e., displacements occur not only directly beneath

the load, but also at other points (Figure 6).

The properties of the elastic foundation satisfying (3.8) are defined by the

two integral characteristics (3.9). The characteristic k determines the

compressive strain in the elastic foundation; it is thus similar to the

foundation modulus. The characteristic t determines the shearing strain

in the elastic foundation; it thus defines the load-spreading capacity of the

foundation **.

The solution of (3.8) requires the establishment of boundary conditions;

these should be given in integral form, either as generalized forces or as

generalized displacements.

From (3.1)and (3.3), we obtain:

T /= I _xTidF = O, I
Eot_ " 2

(3.10)

2. Selecting the function of the transverse

distribution of the displacements

The distribution of the displacements and normal stresses over the height

I/ of the elastic foundation, and thus the basic properties of this foundation,

are determined by the function d/,(g). In the previous section the following

function was chosen for a sufficiently thin compressible layer, throughout

which the normal stresses % are constant:

_b1(9)= H--y (3.11)
H

The foundation is assumed to be fixed on its base (Figure 7). The strain

in the y direction is constant:

a_=--Va(x)-_;

the normal stresses are also constant over the layer height:

E0

% = Vs (x). (3.12)

* The hypothesis of the foundation modulus, usually called "Winkler hypothesis"_, was first proposed by the

Russian academician Fuss in 1801.

** Pastvrnak propped to call the characteristics k and t"the two foundation moduli"; the single-layer model

would thus be called "the model with two foundation moduli" /52/. Equation (3.8) is identical with the

solution obtained by Filonenko-Borodich for his simplest model of the elastic foundation /76], and also

with Wieghardt's solution.

15
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We then obtain for the coefficients (3.7) [cf. (2.9)]:

r _ :2 zc _H

ll: @_yl ul :'_--,

tl

sH= I q_dF= --_-,
o

(3.13)

the constants in (3.9)become:

k H(t - _I) '

Eo_H
t = t2(1+vu)'

(3.14)

From (3.10) we obtain:

Eo_n ,,,. , 2tv_ (x). (3.15)

Expressions (3.14) and (3.11) are valid also for elastic foundations of

considerable thickness, consisting of several compressible layers having

different elastic properties, and in particular for a semi-infinite elastic

plane. In this case, H in (3.11) and (3.14) defines the height of an equivalent

layer throughout which the normal stresses % are assumed to be constant

(Figure 10). This height can be determined by comparing the displacements

of the foundation surface, given by (3.8), with the actual displacements.

rfrxt yl_'/

.... _ .... .[

nj E,,1,,
_____ compressible

FIGURE 10. layer

If the concept of equivalent layer is undesirable, we can choose the

following expression for _,(y)when the elastic foundation is deep:

_I(Y) sh_' (H--y) (3.16)
= sh.rH ,

where H is the depth of the subsoil (for a semi-infinite elastic plane H --* oc), and

is a coefficient depending on the elastic properties of the foundation and

determining the rate of decrease of the displacements over the depth of the

foundation.

In accordance with (3.16), the normal stresses in the foundation are:

ch 7 (H -- y)_u=-- V,(x) -_ , (3.17)

!11
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and the elastic constants in (3.8) become:

Eo_ Eo_H

(3.18)

where

We again obtain:

_ 7 H shyHch'TH+'fH

3 1 shTHchTH--TH j
_t = 2 3'H shah

(3.19)

H

S, = I _v_a dF = 2tV_ (x), (3.20)
o

where t is given by (3.18).

In this case the normal stresses % are not constant, but vary as the

hyperbolic cosine (Figures 8 and 14). The characteristics (3.18) define

the elastic properties of the soil more accurately than the characteristics

(3.14).

When H-_ the characteristics (3.14) tend toward infinitely and zero

respectively, while the characteristics (3.18) remain finite. Hence, (3.16)

and (3.18) are valid even when the thickness of the elastic layer becomes

infinite; expression (3.16) can be used for the approximate calculation of

structures on a semi-infinite elastic plane.

Similar results can be obtained when the function 4, (Y) is an exponential

function :

_t (Y) = e--_u, (3.21 )

which also adequately describes the decrease of the displacements and

stresses over the depth of the elastic foundation.

D,:pending on the nature of the problem, many analytical expressions

in addition to (3.11), (3.16), and (3.21) can be selected, either based on

experimental data or on solutions obtained by the methods of the theory of

elasticity.

3. Action of a concentrated vertical force.

We shall determine the displacements of an elastic foundation, due to a

concentrated force P acting at the origin of coordinates (Figure 11). In this

case we obtain from (3.8) the following homogeneous differential equation for

the displacements V, (x):

2tVi--kaV1 = O. (3.22)

The coefficients are obtained from (3.9) and (3.7).

The general integral of (3.22)is:

V, (x) = C,e -_" + C_e _', (3.23)

IAAA
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whe re

_= VZ_-7 . (3.24)

For reasons of symmetry we need consider only the right-hand half of

the foundation. One of the integration constants in (3.23) is determined

from the condition that the foundation displacement at infinity must be zero:

at x-. _ V_ (x)---* O. (3.25)

Hence

C2_ O.

The second integration constant is found from the conditions at x = 0 .

We can define the generalized shearing force St (x)as the work done by all

forces acting at the section x=const over the virtual displacements vt(x,y) =

= l.#_(y} when V_(x)= 1. It has a discontinuity at those sections where

concentrated forces act on the elastic-foundation surface (Figure 11 ).

II1

1 ! I

F rV
I - Q' "f_//llllliit/llll/ll/._| _' Cu

t _.l._Diagram of $,/z)

FIGURE 11.

i-i i

Taking into account the symmetry of the problem we find [from (3.10)]

th at :

-- -_-_, (0), (3.26)at x=O Si(O)= P

where ¢,(0) is the value of _(y)at the foundation surface.

From (3.10) and (3.26) we obtain:

2o,tc, = _-_ (o),

whence

C, = p *½(v°)
4 _. (3.27)

The displacement of any point of the elastic foundation can now be

written:

_b,(O) <,.,<.. ,
t,.(x, y) = r_-_e- _VltYI, (3.28)

I11
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where

/ _ Eosn Eorn
_=| 7z, k=l-,--_' t=40+_o)'

H H

o o

(3.29)

If the linear expression (3.11) is selected for the function of the trans-

verse distribution of the displacements, (3.28)becomes:

3(I-%) p axH_y

v (x, v) - V_ Eo_e- n
(3.30)

where

= - t/ (i -- vo)

As an example, Figure 12 shows the dimensionless displacements V(x)

of the foundation surface as a function of x/H, obtained from (3.30)for %=0.

The actual displacements of the foundation surface are:

_Vv, (x) = E,_ (x).

It is seen that the displacements decrease rapidly with increasing

distance from the point of load application.

II!

r- I :-'_'

i l I

C2

a8

to

L2 _-

L_

f_)

i.o 2.0

['
Dialram of[Pi.z)

FIGURE 12.

Ill

where

When the function det (y ) is given by (3.16), expression (3.28)becomes:

3(1--%') _ p sh-r(H--V)

v (x, y) = If_ %¢, Eo_ e-'= sh'rH ' (3.31)

]/-_ , __," = _ = H (I -- _o)

d?t _ 3 t shTHchTH--yH
2 "fH sh_ "I'H '

I/" i sh "//4 ch 'TH + 3,/../
"fH V 3 8h "IH eh 'TH -- -fH "

(3.32)

[cf, (3.18). (3.19)]

I i I
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We can write (3.31) in the form:

v (x, y) = _ _ (x)+,(y), (3.33)

and plot diagrams of the dimensionless displacement

3(I --v_) I e.._=_
(x) V_ _l'_= (3.34)

for different values of the parameter "[ ='_tt. Such curves are drawn in

Figure 13 for -_= 1, _='2, _= I (for _,,=0). Figure 14 shows the function-_,(y),

plotted for the same values of_, and also the distribution of the normal

stresses % over the foundation height, obtained from (3.17).

_0'

O_

O.6

O.8

LO

/.2

t5

0.25

f

05 0.75 [0

FIGURE 13.

_o

025

0.5

/2?5

to

_22 0.._ t2.6 02 f.O

_l _,c__.*_z_-_
I ishr_

Ct5

02_ y

°,/
_75

a,.Gdv,(x,_
,.o I

,_.0

/

FIGURE 14.

III
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It is seen that an increase in the parameter_ causes the displacements

and normal stresses to decrease more rapidly with increasing depth.

The normal-stress diagrams also show that the proposed model of the

elastic foundation is to a certain degree artificial: it gives finite (nonzero)

values for the normal stresses at points on the foundation surface which

2O

I-_-I\I_II I I I I II II[ II:[ll



carry no load. This is a result of employing the variational method, which

applies the equilibrium conditions in integral form without providing for

their fulfilment at every single point of the system.

Since the subject of this book is the analysis of structures on elastic

foundations, and not the stresses in the elastic foundation itself, these

shortcomings may be ignored.

4. Case of a distributed load

The displacements of an elastic foundation, due to a load q(x) distributed

over its surface are best obtained from (3.28), which for y=0 determines

the displacements of the elastic foundation, due to a concentrated force P.

If we putP= ], the curve of displacements becomes an influence line and

can be used to determine the displacements of any point of the surface at

any load.

i" I
|||lI|||H.Id,,l, ll|IIHH, i_q

_8

LO ZO 3.0 o.O_...._.z

/

"H-t.O f# _-2.0
r, /

FIGURE 15. FIGURE 16.

i 1

III

l

" ii -ii- il

If the applied load q(l_) is a known function of the distance } from the

coordinate origin, we obtain for the foundation displacements at point K

(Figure 15) [whose coordinates are (x, 0)}:

at u_x_b
x b

at x>b

b

V= (x) = C_ I q (_)e--" {'-_} d_; (3.36)
a

at x<a

b

V, (x) = Cx I q (})e_ "-_dE. (3.37)
a

I11

I " I
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tread

where

Ci = _'(0) (3.38)
4at '

In the particular case of a uniformly distributed load q, (3.35) becomes:

at a<x<b

V, (x) -- qC, [2 -- e'-" ,x-=) _ e_(,-_1]. (3.3 9 )_--if-

We assume that the displacement decreases linearly with increasing

depth:

H--y

the constant C, is then found from (3.14):

Cz ----3 (t + v.)
aE_H '

and (3.39) becomes:

where

V, (x) = 2_ [2-- e'-" c_) _ e= ,,-_)],

E_

k=_.

Figure 16 shows the dimensionless displacements V(x) obtained from

(3.40) for several values of H (for,0=0). The actual displacements are:

V,(x)= e_ ]7(x).

(3.40)

It is seen that with decreasing H the behavior of the foundation approaches

that of the Winkler model. With increasing H the displacement curve

becomes smoother, and the absolute values of the displacements increase.

§ 4. SINGLE-LAYER FOUNDATION WITH VARIABLE

ELASTIC PROPERTIFS

The determination of the strains and stresses of an elastic foundation

subjected to a load becomes considerably more difficultwhen the elastic

properties of the foundation vary.

Consider an elastic foundation whose thickness H varies linearly in the

x-direction (Figure 17).

We shall express the displacement of a point M(x,l/) of the foundation as

before:

u(x, y) = O, o(.1:, y) = V_(x)t_x(x, y). (4.1)

!1

U , U

|-ii

II
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22

• • !

1-11 I 1 I l l [ [ 1 1 I I I I l



A AA

It will be assumed that the function _l(x, y) varies linearly:

4, (x, v) = M- v
H '

(4.2)

where

H = Ho -- 0ox, (4.3)

and 00 = tg _0 (Figure 17).
The condition of equilibrium of an elementary strip of width dx= I , cut

from the foundation, is derived from (1.7), (1.8), [(1.9)], (4.1), (4,2), and

(4.3). We obtain:

.+,[ °:"-"] '-':i--vo6 SH(x)W--_ _O°V'- 1-_ 6 V+_q= O. (4.4)

According to (4.1), the generalized shearing force is:

H

s = S'-¢, aF.(v, (,,)= _) (4.5)
o

'*" 1 v_z.v) _ # F

97777_//'' I _g,_o-8,

FIGURE 13.

0 z

FIGURE 18.

Inserting (4.1) and (4.2) into the last expression of (1.1) yields:

E, [ "14--v Oov ]Eo Ov = _ Vl 14%x=X(l+vo) Ox Mt Vl ,
(4.6)

where H=Ho--0_.

Substituting (4.6) and (4.2) in (4.5) and integrating, we find:

Eo_ V_ -- 0oVd.
$1 -- 'lz(U_'vo) [2H (x) (4.7)

I!!

\

Ii ii-11

Ill

2

Consider the particular case of a concentrated force P acting on the

surface of the elastic foundation at the origin of coordinates (Figure 18).

The following homogeneous differential equation is obtained:

l-vo0., 1 r. _]t -6"0/4 (x)v;-- T or, -- n-_ L_+ v, -- o. (4.8)

B !
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This is an Eulerian differential equation and can be written in the

form after cancellation and multiplying each term by .6-:_):following

H' (x) V_ +nH (x) V_-kmVx=O, (4.9)

whe re

n---00,m=-(_:+,__,)
Substituting V = H _ in (4.9) we obtain an equation with constant coefficients

V_ -_ (n-- L)V_ -_ mVa = 0. (4.10)

The roots of the auxiliary equation

).'+ (n-- 1)).+ ra = 0

are

._,+l/(.-,)')'a"=----_-_ -- 4 m. (4.11)

Since m must be negative, both roots (4.11) are real:

X, = -- rl, _, = r,. (4.12 )

The general integral of (4.8) is:

V 1 = C 1 (H 0 -- 00_) -t'! --_ C, (0 0 -- 0_) r|. (4.1 3 )

Since the displacements of the foundation [at x /G=-_--and] at infinity are

zero, the constant C_ must be zero for .x < 0 while the constant C1 must be

zero for x>0. Hence:

VI = CI (He -- 0ox) -r, Vn = C, (Ho -- %x)", (4.14)

where V_ and Vn are the displacements of the surface of the elastic foundation

to the left and to the right, respectively, of the point where the force acts

(Figure 18).

To determine the constants of integration, we note that:

at x=0 VI=VH, SI--SII=P, (4.15)

where Sz and Sn are the generalized shearing forces to the left and right,

respectively, of x = 0.

Substituting {4.14)in (4.7)yields:

-Eo_ (2rt-t- 1) 0ot_ Ej_ (2r, -- 1) Hr_ot..
S, _-_ (7 _ _,, Sn= 1-_(_ 7--_-0) _"" (4.16)

By inserting (4.14) and (4.16) into (4.15) we obtain the integration

constants:

6 (i+ _o}H_, P, C2 6 (I+ _) H_-_,C,= -- P.
Eo6oo (r, + r,) Ea_oo(r_ + r,) (4.17)

1453 24
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Lastly, by inserting (4.2), (4.14), and (4.17) into (4.1)we find the vertical

displacement of any point of the elastic foundation:

at x _ 0
6 (t + _o)Ho, Cxl--

-v (x, 9) - Eo_o (_-,_- _ PH-r' (x) H _ y ;

atx>0

6 (1+ %)
-V (X, y) = ttor' r, H (x) -- y

Eo_O_(r, + r,) PH (x) _(x) '

where _, and r_ are determined by (4.11).

III

§ 5. DOUBLE-LAYER ELASTIC FOUNDATION

Consider an elastic foundation of thickness H--h, + hz , undergoing plane

deformations (Figure 19). The two layers have different moduli of elasticity
and Poisson ratios.

In accordance with (1.3), the displacements of a point of the elastic

foundation are given by the following expressions:

u (x, y) = 0,

v (x, y) = V_ (x) q,_(y) + V_ (x) _,_(y),
(5.1)

where _t(Y) and _ (y) are the functions of the transverse distribution of the

displacements, and V_(x), Vs(x)are the generalized vertical displacements.

The functions _,(y),_,_(y) are chosen according to the nature of the

problem. In particular, expressions (3.11), (3.16), or (3.21) can be used.

If the upper layer is thin and the lower layer thick, we can write
(Figure 20):

hi --y"

at h_._y-_.t[ _l=0, qb:-- sh -fh, '

(5.2)

where _ is a coefficient determining the rate of decrease of the displace-
ments with depth.

In this case, the generalized displacements V, (x)and Vs(x) define the

vertical displacements respectively of the surface of the elastic foundation

and of the boundary between the two layers.

From (2.2), (5.1), and (5.2) we obtain the following two differential

equations for the determination of the functions V_(x)and V..(x):

I--_, i--v; ]y (r,,V: + r,2V_) -- (snV, + s,_V2) + "-_1-- q = O,
I

£, " [ E, r + E, r.]V-__ E, I

E, . [

i-1 I

Ill

I - I R
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where

hi h,

= _/1 dF =fll

0 0

h, h_

rl2 = f d?l_2dF = ghLw, s,, = f _i*_aF = -- _,
o o

h, h,

r_2 = "1 d/_dF _h, . dF -- a, '= T' s,_= I _:'
o o

H H

h, h,

(5.4) II!

The elastic constants E,, E2, *, and _ entering in (5.3) define the properties

of the elastic foundation in plane strain. For a soil block, these are:

El, $
E,

t--v_, s

E2, S
E_

I --v_. s

VI' S I
"q = I --_s '

v2, $

, "q=t_T2. s , /

(5.5)

where E,.s, E2. s, h, s, _2. s, are the moduli of elasticity and Poisson ratios

of the first and second layers respectively.

i

FIGURE 19. FIGURE 20.

i-i i

ill
Substituting (5.4) in (5.3), we obtain:

211V,-- klV, + t,V_ + kxV2 + q = O, L
t,v_+ k,v,+ 2(6+ t,)v_--(k,+ k,)v,= o, f

where

(5.6)

E,_ E¢,_ (5.7)
kx ht(1--v_) ' If= 12(I +v,) '

E_ E_h2 t_ .L

_-- h, lt--,|) _*' t_--lZ(q%-- )V,. (5.8)

I I
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and _k and _t are known from (3.19).

The coefficients k_ and k2 determine the compressive strains of the upper

and lower layers respectively, while the coefficients t_ and G define their

shearing strains.

In order to solve system (5.6), we introdace a function F(x). The dis-

placements Vt (x)and V2(x)are then expressed through F(x) and its derivatives

in such a way that when these expressions are inserted into the second

equation (5.6), the latter becomes an identity. The expressions which

satisfy this condition are:

V, (x) = (k_ d k,) F (x) -- 2 (q + t,) F° (x), [
V, (x) = kaF (x) + GF'(x). f (5.9)

Substituting these expressions in the first equation of (5.6) yields:

t, (3G + 4t2) Ftv- 2 (3Gkt + ttk2 + tikt) F" -_ ktkiF = q (x). (5.1 0)

Differential equation (5.10) defines the stresses and strains in a double-

layer elastic foundation. In order to solve specific problems it is necessary

to add to this equation the relevant boundary conditions which are given in

a generalized form in this method. We therefore introduce generalized

internal forces corresponding to the generalized displacements V_ (x) and V, (x).

Since an elementary transverse strip cut from the foundation possesses

two degrees of freedom in its plane, it follows from (1.14) that:

H

Si = I xv_x dF'
o

H

S= = I "_v,_2dF,
o

where dF = 5dy.

By (5.1) and (5.2)the shearing stresses %, are:

at 0 _ y_<h,
El ' hi -- y

at hl "J y ._ H

Et V_ sh _ (H -- V)

(5.11)

(5.12)

Substituting (5.12) in (5.11) and integrating over the entire height of the

elastic foundation, we obtain:

s, = t, (2v; + v;), [
s, = t_v_+ 2(t, + t,) v'_. J

(5.13)

Using (5.9), Sj and S, can be expressed through F(x):

S, = tl [-(3ti + 4G) F'+(3kl + 2kl) F'], [

$2 = (3t_k_ +tlk,.. "+ 2t2kl) F'.

(5.14)

Ill
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The double-layer model can be called a foundation with four elastic

characteristics. It permits a higher accuracy than the single-layer model

characterized by only two independent parameters k and t (cf. section 3)

Different schemes of the elastic foundation can be obtained according

to the selection of the parameters kl, k2. t_, and t_. Only one such scheme
will be considered.

It is seen from (5.7)that when both h_ and Ea decrease, t_ tends toward

zero while kl remains finite. If we assume that a thin compressible soil

layer near the surface of the elastic foundation has a modulus of elasticity

considerably smaller than the lower layers, we can write for the first layer

ta =0, kl=K, (5.15)

where K is a coefficient analogous to the foundation modulus and depends on

the properties of the elastic foundation near the surface.

The double-layer foundation thus consists of an upper layer subject only to

compressive stresses, ( tl = 0), similar in this sense to the Winkler foundation,

while the lower layer is subject to both compressive and shearing stresses.

Substituting (5.15) in (5.9), (5.13), and (5.14) yields:

V_=(K +k,)F--2t,F", V,=KFi (5.16)

Sl = O, S_ = S = 2t,V_ = 2Kt,F _. (5.17)

Inserting (5.15) into (5.10) yields:

-- 2t=F" + k2F = g (x) (5.18)
K

Unlike (5.10), (5.18) can be applied to a double-layer foundation with
upper Winkler layer. The term "double-layer foundation" will henceforth

be applied only to this particular case of a double-layer model.

II
\

i[-ii

Let a concentrated force P act on the elastic foundation at the origin of

coordinates (Figure 21). The following homogeneous differential equation

is then obtained for the determination ofF(x):

--2t_F"+k.F =0. (5.19)

Equation (5.19) is identical with (3.22). The following solution is

obtained by analogy with (3.31):

F(x)- 3_t--_) t P
l/g(t--_,) Ct.% E,_K e.... , (5.20)

where

(_- _,, (5.21)
1

while d_t and d/_ are given by (3.32).

Substitution of (5.20) in the second equation (5.16) yields:

3(i--_) ! p
V_ = 1/_ (i -- v,) %_,, E,_ e-"".

(5.22)

Ill
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which is identical with (3.31). By substituting (5,20) in the first equation

(5.16) it is seen that, except at the point where the force acts:

Vt°V_

....... °,t_ ..... ,=

FIGURE 21.

Q

M;iti
frill _:
"i/ ".:'il(iiiitCil_. _. :

_ ._._

I

FIGURE 22.

When a uniformly distributed load q acts on a double-layer foundation

(Figure 22), it is easiest to obtain the solution by using function (5.20),

which for P = ] represents an influence line.

II!

q

iliilili! i_-v,
I i ' _ _ _V _'

FIGURE 23.

By analogy with (3.36) and (3.40) we find:

at O._x(b

at x>b

_ q [2__r--,,__C,_,-bl] ; JF -- 2-k-g-'

iF--- 2--_'q le-"_ _ll-e-,a]

Substituting (5.23) in (5.16) yields:

q (K +/h) q te--_., -- _t,c.-l); iat 0 <x <b Vt = ------K_--,----_, _ _ ,,

/
ks 21111i 'l / # ,

(5.23)

(5.24)

i i-1

I11

ml ! i

at x > b V, = Vi = _ (e_a'-ll--e-a"). (5.25 )
$
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It is seen from (5.24) and (5.25) that the surface layer exhibits no strains

outside the zone of load application (this corresponds to the postulation of

the foundation modulus), since here VI = VI. Within the zone of load applica-

tion, we have:

AV = VI -- V2 = _-. (5.26)

The function V, is everywhere continuous, while V, has a discontinuity

at the borders of the zone of load application (Figure 23).

II

§ 6. THREE-DIMENSIONAL DEFORMATIONS OF

AN ELASTIC FOUNDATION

Consider now a three-dimensional elastic foundation of thickness H

placed above an incompressible layer (Figure 24). Let an external load,

whose x, y z components are respectively p(x, y, z), g(x, y, z), and q (x, y, z),
act on this foundation. As in the two-dimensional problem, we shall use

the method of displacements to determine the stresses and strains in the

elastic foundation. The unknowns will be the displacements u (x, y, z), v (_, y, z),

w(x, y, z)of a point M(x, y, z) of the foundation. The displacements will be

considered positive when their directions coincide with the positive direc-

tions of the corresponding coordinate axes.

By analogy with the two-dimensional problem, the unknown displacements

u, v, w are represented by the following expansions:

u(x, y, z) = _, ui(x, y) Tl(z) (i = l, 2, 3 ..... m),
i=l

I

v(x,y,z)= Y vg(x,y) xi(z) (g= I, 2, 3 ..... l), (6.1)

_,(x, _",z) ,__,,',_(x. 'a)_, (4 (k :: 1. 2, 3, ..., n).
k=l

The functions ?,(z), _g(z), d/_(z) in (6.1)determine the variation with height

of the horizontal and vertical displacements. They are assumed to be known

dimensionless, linearly independent functions. The functions u_(x, y), ot(x, y),

w,(x, y), which have the dimensions of length, are the unknowns. In

accordance with their physical meaning, they will be called generalized

displacements,

The normal and shearing stresses in the elastic foundation are in the

three -dimensional case :

Eo _u ' Ov

Eo r Ov

ro o_, go,,

Eo c]v

Ow
Eo _ [o_ _____ ] ,<,. = xx, = 2{1+.0 I_az '

Eo r ov _ du]x,,: "ty,- 2_1+v0) l& ' _ '

(6.2)

N_

i-i i
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where

Es 'is

E0 1--_ ' _0= 1-, (6.3)

Es and vs are respectively modulus of elasticity and Poisson's ratio for the
elastic foundation.

h all
\

Ill

FIGURE 24.

k-.2'IT.,"W',-T%/AC..I,_

_,._ ,#7

FIGURE 25.

Ill 'Ui' u

Substitution of (6.1) in (6.2) gives the following expressions for the

stresses as functions of the generalized displacements:

r,_, (_, +-o,,,_I
- "*k_L "=i

_,. E _',..v,_+ _o _ <P,+ Y, _ _, ,
! -- v_,t k= _ i= g-I

_' IA" j,°,4
Eo ' + 2J T_"|'

"[zx _ "_x2 _ _ ft_l J

El 0ut

(6.4)

(6.5)

ii-ii !

I11

In order to determine the functions u_(x, y), vg(x, It), wk(x. y), we cut from

the foundation an elementary column of height H and sides dx = I, dy = l,

(Figures 24 and 25). This column possesses (m+l+n) degrees of freedom

in the three directions. The generalized equilibrium conditions of the

elementary column (considered as virtual displacements) can therefore

m HI in

31
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be written in the form:

49a x C Oxxv

(j=t, 2, 3..... m),
ida# r • t, _xu.,

(f=l. 2. 3..... t),
dxzx e • r dXzy

+ 1--_-_,dz+ _o+n*= o
(h=l, 2, 3..... n).

+ II_idz = 0

+ I qxl dz = 0 (6.6)

[cf. (1.7), (1.8)]

Each equation (6.6) states that the total work done by all external and

internal forces acting on the elementary column over the corresponding

virtual displacement equals zero:

aj (x. y, z) = ,_ (z).
_r(x, y,z) = _r(z),

• , (x. y, z) = Oe_(z)

III

for

uj (x, y) = 1,

or(x, y)=l, w,(x, y)=l.

The terms behind the minus sign correspond to the work of the internal

forces. The other terms represent the work done by the forces external
relative to the column.

Substitution of (6.4) and (6.5) in (6.6)yields the following system of partial

differential equations for the functions u/(x,y), v= (x, y), wk (x, y) :

i -i

/ ¢_ui t--vo e}lu# m

l_l i=l

L n

' q-.O _3. 010. ._1( ' .... ' Cq_k '1 --'#02+ T Z.J "/s _ + rod/= -- --'T--";"} W q" W p; = 0
l--l

(J= I, 2, 3 ..... m),
1 1

C a2v_r t -- vo O've )

_+,o,_ o,., y,( 1.... _o=v,__-_'o+ "7 _ tt_-_-_ + _ob_-- T "/*/_ _- T, gt = o

(l= 1, 2, 3 ..... 1),

_ _ _,,) _-

n x-1 t -- v0

k=l

(h= l, 2, 3..... n).

=0

(6.7)

I11
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The coefficients in (6.7)are:

aj_ = a_/ = f _ dz.

_,,= b.= I i_;d_,
tale = met = f xtx¢ dz,

_,.= _,,= S+', d, ,
k,,= S;,¢,d_,,
t,, = S'_'*_,

tll = I KIWidz ,

tic = Icp xe dz.

(6.8)

The definite integrals are taken over the entire height H of the elastic

foundation.

The free terms in (6.7) represent the work done by the known external

load over the corresponding virtual displacements:

P: = I P (x, y, z) _j (z) dz,

l_r = I g (x, #. z) xr (z) dz,

qh = f q (x, y, z) _bh(z) dz.

(6.9)

When an external load acts on the elastic foundation, the integrals (6.9)

are to be considered as Stieltjes integrals (cf. explanations to (1.12), (1.13)).

If no body forces act, i.e., if the external load consists only of [distributed]

surface forces p (x, y),.¢ (x, y), q (z, y), expressions (6.9) become."

p_ = p (x, y) _: (0), l

_f = g (x, y) ,,, (0), Jqh = q (x, v) _,h(o).
(6.lO)

Differential equations (6.7) describe completely the states of strain and

stress of an elastic foundation having a finite thickness//. The elastic

foundation is considered to be an infinitely thick slab secured to its support-

ing surface and capable of sustaining normal and tangential loads,

The solution (6.7) for a thick isotropic plate is approximate from the

viewpoint of the theory of elasticity. Its accuracy increases with the

number of terms in (6.1). The differential equations (6.7) define at the same

time a generalized three-dimensional model of the elastic foundation, whose
properties depend on the number of terms in (6.1) and on the properties of

the functions cpi(z), xe(z ), _,(z). Different schemes, corresponding in varying

degrees to the actual foundation, can be obtained by selecting different

expressions for the functions ¢p,.,xz, +_.

The selection of these functions was discussed in detail in section 2,

dealing with the plane strain of an elastic foundation. We repeat that this

I!!
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selection must be specific to the problem considered (e.g., according to

an experimental law). In this case even the simplest model described by

a minimum number of functions ?_,xe, %5kwill be closer to reality than the

model based on the postulation of the foundation modulus.

§ 7. THREE-DIMENSIONAL MODEL OF AN ELASTIC

FOUNDATION WITH TWO CHARACTERISTICS

Consider an elastic foundation of finite thickness H (Figure 26).

the horizontal displacements of the foundation vanish everywhere:

Let

u(_, y, z)=0, v(x, y, z)=O, (7.1)

and let the vertical displacements be*:

(7.2)w(x, #, z) = w(x, y)_ (z),

where _(z) is the function of the transverse distribution of the displacements,

chosen in accordance with the nature of the problem.

By (7.1)and (7.2), only a single equation of (6.7) remains:

(7.3)

where

'-4
t -2 _ rl,V'w (x, y) -- s,,w (x, y) + -Tj-o q* = O,

_ o'_,(x,y) O'w(x.V} (7.4)
V% (x,y)--_ + 0v' '

H H

,1, = S¢,(z),_, _1,= S¢',(_) e_. (7.s)
o o

The free term in (7.3) represents the work done by the known [external]

load q (x, y, z) over the virtual displacement _ (x, y. z) = _ (z) (for w (x, y) = l )
and is:

H

q*= Iq(x, v, z)¢(z)_z. (7.6)
o

If the external load consists only of surface forces q(x, y). this becomes:

q, = q(x, y)_(O) (7.7)

where 4(0) is the value of _(z) at the surface of the elastic foundation.
Equation (7.3) can be rewritten as follows:

2tv'w (x, _) -- kw(x, _) + ql = o. (7.8)

* The subscript 1 in w (x, y) and _ (z) will henceforth be omitted.
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whe re

k = -E°sx----L t = Eorn
i--v_' 4(1 +vo) ' (7.9)

The coefficient k characterizes the compressive strain in the elastic

foundation, and is thus analogous to the foundation modulus. The coefficient

t characterizes the shearing strain in the elastic foundation.

0

FIGURE 26. FIGURE 27.

The partial differential equation (7.8)differs from the relationship

derived from the postulation of the foundation modulus by the term:

2tV%v (x, y),

which makes allowance for the shearing stresses. In order to determine

coefficients (7.9), we must specify _(z). Assume that, in accordance with

the problem, this function has the form:

ShT(H--z) (7.10)¢(z)= ,h_H '

where % is a coefficient determining the variation with depth of the displace-

ments.

Substitution of (7.10) in (7.9) yields [cf. (3.19)]:

k---_ Ee
#(,-¢ _*'

E_
(7.11)

where

I!!

l-i l

Ill

_'= _-_-E[shT#ch_#--T#Ish'"[H J "

The elastic constants Eo and vo are (see (6.3)):

(7.12)

Eo = E s v S• _0 = -- (7.13)
t -- v_ l -- vs
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We shall now calculate the displacements of an elastic foundation, due to

a concentrated force P acting at the origin of the polar system of coordinates

(_, p) (Figure 27). [For P ;_ 0], the following homogeneous differential

equation is obtained:

where

VIW -- = u, (7.14)

(7.15)

Since the load is symmetrical with respect to the coordinate origin, the

generalized vertical displacements will be independent of the angle 0 • The

Laplacian operator is in this case:

_W(p) + I _(p)v, _) = --_-- _T" (7.16)

By introducing a new variable

= i=p (7.17)

we can reduce (7.14) to a Bessel equation of the imaginary argument _ :

dIW 1 dPP . _,
_, +T-_-_ w =0. (7.18)

The general solution of (7.18) is*:

V/-- C]h (_p) + CaKo (=p), (7.19)

where 10("P) and K0(ap) are modified zero-order Bessel functions of the first

and second kind respectively, while C1 and ¢, are arbitrary integration

constants. Curves of 10(=p) and Ko(ap), as functions of the argument (ap)

are shown in Figure 28. It is seen that the behavior of these functions is

simi]ar to that of exponential functions.

to

_2
t

D
0

{
1
I

\

\ /
/

\ /

t 2 J
FIGURE28.

f

/
/
f

5O

10 l IR

FIGURE 29.

* See, e. g., G.N. Watson. Theory of Bessel Functions.--Cambridge. 1923.
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Since 10(_p)and K0(=p)are real for all values of p, the integration constants

C, and C_ will also be real. They can be found by considering the physical

aspects of the problem. Since at infinity the displacements of the elastic

foundation vanish, we obtain the following boundary condition:

at p-_oc W--* O. (7.20)

Since Io tends to infinity with p, it follows from (7.20) that:

Cl=0. (7.21)

To determine C= from the equilibrium conditions, we cut an elementary

cylinder of radius p = _ (e-_0)from the elastic foundation (Figures 27 and

29). The equilibrium conditions for this cylinder can be written in the form:

e- H

IPdOI "*(_)ez+p,(0)=o.
o 0

(7.22)

This equation represents the work done by the shearing stresses _zp,,

distributed over the envelope of the cylinder, and by the external force P

over the virtual displacement _(p,z)=_(z) (for W(p)=]).

By analogy with (6.2), the shearing stresses _,pare expressed in the

cylindrical system of coordinates (z, p) as follows:

£, dW (p) _(z). (7.23)'t,.p= 2(t+vo) dp

Substitution of (7.23), (7.19), and (7.21) in (7.22) yields:

t_

I2=tC,K, (=p)pdO= P_(0),
@

(7.24)

where, for =p _ I

K, (=_)_ =iT'

[and t is given by (7.26)].

Integrating (7.24) we obtain for C,:

C== p d/(0) (7.25)4.t '

where

E.... = I _ (z)_. (7.2s)t =--,fli +vo) ' rx=
o

From (7.19), (7.21), (7.25), and (7.2), we obtain the vertical displacement

of any point of the elastic foundation:

w_, z) = _/(o (_o)+(z). (7.27)

If, for instance, _(z) is given by (7.10), expression (7.27) becomes:

3P(t +Vo) ,p . , shT(H--z)

=v(p, z) = _ ^o _=P; sh7_ ' (7.28)
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where [cf. (3.32)]

_ i w(i-_0)

_3±r'h_H_h_M--_H ]
_, = 2 _HL _ J'

l/--i shTHchTH+7 H¢. }13 shTHchTH--TH "

(7.29)

If _(z) is given by:

(z)= e -'fz (7.30)

we obtain for an elastic semi-infinite space (H--. o¢) :

where

W_, Z)= 2Pl'(t +Vo)

_¢---- = _ t--vo

(7.31)

and ,_is a coefficient of dimension I/L which determines the variation of

the displacements with depth.

As an example, Figure 30 shows displacements of the surface of the

P

elastic foundation in units of _, obtained from (7.31)for % = 0. The

Boussinesq curve corresponding to %= U has also been plotted for com-

parison. It is seen that the cohesion of the elastic layer decreases with

increasing T, and the properties of the foundation approach those assumed

by Winkler. On the other hand, when T decreases the elastic foundation has

a higher load-distributing capacity.

II!
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Consider now an elastic foundation acted upon by a load, uniformly

distributed within a circle of radius R(Figure 31).

Two regions exist in this case and, by (7.8), two differential equations:

at 0 _ p _< R alWZdps Jr" !PdW'zdp _21][71= -- _t' )

at R_p<oo a_W, i dW, __=,W,_-0.
dp' +_ dp

(7.32)

The solutions of these equations are:

W_= CJo(=p)+ C,Ko(=p)+ -_, /
/W, = CJo(=_)+ GKo (=p)

(7.33)

where k is given by (7.9).

_j_

tttttJttttt _ lw,¢p)

FIGURE 31.

The following boundary conditions are deduced from the nature of the

problem for the determination of the integration constants Cs. C=. C=, C4:

dlg, = 0
at p = 0 dp " (7.34)

at p_o¢ W,=0,

at p = R W1- W=. I (7.35)

dWz dW2 /dp = y "

It follows immediately from (7.34)that:

C2 = Cs = 0. (7.36)

After substitution of (7.33), we can write (7.35) as follows:

Cs/o(mR)-- C,Ko(=R) = -- _, /
JC,l,(_,R)+ C_KI("R) = 0,

(7.37)

where I,, K, are the first-order modified Bessel functions.

Solving the system (7.37) we obtain for C, and C,:

C, = - q g, (aR) Ik Io(aR)Ks(aR)+l,(n'R)Ko(=R) '

q 1_ (aR)
C4 = _ 1o (=R) K, (aR) + 1, (¢R) go (aR) '

(7.38)
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Finally:

w,(p)= c,&(=p)+ -_,1

!W. (p)= C,Ko(=p)
(%39)

This problem could have been solved by proceeding from (7.27) which,

for z = 0 and P = I, defines the influence surface for the displacements. We

then obtain for the displacement atz = 0:

_R

• ' (o)- _ (o)- -_-!! Ko(=p)papae= _-_¢°_[i--=RK0(=_)] . (7.40)

Ill

§ 8. THERMAL STRESSES IN AN ELASTIC FOUNDATION

In the design of foundations for heavy structures, it may be necessary to

determine the stresses and strains caused by temperature variations. This

problem is also encountered in the design of thick slabs and beams on rigid
or elastic foundations.

Consider an elastic layer on a rigid foundation (Figure 5), and let this

layer be in a state of plane strain as a result of a two-dimensional temper-

ature field. In the general case the temperature is a function of the
coordinates x, y and the time t :

r = T (x, y, t).

The problem will be solved by the variational method. The unknown

displacements u(x, y, t) , v(x, y, t) are expressed as finite series:

u (x, y, t) = _, U_(x, t) +;(y)
ill

v Ix, y, t) = _ VA(x, t) _k(y)

(i= I, 2, 3..... m),

(4 = l, 2, 3..... .),

(8.1)

where the functions Ut (x, t), V, (x. t) are the unknowns, while the functions

_ (y), _, (Y) are chosen according to the nature of the problem.

The following system of m + n equations is obtained as before ((1.7) and

(1.8)) by considering the generalized equilibrium conditions of an elementary

column of height H and measuring ! x _ inplan, and assuming thatno surface

or body forces act on the elastic foundation:

--_'¢pidF-- I "*u_ dF = 0

I 0"_¢.

I

(./= 1, 2,3 ..... m),[

J(h= l, 2, 3..... .),
(8.2)
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where dF =_dy

The strain components are:

_u dv du 8o .
,x,=_, 'w=_, ',,=_+_,

the stresses n., %, x._ are, in the case of plane strain

variat ion s :

caused by temperature

= Eo do aE,T I

IEo [ de Ou (8.3)

where _ is the coefficient of linear expansion; T -----T (x, y, t) is the temper-

ature at point (x, y) and time t ; E0 and % are elastic constants defined by (2.1).

The following system of m + n ordinary differential equations in the

unknowns Ul(x, t), V,(x, t) is obtained by first inserting (8.1) into (8.3), and

then the resulting expressions into (8.2):

m

lnl I--1

--e(l+_o) X/r= 0

(]= i, _, 3..... m),

iil l_l

rz

-- _ sh, V.+_(l+Vo)g_r =0

(h= 1, 2, 3 ..... n).

(8.4)

The coefficients a/_, b/_,..., rh,, sh, in (8.4) are given as before by (1.11)

as functions of _(y), @k(y). The free terms X/r and Yhr are:

egr dF = I T@'h dF. (8.5)XIT= I3"_t , Yhr

Equations (8.4), together with the corresponding boundary conditions,

completely define the temperature equilibrium of a layer of finite thickness

H in a state of plane strain. This method can also be applied to the design

of elastic foundations and thick plates in a state of three-dimensional stress.

The three-dimensional thermo-elastic problem can be reduced to a two-

dimensional problem by the method used in section 6 for an elastic founda-

tion subjected to an external load.

As an example, consider an elastic layer of finite length inthe x direction,

which is in a staie of plane strain (Figure 32). Let the layer be rigidly

connected to its base, so that the displacements u(x, y) and v(x, y) in the plane

of contact between layer and base vanish.
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Taking only the first three terms in (8.1), we obtain the following

approximations :

u (x, y, t) = Ut (x, t) _x (Y) + Us (x, t) _, (y) + Us (x, t) _3 (Y), _ (8.6)
v (x, y, t) V, (x, t) _ (y) + V, (x, t) _ (y) + V, (x, t) _,,(y). /

The functions % (y), _2 (Y): _s (Y), qb, (y), _s {Y),% (y) are represented in Figure 33.

From (1.11) and Figure 33, we obtain the coefficients in (8.4):

_H

_H
alS = asl = FIS = fSl = ass = ass = rls = rss = -_- ,

axs = asl = rls = rsl = 0,

2_H
a_s = ass = T '

3_
btl = Su = _ '

bss=bs_=sls=ss_=bss=bs2=s_s=ss_. :---

his = bsl = sis = sss = 0,

6_
bss = bss = "-if,

cll _- cls = lH = Isl = C_ = lss = 2 '

cls= tls=cs2=tss=csl= tsx = cu = tss _ O,

csa=tls=Css=tas=-_.

3_
I-I '

(8.7)

FIGURE 32.

III

-EE . EE mE

"_ll II Ii

2
/¢ H

FIGURE 33.

By substituting these values in (8.4), a system of six differential

• equations in the six unknowns U,, U_, Us, V_, V,, VI can be represented in the

form of Table 1. In this table D and D _ denote respectively the first and

second - order differential operators on the function given at the head of the

column. The terms A],A_, As, B1, B,, Bs, in the last column on the right of

Table 1 are:
dr

dT
A,=a(l +',o)f_7-_,dy, Bs=--_(I +',o)IT*;dy, 18.8)

Aa = _(l ÷_o) IO_-_.%dy, Bs =--a(' +Vo) ITd/;dy.

m - i
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TABLE 1

H
T D= --

3 i--vo

2 H

H

-_- D _ +

3 t--vo
"4

2 //

H

-f-_ D _ +

3 t--v a

2 H

/ H

2 _.-_ D 2 --

3i

3"°)

H

t-_ D' +

3 l--vo

÷ T-W-

.-_D

u,

H

31

14-*,'o D
4

t -- 3vo
D

4

I +roD
4

t--vo 3

-_ - /-/D' - "-W

-- vo 3
HD' +

vI v,

t+vo D
4

_ 1#',o D
4

I + V_oD
4

l 3

--3"-6%HD=+ -H-

I -- vo 3 3

_HD2 + 3 t--vo 3_(-_-,_.-_-)

AI

A=

A|

When the function T = T(x, y, 1) is known, the differential equations in

Table 1 can be integrated by usual methods. In accordance with the

variational method described above, the boundary conditions at x = 0 and

x =lhave to be given in generalized form. Thus, in the case of free ends

they can be written in the form (cf. (1.14)):

Io,*pidF =0, I':xvdchdf =0. (8.9)

When the ends are built-in, and both horizontal and vertical displacements

are prevented in sections x = 0 and x = I, the generalized displacements
must be zero:

U, = 0, Vk = O. (8.]0)

We shall later discuss the case when diaphragms, rigid in their plane

and flexible outside their plane, are located at x----0 and x =l. Such

diaphragms prevent only vertical displacements. The stresses ax in the

end sections then vanish. These boundary conditions are written as

follows in a generalized form:

In,, _/dF = 0, V, = 0. (8.11 )

BI

B$

B,
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Let the function T(x, y, t) be expressed as a trigonometric series:

T (x, y, l) -- _ Tn (y, t) sin (2n- t),_x
l (8.12)

The Fourier coefficients are:

I

2 fT(x ' Y, t) sin (2n--t)"XdxT. (y, t) = --f : .
o

(8.13)

It will be assumed that the boundary conditions of the problem are given by

(8.11). In this case, the solution of the differential equations in Table i

can be approximated by trigonometric series. Writing the unknown functions

U_(x,t), Vk(x,t) in the form:

u, (x,0 = _,u,.(0_o_oz._,).x,

V, (x, t)= _, V,, (0sin (2n-i)nx
l

net

(8.14)

it is easily seen that they satisfy (8.1 I).

Substitution of (8.12) and (8.14) in Table 1 yields a system of algebraic

equations for the determination of the coefficients U:n(t), V_,,(t)in (8.14). Six

equations in six unknowns U,,, Urn, Um,,V_., Vnn, Vsn correspond to each value

of n (Table 2). The free terms in these equations are:

H

A:. =(2n--l),_ (1 auto)- f Tn (y, t)_:dy (i = I, 2, 3),
0

H

B,_ = --(1 + _o)el I T,(y, t)q_kdy (k= I, 2, 3).
o

(8.15)

The solution of this problem has thus been reduced to solving a system

of algebraic equations. This must be done in a generalized form, since

the free terms Az., BAn are functions of t.

After U,. (t), U_ (t), U_. (t), VI. (t), V,. (t), V_ (t) have been determined, the

displacements of the elastic layer can be obtained for any instant from (8.14)

and (8.6). The stresses are found from (8.3), after insertion of (8.6) and

(8.14). The following expressions are obtained for the normal and shearing

stresses of the elastic layer:

' 1+ ,o Y, v,. (0_,(y)--_0 + ,o) r.(y. 0 sin (2__,1-_ (8.16)
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3

i -- _0 "--1t_=1 l--I

--o_(I+ _0)T.(y, t)]sin (Zn--l),_xt

Zo u_.(t) _ (y) +"txy

' ]4- _ _ V;. (t) dt. (y) cos (_2n--t t) nx

(6.16)
cont'd

From (8.16), we can determine the stresses in any section of the elastic

layer for the duration of temperature variation, provided T(x, y, t_is known.

It is thus possible to find the stresses in a block of concrete caused by the

temperature variation during the setting and hardening of the concrete, or

by its contraction, if the latter can be analytically expressed. *

!11

i-i I

I11

1 - 1 !

* See, e. g., Cheche's papers }81, 82/.
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Chapter H

BENDING OF A BEAM ON AN ELASTIC FOUNDATION

§ 1. DIFFERENTIAL EQUATION OF BENDING OF A BEAM ON

AN ELASTIC FOUNDATION WITH TWO CHARACTERISTICS

Consider a beam lying on the surface of a single-layer elastic foundation.

Let an external load p(x) act on the beam (Figure 34). It will be assumed

that the sections remain plane during bending, and that friction between the

beam and the foundation can be neglected. The differential equation of

bending of the beam is then:

EJV 'v (x) = p (x) -- q (x), (i.i)

where q (x) is the reaction of the elastic foundation (= load acting on foundation),

and V (x) is the beam deflection [ VWrepresents a°v_-_].

Equation (1.1)contains two unknown functions V(x) and q(x). In order to

determine them it is necessary to establish the relationship between the

load acting on the foundation and the displacements. This relationship is

obtained from the condition that the deflection of the beam is everywhere

equal to the vertical displacement of the foundation.

g - '''''' - Z

t _....Ill''
_/////////////////////////////////.

FIGURE34.

I!1

'lira ."!

|-| iI

|11

The equation of equilibrium for a single-layer foundation is* [cf. (3.7),
(3.8), (3.9) of Chapter I]:

-- 2iv" + kv = q (x)_ (o), (1.2)

* The subscript 1 is henceforth omitted in V (y)and _ (y).

- m

%

47
!! • •

I ! ! 1 11 1111 [[I lI



_.Aa

where

H

Eo_ !k = _ ¢_,S(y) dy,

M

t = _ I P (y)dy.
o

(1.3)

It is most convenient to select the function @(y) in such a way that _(0)= I.

The generalized displacement V (x) will then represent the displacement of the

surface of the elastic foundation, and equation (1.2)becomes:

--2tV" + kV = q(x), (1.4)

Since the deflection of the beam equals the vertical displacement of the

surface of the elastic foundation, equations (I.1)and (1,4)can be considered

together:

--2tV"+ kV= q(x),l (I.5)
EJV w = p (x) -- q (x). ]

Elimination of q(x) from these two equations yields:

EJV w -- 2tV" + kV = p (x). (1.6)

This equation differs from the equation, derived by postulating the

foundation modulus, by the term containing the second derivative which

makes allowance for the influence of shearing stresses in the elastic

foundation.
x

We introduce the dimensionless coordinate W = "L--' where:

L = [_/2EJO -g______) (1.7)Eo_

is the "elastic characteristic of the beam. "*

Equation (1.6) then becomes:

d4V _ --dv_ 2rl + _V -_- PL*Ej ' ( 1.8 )

where

H

r_ tL s t 1 -- ,,_ I= '_ =-2---E-- d/[dy,
o

H

'L' 2L I _'dys4 = -_ =
o

(1.9)

Equation (1.8) represents the generalized equilibrium conditions of the

elastic layer together with the beam lying on its surface. Hence, V(_) is

the generalized vertical displacement.

* A similar expression was adopted by Gorbunov-Posadov for analyzing a beam of infinite length/25. 26/.
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I V'To the generalized displacement V0]) and slope _(_)=_- (_) (in this case,

these magnitudes represent the actual displacement and slope of the beam)

there corresponds a generalized shearing force representing the shearing

stresses. This force is distinct from the shearing force Q acting on the

beam. In accordance with the variational method employed before (cf.

second equation (1.14)of Chapter I) (see table on page 82):

N ('_) = -- -_, [W" (_) -- 2r'V' ('q)l. (I.I0)

This expression must be taken into account for the boundary conditions

which, as mentioned in Chapter I, have to be in integral form.

When V(_) has been determined, the reactions q(_) can be found from (1.4).

The bending moments and shearing forces are:

any EJ a'V (1.11)
M = -- EJ_-_ = L* a_' '

@V El @V

Q = --EJ _ = t' a_*" (1.12)

The solution obtained corresponds to the two-dimensional problem of the

theory of elasticity. Hence, (1.6) (or (1.8)) is valid both for a beam lying

on a vertical foundation of equal width S (Figure 35), and for strips of width

8 cut in the transverse direction from a long plate (Figure 36) lying on an

elastic foundation. These two cases correspond respectively to plane stress

and plane strain.

FIGURE 35. FIGURE 36.

In the case of plane strain, we have:

E s vs
, , vo=l__,, ' (1.13)

E°_ l--Vs s

where E s, v s are respectively the modulus of elasticity and Poisson's ratio

for the elastic foundation.

Furthermore, in (1.11)and (1.12), the equivalent moment of inertia lof

the strip is:

J = _hS
12 (I --FLs) '

where _ is Poisson's ratio for the material of the strip.

II!
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2. SOLUTION OF THE GENERALIZED EQUATION OF

EQUILIBRIUM BY MEANS OF PARTICULAR INTEGRALS

To solve (1.8), we must first find the general integral of the correspond-

ing homogeneous equation:

#v 2r _ a'v
e_' _ + sW = O. (2.1)

which is:

V ('_) = C,01 + C,O, + Cs_s + C,O,, (2.2)

where C,, C,, Ca, C, are integration constants and ¢_, Oz, q_3, O4,are roots of

the auxiliary equation:

k4--2r2k* + s4 = O * (2.3)

s is always positive.Since neither s nor r can be negative, the ratio "7-
The solution of the auxiliary equation is:

1) for s>r

k = 4-__+_i, (2.4)

where _ and _-are real and positive:

V Is'+: ---T--; (2.5)= _ , _= tf :-:

2) for s=r

3) for s<r

kl=k2=r, [ (2.6)
ks=k4=--r; J

kl = -- k, = x, = V r, + _,

k_ -k,=>,,=V,.,__. t (2.7>
The functions O,, _),, ¢=, O, , their first three derivatives, and their first

integrals denoted by O(x} corresponding respectively to (2.5), (2.6), and (2.7),

are given in Table 3. The derivatives are expressed linearly through

_t, 02, _3, 0,.

The first case is the most important for the analysis of beams on single-
layer foundations. When s> r, the functions in Table 3 differ from those

for the bending of a beam on an elastic Winkler foundation by the
arguments _ and _ of the hyperbolic and trigonometric functions. These

functions can be characterized by the ratio between the real and imaginary
parts of the complex root (2.4):

T=_-=J/ :+:, (2.8)

* [k in this equation should not be confused with the characteristic k introduced in (3.9) of Chapter I. ]

II!
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TABLE 3

@, {b,

(odd) (even)

sh ;,_ cos _ ch _eos _

(_' -- B'-) O, -- 2;_(I), (_s _ [_s) Cs -- 27_I_tI),

(_' - 3_b¢, + ; (;, - a_,)¢, +
÷ _ (_, - 3;,) ¢, + _ (_, - a;,) e,

sh r_ ch rvi

r@, r®l

>_ =-_

_=

H

I1----

s=O

s)r

$_ r

s<r

s=O

@

@-

(I}'"

@

O"

(_)-,

O'

@-

_),,,

@

@,

@-

(_-,

1I}rl)

_)(I)

_(l)

¢I}(I)

ra@_

sh/,l_

k_O,

k_O t

h_2

0

1

l

I s _s
2"_= 2

(odd) (even)

ch_ sin_ sh ;_,sin _

(i,- _,}¢, + 2_¢, (i,- p)¢,+ 2;_¢,

7,(;,_ 3_')_, -- ; (_, - ap) _, -
- _{p- 3i,}@, - _ (_,-3;,)¢,

t

ch r_ _ sh rB

2rCs ,a- r_tl_ 2r®s 4- r_O_

ch kl_ sh X_ ch ks_

k_@_ ksO_ ksO_

1 sh r_

;,+_,

I

_6

;¢, - _¢,
;,+_,

1 t

i

"iT,®'

i

ch rsv_

;,+_,

I I

i

i

-;7_,
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This ratio varies between 0 and i. For _=0 the functions _) (i--l...4)

degenerate into hyperbolic functions, multiplied by i or _. For 7 ---L they

reduce to the functions of the bending of a beam on an elastic Winkler

foundation.

The functions (_,,_,, _,, _4, are tabulated in the appendix (Tables l, 2, 3,

4) for values of _ between 0.0 and 1.0. In these tablesz=_l.

The general solution of the nonhomogeneous equation (1.8) is equal to the

sum of the general homogeneous solution (2.2) and of a particular solution V0:

V (_) = C101 + C,®, + C,CDa + C,cD, + V0. (2.9)

When the distributed load is either constant or varies according to a

linear law p(_)=a+b_, we can write:

Vo= pL' (2.10)
EJs 4 •

Although this method of determining V (_) is very simple in principle,

it involves cumbersome calculations. Even when the function p(_) is defined

by a single analytical expression for the entire beam, a system of four

algebraic equations has to be solved in order to determine the four integra-

tion constants Ct, C_, Cs, C,. If the load varies according to different laws

in different zones of the beam or includes concentrated forces, the general

integral (2.9) will contain different integration constants in each zone, their

total number being four times that of the zones. In the relatively simple

problems represented in Figure 37, we have to find 12 constants by setting

up 12 algebraic equations. Hence, the method described is only practical

when the external load is given by a single analytical expression valid for

the entire beam.

Fo,} _. I s,}
FIGURE 37.

III

i-I i

Ill

To solve the problem considered in a practical and general manner, we

shall apply Puzyrevskii-Krylov's method of the initial parameters (this

method was first suggested by Cauchy) in the form proposed by Vlasov.

This method requires the determination of only two integration constants

irrespective of the load distribution _:_
n ° i I

* The method of initi, al pa:ameters as applied to the analysis of beams(both o_dinary and on elastic

Winkler foundations) is explained in /73/and in /47/.
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§ 3. SOLUTION BY THE METHOD OF INITIAL PARAMETERS

1. General integral of the homogeneous equation

It will be assumed that the load consists of concentrated forces and

moments. Between their points of application the bending of the beam is

determined by the homogeneous equation (2.1)whose general integral (2.2)
is written:

V = C,K, + C,K, 4- CsKs + C,K,, (3.1)

where K1, K,, K3, /(4 are independent linear functions of ¢1, ¢t, ¢_, ¢4. The

system K,, K,, Ka, K, can accordingly be called the fundamental system.

We choose the fundamental system in such a way that when _ = 0. the

generalized geometrical and statical magnitudes V, ?, M, N, expressed

through the functions K,, K2, Ka, K, and their derivatives, form a unit
m at fix :

i V(O)=K,(O) K_(o)M(o)= [ N (0)=
t __ EJ • El? (o) = Z-- Z¢ K, (0) = - T,t_(o)-

I - =,,K;io,

!1'o
0
0

!11

RBr . _ m

i-i i

Hence :

C, = Vo, C, = ?o, C, = 114o, C4 = No,

[the subscript "O" denotes the values for _ = 0].

The functions K,, K,, K,, K4 thus express the influence of unit initial

parameters on the deflection, i.e., they are influence coefficients. Writing:

we obtain:

K, =Kw. K_ = Kv., K, = KvM , K4 = Kw,

V ('_) = VoKvv + ?oKv. + M,KvM + NoKv,v. (3.2)

Inserting (3.2) into (1.10} and (1.11), the following system is obtained,

including (3.2):

V (_) = VoKvv + _oKv, + MoKvu + NoKvN.

? (_) = VoK,v + %K,_ + MoK, M + NoK,_,

M(_) = V_KMv + ?oK., + MoKM. + NoKM_,

N (_1)= VoK,vv + %KN, + MoK_. + NoK,vN.

(3.3)

I11

i R Im
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The 16 influence functions Kvv, Kv,_ ..... KN_ , in (3.3) form a matrix for

the direct linear transformation of Vo, _0, M0. No into V,, _. M,, N_. After the

initial parameters have been determined, the problem can be considered
as solved.

Any section _ = t in which V¢, opt, Mr, Nt are known can be taken as initial

section. The values of V_, _, M_, N, in a section situated at a distance _--t

from the initial section will be determined by the same influence functions,

provided the homogeneous differential equation of bending (2.1)is valid
between these two sections:

V_ ----VtKvv + _tKv_ q- MtKw ÷ NtKvN.

ep_= VtK_v q- cptK_ "q-MtM_M q- NtK.,_.

M_ = VtKMv q- _tKM, + MtK_M + NtKM_¢,

N. = VtK_v -I- _tKN. + MtK,_ -I- NtKN,_o

(3.4)

The influence functions K,v ..... KN_ are here functions of the argument

(q--t), while ¢1 ..... O, become _l(_--t) ..... O,(_--t).

A very important property of matrices (3.4) and (3.3)is their symmetrical

structure, as a result of which there are only 10 distinct influence functions.

The four functions forming the secondary diagonal are not repeated. The

remaining 12 functions, arranged symmetrically to this diagonal, are equal

by pairs :

Ku_ = K.., K._ = Kv_, KMIv = K_,_,, i
(3.5)

Kmv = Kvv, Kt_, = KMv, KNH = K,v. j

This property is derived from the reciprocity theorem of Maxwell and
Betti. *

!!!

-i ii I

2. Effect of external load. General integral of

the nonhomogeneous equation

Consider a beam of length l, acted upon by concentrated forces P,, J°2..... P,

(Figure 38) at points whose dimensionless coordinates are respectively
tz, 12,..., l_.

..__//_/////////////...
FIGURE 38.

* For a detailed discussion of influence functiom forming matrices of direct and inverse transformation, cf.

V.Z. Vlasov, "Tonkostennye uprugie sterzhni" (Thin-walled Elastic Bars).--Gostekhizdat. 1940. [Trans-

lated by IPST, No. 428. ], and "Stroitel'naya mekhan[ka tonkostennykh prostranstvennykh sistem"

(Structural Mechanics of Thin-walled Three-dimensional Systems).--Stroiizdat. 1949.
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For 0 < _1< t, the kinematic and statical factors are determined by the

initial parameters and influence functions:

V bl) = VcKvv (_) -_ _Kv. hi) -t- M_Kw, 01) + NoKw 01).

M (_,) = '¢,K_v ('_)÷ _K_, (._)÷ MoK,._ ('0 ÷ NoK._ ('0,
(3.6)

These expressions remain valid as long as the homogeneous differential

equation (2.1)holds true, i.e., as long as V 01), _01), M(_, N(_) are
continuous.

If one of these functions has a discontinuity at _l= tk, i.e., if a concen-

trated load acts at this point, the influence of this load must be taken into

account for _ > t,, in accordance with the principle of superposition

following from the linearity of (3.6). This influence is equal to the magnitude

of the discontinuity multiplied by the corresponding influence function,

calculated for the coordinate 01--t,).

Thus, V (t), _ bl), M bl) remain continuous at all points where a concentrated

force P_ acts, only N (_) increasing by (-- Pz). Hence, for tl < _ < t, (Figure 38):

V (_) = VoKw (_) + _oKv, (_) + MoKvM (_) + NoKw 01) --

-- PlKw (_ -- tl),

(_)= VoK.v(_)+ 1.oK..(_)+ MoK._('q)+ NoK.. (_) --
- P1K,_ (_ -- tD,

M:09 = VoK_ (_)+ t.oK_.(._)+ MoK_ (_])+ .VoK_,_.(._)--
-- PIKa_ ('_ -- tD,

N ('_) = VoK_ ('q) + _KN. ('_) + MoKn_ (71)+ NoK_N ('_) --

-- PxKNN (_ -- tn).

(3.7)

For t_<-ti<&+_ we have:

I!!

-I-I-I

V (_) -----VoKw (_) Jr _oKv, (_) + MoKv/a ('_) + NoKVN ('_) --
1

-- _ P,Xv, (_-- t,).

¢_(_) = VoK,v(_) + _oK_.(_) + A4oK._(_) + NJ(,_ (_) --
(

-- _, P*K,_ ('_-- t,),
tt=l

-- _, PkKa_ (_ -- t,),
k--I

N (_l) -_ VoKsv (_) -F %KN. (_) + MoKn_ ('_) + NoKzwv(_) --
i

-- _ /_J(_ 1_-- t.)

(3.8)

Ill

i - i m
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A distributed load p(t) (Figure 39) can be considered as a system of

elementary concentrated forces; we obtain for the loaded part of the beam:

V (_) = VoKvv (_) + _oKv. ('@ + MoKv_ (_) +

+ NoKvN (_) -- I p (t) Kv_ (_-- t) tit,
a

(_) = VoK.v (_) + _oK,, (_) + MoK.M (_) -+

+ NJQx (_)-- ip (t)K.. 1_-- 0 at,
a

M (_) = VoKuv (_) + _oK,_, (9 + MoK,_M 01) +
vl

+ NoK.,_ (_)--Ip (t)K.. (_-- t)dr,
a

N (_)= VoKNv (_])+ ¢PoK_.(_)+ MoKN. (_)+

+ NoKN_v ("1)-- I p (t) Kmv ("I-- t) dr.
a

(3.9)

When distributed and concentrated loads act simultaneously, the integrals

in (3.9) are Stieltjes integrals, i. e., the terms under the summation signs in
(3.8) have to be added to them.

I D _1

FIGURE 39.

h _
ta

! p

FIGURE 40.

In the most general case of arbitrary external influences, the solution

of the nonhomogeneous differential equation (1.8) can be represented in the
form:

V ('_) = VoKw + _oKv, + MoKvM + NoKw -- Fv,

0]) = VoK, v + %K,, + MoK,M + NoK,N -- F,,

M ('_) = VoK.v + %K.. + MoKM. + NoKM_t -- F_,

N 0]) = VoKNv + _oKx, + MoKxM + NoKNN -- FN,

(3.10)

II!

! 'kl

ii-ii iI

ill

where Fv, F,, FM, FN are known functions depending on the load and its

distribution. These "loads" need not be vertical forces and moments; they

may also be breaks and abrupt bends in the beam. m !
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For the case represented in Figure 40, we obtain for Fv andF_:

at Q<vI<Q

at ts<'q<t,

Fv = FM = O;

Fv = PKvN ('q-- tO,

F/, = PKuN (_ -- tl);

F v = PKvN ('q-- tl) -- MKvM (_ -- tz),

FM= PKM_ ('11-- tl) -- MKM,. (_ -- t._);

Fv = PKw ('q -- tl) -- MKvM ('_-- t,) -- AVKw (_ -- t_),

F M= PKMN (_ -- t,) -- MKMM (',1-- t,) -- AVKMv ('_ -- G):

at t4 <

Fv = PKv_, (TI-- tl) -- MKv,_ (_-- t2) -- hVKvv (_ -- is) --

-- %Kv, (_-- t,),
F_ = PK MN (_q-- t l) -- MKMM ('q _ Q) -- AVKtav ('11-- ts) --

-- A_K,_,(_ -- t,).

(3.11)

II!

The initial parameters V0, %, M 0' N o can be obtained very simply by this

method, the initial section of the beam being chosen arbitrarily. Thus,

by selecting one of the beam ends as initial section (_ = 0), we automatically

determine two of the four parameters. The other two initial parameters

can always be found from two equations defining the boundary conditions at

the other end of the beam.

Thus, for a simply supported beam, we obtain respectively for 3 = 0 and 1 - 1 " 1

d 1

!

whe re

Vo = 0, M o = 0; (3.12)

_(-_)=0. _(+)=0. (3.,3)

Substitution of (3.10) and (3.12) in (3.13)yields:

are determined for

V (+) = t_oKv, + NoKv_ -- Fv = O,

M (+) = ,oK.. + NoK.N-- F. = O,

Kv,, KvN, K_,, K_N, Fv, F_

Ill
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3. Determination of the influence functions

The functions Kw, Kv, ..... KN,a in (3.10) were assumed to be known. It

will be shown now how these functions are determined for the most important

case s > r.

We proceed from the homogeneous differential equation (2.1) whose

general integral, determining the generalized deflection V(7) , is

V (_) = Cl_z + C,@, + C8_= + C,_,. (3.14)

The other kinematic and statical factors are linear functions of the

derivatives of V (n) :

l t

(_)= -z- v,
EJ .

M(_)----D-v,
E._ .. mr

N (_ = -- _i- IV -- 2r'V'l.

(3.15)

Substitution in (3.15) of (3.14) and the initial conditions (for (_ = 0)

[cf. Table 3]

d>, = 1, ¢1 = ¢, = ¢. = 0,

V=Vo, _=%, M=M o, N=N o,

TABLE 4.

l_uence functions

V_

ep_

N_ t

Vo

r s

Kvv = ®,-- 2"_=

st

E/

K MV -- 2T2"_L" s'll>.

E J= t

KNv = 2_ I(s'--

-- 2,') _ah--(==--2,');_l

9o

, L

Kv,= _ (_,+ _,¢,)

I,IA

El
KM, , = -- _ I(3_* --

2a_L

- p)-_,- (-a,- _,)-a¢,]

KN® = K/I V

Mo

L t

KvM = 2a_EJ ®'

L - -

g, jw= - _ (=$,+P$,:

KMM _ K_,

KNM == Kov

!11

•"l , ! _, 'B!

.. \

KVN =

L = _ _

,:=ps'_,l

K_h, = KV M

KMN = KV, o

KNN == KVV

Ill
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yields the following expressions for the integration constants C,, C,, C,, Ca :

C_ = _ [s_t%+ _ L'D-N0],

Cs = Vo,

i [ _. - L' No ]C, = _ [ s "/_cpo -- " El'

' [ L' ]C, = -- _ r'V o + M o
2_ _ El"

(3.16)

Substituting these values in (3.14) and (3.15), we can express V(_l), _(_l),

M (_). N (_) through the initial parameters V 0' %. M o, N o and the influence

functions Kw. Kv, .....KN^, , given in Table 4.

The influence functions for the two other cases:

s=r and s<r,

can be similarly determined.

!!!

§ 4. INFINITELY LONG BEAM

1

Consider an infinitely long beam. If a concentrated force P (Figure 41)

acts at the origin of coordinates, we obtain the following homogeneous

differential equation [for all points except the origin]:

dsV _V
_, 2r _+ s4V = 0. [cf. (2.1)] (4.1)

Assumings>r, the general integral of (4.1)has the form

V (_ = C,e-;_ sin _',l + C4z-_" cos-_,,l + C_ sin _hl + C,_"cos _l. (4.2)

where _ and _ are given by (2.5).

For reasons of symmetry we consider only that part of the beam for

which x > 0.

Since for _]--,oo V-_0,

we obtain C, = C4 = 0. (4.3)

i-i-I

Ill

Substitution of (4.3) in (4.2) yields:

V(_)= C,F,+ C,P,,

where

F, = e"-_ sin_"_, }

(4.4)

(4.5)

B i m
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The integration constants C, and C= can be determined from the conditions at

the origin:

at _=0 (0) = _- _- = 0,

_v(o) _._rd,v _,evl P I=-_-L_- _ _.J=-y,
(4.6)

where _(0) is the slope and N (0)the generalized shearing force for_ = 0.*

!!!

Po z_).

tl.i
Y'////////////////////////////////////_

FIGURE 41.

Substitution of (4.4) in (4.6) yields:

ClF_(0)+ C,F;(0)= O, ]

Jc,F7(o)+ C,F_(0)= pL,-2_--"

(4.7)

By solving (4.7) we obtain the integration constants:

where FI(0), F,_(0), F;(O), F_(0)

F2at TI=0.

F_ (0)

F_ (0)F_ (0)-- F_ (0)F_(0) ' (4.8)

F' (o)

r[ co)p_ ¢o)- _ co)F_(o)

are the first and third derivatives of F. and

By substituting (4.8) in (4.4) and taking (1.7), (1.9), and (2.5) into account

we obtain finally:

V (._) = P O - _)
Eo_ 2;_s* l=Ft(_) + _F,(_)I. (4.9)

Expressions (1.11)and (1.12)for the bending moments and shearing

forces respectively then become:

PL ['F, (',1) F,(',I) ] (4.10)M(_)=TL _- P _'

* The following o r d i n a ry boundary conditions correspond to the g e n e r a 1i z e d c o n d i t i o n s (4.6):

?(Oj=__i d_ =0,
L d_

o EJ dlV P
Q( )=--P'- a--_=- T"

"lI -: " 'l' :

I-I-I

I11
\

\

\
\
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The reactions of the elastic foundation are, by (1.4),

Expressions (4.9) through (4.12) make possible rapid calculation of the

stresses and strains in an infinite beam [on an elastic foundation]. They

can be written in the following concise form, similar to that for an [ordinary]

infinite beam (cf., for instar, ce, /25/):

v (_) -- P (' - _0') - }
Eo_ "v(_)' M ('_) = PLm (_,

-- p --

Q (_) = -- PQ (_1), q ('_) -£- q (_)'

44.13)

whe re

_(d = _ _P, (_)+ _,F,(_)_,

_( , [r,_) r,(,_)]_) = _ --=--- I_

[ ,' ]1 p,C_)__p,(.q) ,Q(_)= T 2=
t

q(_) --- _ [_(s' -t- 2r') F, ('1)+ E(s' -- 2r') F, (_l)].

The following relationships exist between these functions:

(4.14)

Y(_)=--((_)" _'(_)=--Q-(_), I (4.15)
_, (_) = _-(,_), Q-7(_)= _ _ (_). 1

II!

i-i-I

Expressions (4.9) through (4.12), or (4.13), are quite general. They are

valid for any function ¢(,_), the accuracy being equal to that with which le. t, s',

rS,=, _ have been determined,
Consider the case for which:

44.16)

where L is defined by (1.7), and T is a coefficient depending on the properties

of the elastic foundation.

Ill

mm _ I

, _ (_)= I FI ('q)ksthe dimensionlessslopewhose dimensionalvalue is: • ('q) P (i--vo=_)('_)-
2a _ Eo_L
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The constants entering in (4.9)through (4.12) are:

k _ (t -- v_) _*' t = 12 (t + vo)

L
S4= 2-_- *k, rn = 2_ --_-*t,

¢* = 2 L "h'_ '
L

£

(4.17)

[cf. (2.5) of this

chapter and (3.18),

(3.19) of Chapter I]

If the elastic foundation is a semi-infinite plane (H--. oo), expressions

(4.17) reduce to:

k = Eo_ 1'
2(t-_) L '

t = Eo_ L
8(i+_) ._ '

s4=T,

(4.18)

Curves of v, m, Q and q-, calculated from (4.14) and (4.18) for H--,oo,

_0 = 0.3, and 3 = 1.0, I = 1.5, are shown in Figures 42, 43, 44, 45. The

abscissae are the dimensionless distances _ =----_, measured from the origin.

42

Q3

05

_6

AT
Deflections

FIGURE 42.

O

!!!

"RB" : _ ? i

i+i-I

-111

These curves have been plotted only for positive values of rj since

[obviously] v, m, and q are even functions of _, only Q being an odd function.

The dimensional functions V, M, Q and q are obtained from (4.13).

When _ increases, the bending moment at _ = 0 decreases. This is due

to the larger reactions near the point of action of the force. In addition,

the deflections of the beam are considerably less.
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a_U___Two-dlrnensional problem of_

0.2 _e theory of elasticity

°Ia4

Reactions 0
FIGURE 43.

oo 6,o
ao --,'---7-- _,

12/

7, '')

O2

Bending moments

FIGUI_ 44.

Iii

!1 _'_ '7 !1

i-i !

IP 2,O &0 _,o

al

_J

a4

o,5

Shearing forces

FIGURE 45.
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Curves obtained by Gersevanov and Macheret (cf. /21, 25/) for an infinite

beam on an elastic semi-infinite plane*, and also those obtained by

postulating a foundation modulus, have been plotted in Figures 43, 44, and

45 for comparison. The foundation modulus is assumed to be:

where

E0_ -3- (4.19 )
k=_ L

W 2EJ (t
= i.5; _0 = 0.3, L = F _E0

Comparison with the results, obtained when the foundation modulus is

postulated, shows (see the curve for "f = 1.5 in Figure 44)that when

allowance is made for shearing stresses in the elastic foundation, the

maximum bending moment decreases. The difference is of the order of 4 %

for the values of -f considered.

When _(y}is given by (4.16}, the solution presented here gives for T = 1.0
and 1.5 lower absolute values of the maximum bending moment than the

solution of the two-dimensional problem of the theory of elasticity. The
difference is of the order of 15 to 20%, becoming less when -f decreases.

Ill

"l :'U

3

Consider an infinite beam on which a positive moment M0

clockwise direction (Figure 46).

FIGURE 46.

acts in a

_,,_/11/1//1/,4(I////_

_,1_ _ J,
FIGURE 47.

Let two equal and opposite forces P be applied at points 0 and K situated

at a distance ds from each other (Figure 47). We shall determine the

deflections of the beam due to this couple. Thefirstequation(4.13)becomes:

Vp ° (_)= Po (I- _o)Eo-----T----_ (_),

P_('- ":)G(_+ ds).

The total deflection of the beam at point n(v,) is:

V ("I)= Vpo q- VPK = Ptl --v'.) (4.20)- Eo_ "I_(_ + ds)-- _(_)l.

" This was not done in Figure 42, since the vertical displacements cannot be determined in the two-dimen °

sional problem of the theory of elasticity.
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Let ds tend to zero and P to infinity so that the product Pds = Mo remains

finite and constant. By multiplying and dividing the right side of (4.20) by

ds [= Ld_],we obtain in the limit:

M. (t -- _) Mo (t -- _) _ ('_). (4.21 )

Similarly:

Mo(t - v_) Mo0 - **oi
(_) = _o_L, _' (_) = Zo_L, _'%'

M (_) = --Mo_"(_) = M_ (_),

O (_)= ____, (_)-_ M --- --£-QM(_),
(4.22)

By (4.15) :

_, (_)= _ (,_), _, (_)= _(,9. J (4.23)

By differentiating the last equation (4.14)we obtain:

"q_(_) = r*F, Ol) + _.-_2t__, F, O1). (4.24)
4a

III

i l i

§ 5. RIGID BEAM

The case of an infinitely rigid beam is very important in the theory of

beams of finite length. Analysis of such beams reduces to ::inding the

reactions q(x); the other unknowns can be found by means of the ordinary

equations of statics.

It is convenient to resolve the external load into symmetrical and

antisymmetrical components and to carry out the calculations separately.

The final result is then obtained by superposition.

111
1. Symmetrical loading

The deflection of a rigid beam under the action of a symmetrical load

is constant;

V(x) =co. (5.l)

The vertical displacements of the surface of the elastic foundation are

also constant beneath the beam, as follows from (1.4):

q(x)= kCo. (5.2)

I I
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The reactions of the elastic foundation are thus determined in a manner

similar to Winkler's method. The only difference is that in our case V(x)

has no discontinuity at the beam ends, as would happen if the foundation

modulus were postulated. In other words, the elastic single-layer foundation

is strained even beyond the edges of the beam (Figure 48).

L , _P ,

! I --"

.__ stt/ ',

¢¢x; I

"I ,:.c. [o:
FIGURE 48.

".'1 I.,'

FIGURE 49.

II

-I • I

In section 3 of Chapter I we introduced the generalized shearing force:

N

S (x) = f %'_ (y)dF = 2tV' (x) (5.3)

@

[cf. (3.10) of Chapter I]

which is discontinuous at points where concentrated forces act at the surface

of the elastic foundation.

In accordance with (5.1), S becomes zero beneath the beam. Beyond the

edges of the beam, the generalized shearing force is, however, different

from zero, so that S(x) has discontinuities at x = -I and x = I . Hence,

concentrated reactions Q¢ arise at the beam ends, which are due to

stresses in the elastic foundation beyond the beam edges.

The existence of concentrated reactions Q¢ can be proved also by different

reasoning. The assumption that only distributed reactions, given by (5.2),

act on the bottom of the rigid beam leads to a contradiction: the vertical

displacements of the surface of a single-layer foundation acted upon by a

uniformly distributed load are not constant (cf. (3.39) Chapter I). In order

that condition (5.1)be satisfied beneath the beam, concentrated forces must

act at the beam ends, causing additional displacements of the foundation

surface (the }latched part of the displacement diagram in Figure 49).

In the general case the concentrated reactions Q# are equal to the

difference between the values of S to the left and to the right of the beam

end:

q_=S0(--0--Sb(--0, [

q$= Sb(0--So(0, I
(5.4)

where S0 = generalized shearing force acting in the free foundation, Sb

= generalized shearing force acting in the foundation beneath the beam.

The sign of Q¢ is determined in a similar manner as the sign of the

reactions q (x), being positive for forces acting upward.

l-I l
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The stresses in the elastic foundation beyond the beam edges are given

by:

-- 2iV"+ kV = 0. (5.5)

Solving (5.5)for V, we obtain:

at x < -- l VI = Co_'(x+tJ' _ (5.6)
at x > l Vxz= Coe'_(x-t).!

Taking (5.1), (5.6), and (5.3) into account, we obtain from (5.4):

Ill

where

Q*_= QJ= _tc0, (5.7)

= = V'$ • (5.8)

The displacement Co is found from the equilibrium condition of the beam

by equating the projection of all vertical forces to zero. The forces acting

on the beam are the known external load Po, the uniform reaction q, and the

two forces Q_ and Q_; therefore [by (5.2)]

P0 (5.9)
Co= 2 (kI W 2at) *

Substitution of (5.9) in (5.2) and (5.7) yields:

po t (5.10)
q= 2l I+2 =._.t °

kl

q_ = Qg= P0 ,
2 i+ k/ ' (5.11)

2at

The constant Co could also have been determined from the generalized

(variational) equilibrium condition for the entire system (beam and elastic

foundation), obtained by equating to zero the total work done by all external

and internal forces in the system over the virtual displacement v- (x, y) =

= i ._,(y) :

•#.ooH

-- I I _' (y)dF da-F Pock(O)= O, (5.12)
---coo

where dF = 8dy, and % is the normal stress, given by the first equation

(3.3) of Chapter I.

Substituting (3.3) of Chapter I in (5.12), taking into account (1.3), (5.1),

(5.6), and noting that _(0)= ! , we obtain:

-' +' i ]Cok[ f e-,.+ada + Ida+ e-._.-nda =P°,
(5.12')

V'_

l-I i
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or

Cok [2l + @] = 2Co[kl q- 2at[ = P0, (5.12")

from which we again obtain (5.9).

From (5.12') or (5.12") and (5.7) it is seen that each reaction Q* is equal

in magnitude to k times the volume of the displacements in the elastic

foundation beyond the corresponding beam end:

II

Q_ = k I C°e""+t_ dx = _tCo,

Q_ = k _ Coe-_C,-L_dx = 2_tCo.
I

(5.71 )

A similar result is obtained if the displacements given by (5.1) and (5.6)

for C0=t are considered as virtual displacements. Unlike (5.12), the work

done by the internal forces is in this case the sum of the work done by the

normal stresses % and by the shearing stresses %_. The final result will
again be given by (5.12").

Ill

2. Antisymmetrical loading

The deflection of the beam due to an antisymmetrical load is:

V (x) = edr,

where 60 = tg% = the slope of the beam (Figure 50).

a- ( y|- L

2"I///,%///Y//II///I/////,4//7/,__ K///,2

-I i _'"

FIGURE 50.

t P° t

.z 0,4 I _*

le / ,'.e

o: o.1r Tr_.._rr 1o.
FIGURE 51.

(5.13)

It follows in this case from (1.4) that:

q (x) = keox. (5.14)

In order to determine the concentrated reactions O0, we calculate the

generalized shearing forces S (x).

Proceeding from (5.3), and noting that the displacements of the foundation
beyond the beam ends are:

at x _< -- l g_ = -- OJe-c-+*J ; /

at x) 1 Vn = Oote--.cx-t_' j (5.15 )

i l |

Ill
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we obtain the following expressions for the generalized shearing force:

at x _ -- 1 S = -- 2atOole_+ _); ]
/

at --I < x < l S = 2tOo: / (5.16)

Iat x _ l S = -- 2_tOole-oc'-tl.

The concentrated reactions at the beam ends can now be determined

from (5.4):

where

- O_¢ = Q¢_= 2t (l + _l) 0o_ (5.17)

II!

From the equilibrium condition for the beam, obtained by equating to

zero the sum of all moments acting on the beam about its center, we find:

3Mo (5.18 )O°= 21 [klt + 6t (t + at)] "

Substitution of (5.18) in (5.14) and (5.17) leads to the following expressions
for the reactions:

3M0

q _,,[,+_(,+_,)]x' (5.19)

Q¢ = Mo (5.20)
M'2,[,+_1

where M0 is the sum of the external moments about the coordinate origin.

Expressions (5.10), (5.11) (for symmetrical loading), and (5.19), (5.20)

(for antisymmetrical loading), give the complete solution for a rigid beam,

since the bending moments and shearing forces can be determined by known
methods once the reactions have been determined.

3. Calculation examples and analysis of results

The exact solution of the problem of a plane symmetrically loaded punch,

obtained by Sadovskii, is:

P.
q(_= ,,t I1/T-Z_--_* • (5.21)

x (Figure 51).where _ = T

The reactions given by (5.21) are also shown in Figure 51.

that they increase to infinity toward the punch ends.

The elastic foundation is not considered by us to be a semi-infinite plane

but a single-layer model whose properties are determined bytwo parameters

k and t, in which concentrated forces Q_ correspond to the infinitely large

reactions q(v,) obtained for the exact solution.

It can be seen

l ILl

Ill
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The concentrated reactions Q¢ are obviously not real forces acting in the

elastic foundation at the beam ends. Their appearance is due to the _tresses

in the elastic foundation beyond the punch ends. They should therefore be

considered as fictitious forces by which a11owance is made for the influence

of the free foundation on the stresses in the punch.

We put:

H--g
sh 7 l

¢ (Y)= _sh---_'

(5.22)

where I is the half-length of the beam, and _ a coefficient characterizing

the variation with depth of the vertical displacements in the foundation.

In accordance with (1.3} and (5.22), the elastic parameters of the founda-

tion are:

k_P

t l_(i-,o) _=.
_=H t --%

(5.23)

where

"i'M _H _H

i "fH sh_ch Z -F-_--

(5.24)

[cf. (3.18), (3.19),

(3.32)of Chapter I]

III

i l-i

Substitution of (5.23) in (5.10), (5.11), (5.19), and (5.20)yields:

for the symmetrical load,

P= t
q-- 21

i-F

QO = P* 1
2

(5.25)

-Ill
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for the antisymmetrical load, 

Consider the case of symmetrical loading, for  which curves of the 
dimensionless magnitudes q and @ a r e  given in Figures 52 and 53 for  
v,  = 0.3 and y=1.0; y=1.5; y=2.0. The dimensionless reactions q and Q+ 
a r e  obtained from: 

. ., . - 
FIGURE 52. 

N It can be seen that fo r  ratios of 7- above 1.5 to 2.0 the reactions remain 

constant for  the values of considered. Wher, exceeds this value, 

therefore, the elastic foundation behaves like an elastic semi-infinite plane 
(H = as). It can also be seen that when y increases, the concentrated 
reactions at the beam ends decrease, the foundation behaving more like 
Winkler's model. 

In order  to compare (5.25) with the exact solution given by the theory of 
elasticity, we determined the bending moment m, at the center of the beam, 
due to the reactions q [(5.10)] and Q b  [(5.11)] alone: 

Pol kl + 4al m,=4'? +Q+I=-- 
2 4 k l +  Laf 



Insertion and ) yields: 

H with 7 = -. 1 

In the case of an elastic semi-infinite plane (:= rn), (5.29) reduces to: 

where 

H / I _  
FIGURE 53. 

t----e---- 1 I 
Foundation-modulus hypothesis 

0.25----- -, ----- ---- ----- 
I 

0 0.5 1.0 L5 2.0 2.5 30 35 
2- 

FIGURE 54. 
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The value of _ given by (5.31) has been plotted in Figure 54 for v0 = 0.3

as a function of _. It is seen that m, = 0.32 for 7= ].5 , which is Gorbunov-

Posadovfs result for a rigid beam /26/. With increasing -f the value of 7n0

approaches 0.25 asymptotically, which is the solution when the foundation

modulus is postulated.

The reactions thus obtained for _ = 1.5 are therefore equal to those

obtained in the two-dimensional solution (5.21) for the moments in the

center of the beam, duetothese reactions. Since, for a rigid beam acted

upon by a symmetrical load, q is uniquely determined by P0 and l, the bend-

ing-moment diagram, obtained by the method proposed by us, will be similar to

that obtained in the two-dimensional solution given by the theory of elasticity.

As an example, Figures 55 and 56 show curves of M and Q corresponding

to the three most important cases of loading of a rigid beam fo_" .f = 1.5.

Comparison with the exact solution* {broken curves and numbers in

parentheses) shows that the results differ only near the beam ends.

Ill
\

' ' Diagram o] 'f' -]
Diagram of _ _ _ "_ _" _ _ _ _ /_O'PO

FIGURE 55,

I I I

lp

,i_tt, ti, l,l¢

FLGURE 56.

_Diagram M-_/_

of_

I®l._ _'_

Diagram of_ _7°_0

FIGURE 57.

I11

A similar comparison for the case of antisymmetrical loading shows that

the results obtained for T,= 1.5 are very similar (Figure 57).
i U

" See Gorbunov-Posadov Raschet konstruktsii na uprugom osnovanii (Analysis of Structures on Elastic

Foundations).--Gosstroiizdat, Part 1, Chapter 1, §6. 1953.
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4. Allowance for plastic deformations beneath the beam ends

It was assumed until now that the vertical displacements V{x) of the

surface of the elastic foundation are continuous. This necessitated the

assumption of concentrated reactions Q# beneath the beam ends.

Under actual conditions these intense reactions cause plastic deforma-

tions beneath the beam ends, leading to considerable changes in the general

stress pattern in beam and foundation. The methods of the theory of

elasticity no longer apply to the soil in this case and a special analysis, in

which allowance is made for the elastic-plastic deformations of the foundation,

becomes necessary.

The approximative method proposed can, however, be applied to this case.

Assume that _lastic deformations have occurred beneath the ends of a

symmetrically loaded beam, as a result of which V(x) has discontinuities

atx=/ andx----I, equal to:

c = (1 -- I}) Ce, (5.32)

where _ is a coefficient characterizing the settling tendency of the elastic

foundation (Figure 58).

J

¢

Ip t ,

,,J.......... _,_s_- I

[:[GUILE 58.

II!

i -l-I

As before, the reactions consist of the uniform reaction q and the

fictitious forces Q#, where by (5.2)

q = kC,.

According to (5.3) and (5.4):

Q_= O$= _tpc,

From the equilibrium condition of the beam we find:

P,
Co=_. [cf. (5.9)]

Substitution of (5.35) in (5.33) and (5.34) yields:

(5.33)

(5.34)

(5.35)

Po t
q=_7

i + 2._1 t '

Q_ = P, 1
! kl "

(5.36)

{cf. (5.10), (5.11)]

I11
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When _ = 0, the elastic foundation is not strained beyond the beam ends;

this corresponds to Winkler's model. For _ = l, (5.35) becomes identical
with (5.9).

Similar considerations apply to the case of antisymmetrical loading.

§ 6. ELASTIC BEAM OF FINITE LENGTH II!

The differential equation of the bending of a beam on a single-layer
elastic foundation is (cf. (1.8)):

dW _ 2 anV P L4

,t_, zr _ + s'V = E--7" (6.1)

x

Here _=T and

2EJ v_o)
L = V (6.2)

Eo_

where 6 = beam width.

The coefficients in (6.1)are [cf. (1.9)]:

H

r2 I I--rot* z

o (6.3)
H

s,= 2LI C dy.
o

The general solution of the problem can be presented in the form [cf.
(3.10)]:

V (7) = VoKvv -i- _.Kv,, ÷ ,'VloKvM÷ NoKvx -- Fv,

('q) = V,,K.v + _oK,_ + M,K_,M + NoK_N -- F,p,

MO])= VoKMv + _oKM_,+ MoKMM + NoKMN -- FM, (6.4)

N ('q)= VoKNv -+ %KN_ + MoKNM + NoKNN-- Fi_.

ii -ii- ii

Ill
where Kvv, Kv, ..., KtcM, KN_ are the influence functions, given in Table 2;

Fv, F,_, F,_, FN are functions depending on the external load (cf. e.g., (3.11)).

2.

To determine the initial parameters V_, _, Mo, No, it is necessary to

consider the boundary conditions at the beam ends.

If the beam ends are prevented from moving downward, the boundary

conditions can be written in the usual way:

a) for simply supported ends:

V=O, M=O; (6.5')

I I
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b) for built-in ends:

V =O, _=0. (6.5")

If the beam ends are free to move downward, the compatibility conditions
for the beam and the elastic foundation must be taken into account when

establishing the boundary conditions. The vertical displacements V(x) of

the free parts (I) and (II) of the foundation (Figure 59) are determined

except for the constants D, and D_ ; the vertical displacements of the

foundation beneath the beam are determined except for four constants

C,, C_, Ca, C_ (cf. (2.9)). Six independent conditions (three for each end of

the beam) have therefore to be established in order to determine these

constants.

21

_,._,,--;_i__.,_o._,,-.
, 1i _ I_

FIGURE 59.

II!

"k-! ''! ".' !

An obvious condition for each end free of load is:

M=O. (6.6')

The two other conditions can be written as follows:

V0 = Vb; (6.6")

S=N at x=0 (or x=2/),

where V0 = vertical displacement of foundation, Vb = vertical displacement

of beam, S = generalized shearing force in free parts (I, II) of foundation,

and N = generalized shearing force in the foundation beneath beam (part

III).

We note that (6.6")corresponds to the conditions for a rigid beam.

Only simply supported beams will be considered henceforth, since these

are of the greatest practical interest while their analysis is the most

complicated.

i l-l

Ill

3

By placing the origin of coordinates at the left end of the beam (Figure 59)

we find from (6.6) and (5.3):

Mo = O, No = S (0) = 2,,tVo (6.7)

II - II
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The system (6.4) now becomes:

V ('4)= (Kvv + 2atKw) Vo + Kv, _o -- Fv,

M 0]) = (KMv + 2atKMN) Vo + K_?o -- F,_,

N ('4) = (KNv + 2o_tK_l_) Vo + K_q_o -- F_.

The boundary conditions at the other end of the beam are:

(6.8)

II1

M(_)=o, ,,,(_)=-2=<,v(7), (6.9)

from which the other two initial parameters V0 and _0 are obtained:

21
a,F,_ I_-)- :, [". (_)+ 2o'Fv (_)7

V0 _ I

°lg -- oias

21 2/ 21o..,_(_)-o,[,.,<(_)+2=,.v(_)]
a_ -- alas

L

The coefficients in (6.10) are:

o,=K,_v(7)+2:,,_,_,,(t--'),
°.='<,_.(7),
o.:'<,<v(7)+*<"<--(7)+(2<<,)',_,,(7)

(6.10)

(6.11)

.-'_r "' ill

i-i i

FIGURE 60.

Equations (6.8) and (6.10) represent the required solution when the

bending of a beam of finite length, placed on an elastic foundation and acted

upon by external loads, is considered.

When the beam is long, the origin of coordinates should be placed at the

beam center, and the load should be resolved into symmetrical and

i11
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antisymmetrical components (Figure 60); this increases the accuracy of
the results. The method of solution is similar to that employed above.

In this case the following formulas are obtained:

a) for the symmetrical load:

V (_) = Kvv Vo + KwM o-- Fv, 1

? (_) = K.vVo + Ko_ Mo -- F., |

M (_) = K_vV o + K_rM o-- FM, [
N (_ = KmV o+ KNMM o -- FN, I

(6.12)

where

1 l 2"tFv ]_,,MCrl-b,[_.(r)+
V° = b,b. -- bibs '

b.FM(l)_b, F I

bxbl -- bsbs

b) for the antisymmetrical load:

V (_) = Kv,% + KwNo-- Fv

M (_) = K_,?o + KM_No -- Ft.

N (_])= KN,_o + K.NNo -- FN,

(6.13)

where

1 1

_o = b,be -- bzb, '

b.,_(_)_. '
No = -- btb, -- bsbt

The coefficients in (6.12) and (6.13) are:

b, = K.u (_) + 2atKvM(_),

b, = K,_M (_),

(')b, = KMv Z '

(')b,= KM, Z "

(6.14)

Both (6.12) and (6.13) include only loads acting either to the right or to

the left of the origin.

The equilibrium condition of the beam, the contact condition of equal

vertical displacements of beam and foundation, and the continuity condition

of foundation displacements are all satisfied by (6.8), (6.12), and (6.13).

The statical boundary conditions are, however, only approximately satisfied:

when the bending moments M vanish, the shearing forces Q at the beam

i-i_ii-
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ends differ from zero in the general case. This is explained by the

properties of the model adopted for the elastic foundation, which is

characterized by two generalized parameters k and t.

Analysis of these results shows that the elastic properties of both beam

and foundation are characterized by a single magnitude:

I
)' = Z' (6.15)

which represents the reduced half-length of the beam.

In the two-dimensional problem of the theory of elasticity (solved, e. g.,

by the method of Gorbunov-Posadov), a magnitude called the index of beam

flexibility is introduced as principal elastic characteristic, being defined
as follows:

t ,,_o_t, (6.16)
[i - ,_)EJ'

where I = half-length of beam, _ = width of beam.

By comparing (6.2), (6.15), and (6.16)the following relationship between
), and t is obtained:

x = ]_-. (6.17)

Several examples will now be discussed in order to show the effect of ),
on the results. It will be assumed that the elastic foundation is a semi-

infinite plane (H = oo), and that _(y) is given by (4.16).
The dimensionless reactions : and bending moments _, calculated by

(6.12) for two beams, each loaded at the center by a concentrated forceP,

are shown in Figures 61 and 62. The elastic characteristics of these beams

are respectively: _ = 1.24 (t =3.0), and ),--=1.64 (t =7.0). The calculations

were performed for T=I.0 and "_=1.5, for v0= 0, and H=oo. Curves of

and tW, plotted on the basis of Gorbunov-Posadov's data /26/ for t = 3.0

and t = 7.0, have been drawn for comparison in the same figures (full lines).

The actual reactions and bending moments are respectively:

-p
q = qT' NI = mPl.

It is seen that the concentrated reactions Q¢ at the beam ends vary

inversely with k, as do the bending moments. This variation is more

pronounced when the value of k is less. On the other hand, the more

flexible or longer the beam, i.e., the larger the value of ,f, the larger are

the reactions near the point of application of the load, leading to a reduction

in the bending moment at the beam center.

The dimensionless reactions q-obtained by Gorbunov-Posadov's method

are almost equal to those obtained by our method for 7 = 1.0 and 7 =-1.5 along

the entire beam, except near its ends. As a result, satisfactory agreement

is also observed for the corresponding bending-moment diagrams.

III
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For -_ = 1.5, the bending moments for both finite elastic and infinite

beams, determined by our method, are slightly less than those obtained when

solving the two-dimensional problem of the theory of elasticity.

The dimensionless deflections and bending moments of a rigid beam

(broken lines, numbers in parentheses) and of an elastic beam of reduced

half-length k =0.86 (t=l) , are shown in Figure 63 for "_=1.5, v,=0.3, H=oo.

Comparison of these diagrams shows that (5.23) can be used for beams

when 0< X< 0.86. Such beams can be considered to be rigid.

A similar comparison, performed in Figure 64 for an elastic beam

loaded by a concentrated force, and for an infinite beam, represented by

broken lines and numbers in parentheses, shows that the results become

praeticallyidentical for _= 1.85 (t=10): the difference between the

i " 1
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maximum bending moments is only 5%*.

Deflections D
Deflections 0

.

Bending moments ,,h E ' g m ments ,_

FIGURE 63.

I!

Bending moments r_ ,_ _ _. ._

_-_
y _._ i-i-I

FIGURE 64.

This enables us to establish the values of X at which transition from the

finite-beam model to that of an infinitely long rigid beam occurs.

When a concentrated force acts, these values are as follows:

(_, < 0.86 -- rigid beam,

0.86 < _, < 1.85--finite [elastic] beam,

_> 1.85 -- infinite beam.

The boundaries thus defined are identical with those obtained by the

methods of the theory of elasticity, and in particular, by Gorbunov-

Posadov's method.

Ill

§7. INFLUENCE OF LATERAL LOADING

The method explained above can be applied to many problems connected

with beams on elastic foundations. Such a problem is, e. g., that of a load

applied to the elastic foundation beyond the edges of a rigid beam.

" The comparison was performed for T : 1.5, H : 00, _ = 0.3.
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Let a concentrated force 0 act on the elastic foundation at a distance a

from the beam end {Figure 65). The following expressions are obtained for

the vertical displacements of the surface of the elastic foundation in sections

I, II, III, IV (Figure 65) (see sections 3 of Chapter I and 5 of Chapter II):

Vii -- C O"F Oox,

Vm _ D_ ¢t-`_ + D_ "_ct-_,

V1v _ Die _q'_-z_ ,

(7.1)

where _ = V:2k-_.

_l._+i -_+ ,i !I.,
IA _ Ol _ 01 | Y*,vfzLt_M_ll

FIGURE 65.

II1

The solution of this problem thus reduces to determining the six

constants Dl, D,, D,. D,,C o and 0o.

Since the surface of the elastic foundation is assumed to be continuous.

the following four independent conditions are obtained for the boundaries of

parts I. II. III. and IV:

VI == VII,

at x=--I

at x - l VH = Vn,.

Vtt! = Vtv,

at x = l + a Sm-- S,v ---- O,

(7.2)

where Stu and Sly are the generalized shearing forces in parts III and

IV respectively*.

With the aid of (7.1) and (5.3), conditions (7.2) can be written in the form:

Dt = Co- Ool,

D, + Ds = C o "4-Ool,

D¢ --u + Die _a -- D, = 0,

O
-- D=¢-== + D_ '==+ D, = _-_.

(7.3)

l-l-I

I11

* The last equation (_.2) states that S (x) has a discontinuity of magnitude O at x = I + a . It is again

assumed that q_(0) == t.
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Solving (7.3) for Dl, D=, D3, D4 we find:

D, = C O-- 0ol ,

D, = C o + 0ol G
4_leaa '

D,= 0
4ateQa '

0 o
D4 = (Co + 0ol) e-a= + _ _ 4ate2= d ,

(7.4)

We determine C 0 and 60 from the equilibrium conditions of a beam acted

upon by the external load and the reactions q(x) and Q* of the elastic

foundation.

The distributed reactions q(x) are, in accordance with (1.4)and (7.1):

q = k(Co + M). (7.5)

The concentrated reactions Q# are by (5.4):

Q*.= S,(--l)--s,,(--O, }

Q*B= S. (l)--S,,,(l).
(7.8)

The generalized shearing forces entering have to be obtained from (5.3)

with the aid of (7.1)and (7.4); substitution of the expressions obtained in

(7.6) yields:

Q¢A = 2t I=Co -- (1 + _/) 0o1,

Q_ = 2t [,,Co + (1 + _d)Ool-- G (7.7)

The equilibrium conditions of the beam, obtained by separately equating

to zero the sum of the vertical projections of all forces and the sum of all

moments about the beam center, yield:

6

Po + e==

Co= 2(kl+2,* 0 '

G
3(Mo+ e-_al )

6° = 2/[kl'+61(_ +al)] "

(7.8)

Expressions (7.8) differ from (5.9) and (5.18) only by the presence of a

term in the numerator containing G, through which allowance is made for

the lateral load.

Analysis of (7.7) shows that this lateral load affects the concentrated

reactions at the beam ends, thus altering the stress pattern. The

influence of the load G decreases rapidly when the distance a is increased.

When this load is distributed instead of being concentrated, allowance can

be made for it in a similar way.

!!!
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Consider two elastic beams of length 21, and 21_ respectively, arranged

in line and each acted upon by an external load. The displacements are

shown in Figure 66.

. l, ___ ,. , _, /_' , ,

P' c P, eAI _ I

A _'8
o1 q;

,I ,-0,:- % f_

FIGURX b6.

III

Clockwise rotation will be taken as positive direction for the angles 0,, 0_

and external moments Ml and M2. For each beam a separate coordinate

frame, with origin at the beam center, will be used.

The results of the previous example will be used to determine C,, 0,, C=

and 0=. The distributed reactions q,(x) and q,(x), acting on the first and

second beam respectively, are:

q, (x) = (c, + 0,x)k, I (7.9)
q, (x) = (c= + O,x)k. [

The concentrated reactions OK and Q_ are:

Q*A'= 2t[=Cl--(I +=/) 0,], l

Q]_= 2t I,,C_+ (I -t- "1) 0=1, ] (7.10)

where e=y_.

I I I

Ill
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The solution of this problem thus reduces to the determination of the six

constants: CL, 0_, C,, 0,, Q_, and Q_c," Therefore, a system of six algebraic
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equations has to be set up, which is represented in Table 5; the symbols

used in it are identical with those appearing in Figure 66.

The first four equations in the table define the equilibrium conditions of

each beam separately; the last two represent the continuity conditions of

the vertical displacements of the foundation at the point where the two beams

adjoin:

at xz =ll (x, =--l,) : Vz = V,, Sz = $2.

The general solution is not given here, since it is much simpler to

perform the calculations in each particular case by direct substitution of

the numerical values in the equations.

Henceforth, only the case of two beams having equal lengths 21 and each

acted upon at its center by a load P0 will be considered (Figure 67).

From Table 5, equations (7.10), and the conditions of symmetry, we

obtain:

( k_-_F't+ at + 21P.

Co = ! M, 4al al 2\}'2kz(-_-+--_-+2-if+
aPo

O° = / kl* 4al at '

2kli-_- + --_--+ 2 -_- + 2)

q_,= Q_.= a_P° (7.11 )
(_ ,a, a, ),kl + --_--+ 2 -_- + 2

[ kl I 4al at 2"t) ",t i-Ti-+--_- + 2 -ff +

TABLE 5.

NO. C|

2 (klx + at)

-- 2allt

C|

2aill

--t

I

i
Oz

-- 2t (i + art)

2/z [(t + a/a) t + --k3_--z]

21

81

2Z(I +=1,)

2/sI(l+_'ls) l+ _--_sI

pt

Right-

Q_. hand
part

-- Px

--l, M,

-- 0

--i 0

!!!
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Let _(g) be given by (5,22). The characteristics k, t, and a of the elastic

foundation are then obtained from (5.23) and (5.24). We further assume that

the elastic foundation is a semi-infinite plane (H--_c_); in this case:

k ---_ Eot' 3'

l(i_ _,0)2'
Eo_l 3

_=-rf-(r=-g-,,)W, (7.12)

Substitution of (7.12 ) in (7. l I ) yields:

III

P0 (1--_)

×.[.'+._(,'_=-,+-}.--,_(,_=-,+_"-4 '
p,¢,-@

3 V'2 (t -- vo)

Q_.= Q_.=

Q*.= Q_-_
s 3

Po_['_ + _-(l--_0)]

_- 3 (1 -- ,,o)] '

(7.13)

and

3 3 3 x
_'+ _- _ l/g (i- _) +-f(1 - _) + _ _ _ T

Po (7.14)q,(x)= :u 3 3
7' + _ _'_ + W (I- ,_)g2-W=_ + _-(i- ,o)

The dimensionless bending moments and shearing forces acting on the

left beam, obtained from (7.13)and (7.14)for "f= 1.5, %= 0.3, and a uniformly

distributed load p are shown in Figure 68. The actual bending moments and

shearing forces are respectively:

M = pZ,_, Q --. pz_. (7.z5)

The same figure also shows the results obtained from (5.25) by neglecting

the lateral load (broken lines, numbers in parentheses). It is seenthat this

additional load has a considerable influence, reducing the positive bending

moments and the shearing forces.

" . _ .. •

• | :-|--1

I11

- _ - IB _ ill

86

• If l

]-__-]_z__-l-II I 1 1 1 1 1 I [:_[ l]



&...

tltttlllitlilttf

4[. , ,I , c

_-p_'_ ¢-_._ """..l_

FIGURE 68.

I!

The influence of a lateral load can be similarly treated in the case of

elastic beams of finite length 21. Consider beams having dimensionless

t, and X== 1, placed in line on an elastic foundation (Figure 69).lengths X,= _ -_-j,

i _,-2Z, at"2(_ ]

FIGURE 69.

The origin of coordinates for each beam is located at its left end. The

boundary conditions are, in accordance with (6.7):

at _1 = 0 a) M_ = 0 b) N_ = 2_tV_;

(_== O)

2,, c) M_=Mo n=0; d) V_=VoU; e) N_=N_';at _L- L,

2ll

at _, = L--? t") M_'= 0; g) N_'= + 2=tV_',

(7.16)

where m - mm

_/ 2E'J*(1--_o) _ 2EsJ'(t--_°)L, = E,_ , Ls = £o_

Ill
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The superscripts I and II indicate the corresponding beam.

The kinematic and statical magnitudes corresponding to the first beam are

then determined except for the two parameters V0l and _0I , as are those

corresponding to the second beam, except for the three parameters V_o_ ,

_", N'2.
Since V_l and Non can be expressed through V_ and _ (cf. (7.16d, e and

also, below, (7.17}, (7.18)) the problem reduces to determining VXo, _, _x0x.

A system of three algebraic equations can be obtained from (7.16c, f, g), for

the determination of these parameters.

This system is given in Table 6, where the following symbols are used:

Klcv -- 2=tKvv,

Kn v'I 2atK_,N _ I\NN--

l!

TABLE 6

!11

I lib !

No.
Boundary

condition

/141 =0
d=

M 11 0

v'.

K_w (d,! _ 2atKSM,v(d,)

IK_v (d,) + 2atK_M(d_)i _;
II

1 II
+ 2aIKNN (ds)] KMN (ds)

1
9o

1 II
Kv_(d,) KMV (d2) 4

+ K_(d_) vll 'd 'IXMN i t/

"1--

K_ I (dr)

iI Right-hand side_o

F_ I'db)

F_.(d_) K_v (d,) +
II

{K_v (dD + 2='K_N (dt)J X

l II
@ 2aIKNN (dl)[ K N (d_)

I II
KW; (dr) K v (dr) +

+ K', la,I r_ (,_,,

i-l-I

Ill

The general solution of this system is [cf. (6.4)]:
for the first beam

I I

V' (_) = (K_.v + 2atK_.) V_ + Kv_po-- F_v,

I I 2=tK_N) VIo+ _ s(_) = (K.v + K_?o -- F.,

M _(_) = (K_v "4-2atK_N) V_o+ ..t , --_

N _ (_) = (K_v -F 2¢tK_N) V_o -t- KN,%_ I -- FIN;

(7.17)

BIB u I
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for the second beam

II II II 11 .VII MII L',IIVH (_) = KvvVo + Kv_o + ,wJv,,o ---v,
II 11 I] It II II l]q x=(._)= K_vVo + K_*?o + K.NNo --F_,
It It r/ll 11 l] II

M II (_) = KMvVo + r,M_*?.o+ KM_No -- F_,
r/ll 1111 . t/If 11 l/I| AIII L, II

(7.18)

It can be shown that, as in the case of rigid beams, the lateral load

reduces the concentrated reactions at the beam ends, thus considerably
altering the stresses in the beam.

I!!

§8. BEAM ON AN ELASTIC DOUBLE-LAYER FOUNDATION

Consider a rigid beam of length 21 and width 8 lying on a double-layer

foundation and carrying an external load(Figure 70). Equations (5.1)
and (5.15) of Chapter I are assumed to hold true for the elastic foundation;

in other words, we are considering an elastic foundation with upper Winkler

layer, whose properties are described by (5.16) and (5.18) of Chapter I.

\

iiI
_/_///z _/> y/; _ ; :,Y,.,.>:z/z> /,_ y////////_ y/f "_ ;y//._; ?_

HGURE 70.

h_

In contrast to (5.2) of Chapter I, _2(Y) is assumed to vary linearly over

the entire height of the foundation (cf. Figure 70)*. From (5.4) and (5.15) of

Chapter I, we obtain:

Et_

k,_K, /% /'_(t--vl)'e#h, } (8.1)
t,=O, t== 12(1+_,) • [cf. (5.7) of Chapter I]

Since the deflections of a rigid beam are equal to zero, the displacement

of the surface of the elastic foundation beneath the beam (part III in

Figure 71) is:

V_ = Co_ Oox, (8.2)

* This derivation remains valid for any other function _ (g), since the latter determines only the coefficients

k_ and I_.

89

-i-l-I

I11

l.l l

1]1.11 I1 1 1 1 IlI t I I [ [ I



&AAA

where Co = vertical displacement of beam center,

From the first equation (5.16) of Chapter I and (8.2} we obtain:

-- 2t2F" + (K + kt) F = CO+ Oox.

00 = slope of beam.

&

o L

--__:_...... :'....._ ---

"//1"////////,, ".l//lf///////_ 11///////I///////////.6"//////////////'1

FIGURE 71.

The general integral of this equation is :

F(x)=Cich_x+ C=sh_x+ Co+O#
K+ kt

where

(8.3)

(8.4)

=/V K+k, (8.5)
2tt

The constants of integration CI and C2 are found from the conditions at

the boundaries of the parts shown in Figure 71, which are:

at ,,= -_ v_= v;'_ s_ = s_"; (8.6)

at x = 1 V_u = V_', S_ u = S_', (8.7)

where the superscripts I, II, HI indicate the corresponding part of the
foundation.

Proceeding from (5.22) of Chapter I, we obtain:

Vx== Dae°'C'+n' [ (8.8)
Vn = Dse "_,&-t_, !

(8.9)

whe re

By virtue of (5.17) of Chapter I, we obtain:

S,I = 2_tt2Dte_,¢,+n,

S_ z = -- 2_t2D_'=a_-_l,

S_ u = 2Kt= [Ca.8sh _x + C_[_ch _xl.

9O
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Substitution of (8.4), (8.8), and (8.9) in the boundary conditions (8.6),

(8.7) yields the following system of four algebraic equations by which the

integration constants can be determined:

! 6"0--Od
--C, ch_l +C_shfll +-_--D,= _,

etI

-- CL sh 81 + C, ch _l -- -_- DI = 0,

t Co + @ol
--Clch_l--C2sh_l +-"_-D2= g +k, '

--C_sh _l-- C. ch _l 4- -_- D2 = O,

(8.10)

I!!

By solving (8.10) we obtain C,, Ca, DI, and DI as functions of Co and eo. The

vertical displacement Co of the beam center, and the slope e, are fomld

from the equilibrium conditions of the beam:

_Y =O, _M =0.

We finally obtain:

C 1 _ --

C 2 _ --

DI = K + k2

! Po

tKk. ci_,l[}t th_ + Bl] 2 "

t Mu

,,_,,o_,[_,(,--_+_1+_'__,
K (C._ttd) [th_Bl _b 2 iZi--_ th $l + t1 _ Cl+0dch _ I_

2BIB=

Co -- 0,4
K (Co -F 0d)lth' B/+ 2 t_ th #1 + t] -- chtBl

D_ := K + k, 2BIBs

Ca = K + k_ B, Po
th I_l 2 '

IKkt _ -_ + B]

10 ° = K + k, B, Mo
ItKk, 3. I th [_l x _ "-2-'

-_-U---_-)+T

(8.11)

I II

Ill
where Po = sum of vertical loads,

considered as positive when acting clockwise, and:

B,= 1 +_/1 + Xlh _1,

B_ _ V-I + 7, + th [3/,

B: = _th0l + I,

K

Mo = sum of moments about beam center,

(8.12)

From (8.11 ), the generalized displacements V,, V,, and the function F

can be found by (5.16) of Chapter I, and (8.2) and (8.4) of this Chapter.

l I l
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The reactions of the elastic foundation are obtained from (5.18)of Chapter I*,

which, after substituting in it (8.4), yields:

kl

(,) = K [--_---_-(Co+ eo,O- K (c, ¢h,_x-,-c, sht_.")]•q (8.13)

The solution presented satisfies not only the equilibrium conditions of

the beam and the condition of equal vertical displacements of beam and

foundation, but also the statical boundary conditions: thus, the bending

moments and shearing forces at simply supported beam ends, at which no

loads act, are zero. This is due to the fact that the concentrated reactions

Q* existing in a single-layer foundation are absent in the double-layer model.

I!!

The case of symmetrical loading of a rigid beam will now be considered

in more detail. Putting M 0 = 0 in (8.11) we obtain from (8.13):

ch Bx
Pot + I/T+xlh_l--_ ch_l

q(x)---27 l+VT-+-_lh_t+_. _
th 61 ' (8.14)

where

K V K-I-k2x=_, P= st, (8.15)

If '_s(Y) is linear (cf. Figure 70), the coefficients k2 and t2 are given by

(8.1), the substitution of which in (8.15)finally yields:

P0
q (x) = _- q(x), (8.16)

where

Curves of the dimensionless function q(x) are given in Figure 72 for

--/= l, v0=0 , and different values ofk=_.
h,

It is seen that in all cases the reactions increase from the center toward

the ends of the beam where they remain finite, varying directly with ). ;

when X = 0 (k, = oo) the double-layer foundation degenerates into an elastic

* When q (x_ is known, the bending moments and shearing forces of a rigid beam are obtained by the known

methods of the strength of materials.

i ii
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Winkler foundation. On the other hand, when X--,oo, the model becomes

similar in its behavior to an elastic semi-infinite plane.

II!
\

\
\

When analyzing an elastic beam of finite length, the differential equation

of the bending of the beam [cf. (1.1)],

eJv',v= p--q (8.18)

has to be taken into account together with (5.16} and (5.18) of Chapter I,

which determine the deformations of the elastic double-layer foundation.

Since it is assumed that the beam deflections are equal to the vertical

displacements Vj of the surface of the elastic foundation at the same points,
the first equation (5.16) of Chapter I can be inserted into (8.18). From this,

and from (5.18) of Chapter I, we then obtain:

EJ (-- 2t_F vl + (K + ks) F Wl=p-q, /
--2KQP" + Kk_F = q. I (8.19)

Elimination of q (x)yields:

2ts vI _ EJ K + _s = .P._.-- EJ "-K-F -"'-K--Fxv -- 2tsF""k-ksF (8.20)

Equation (8.20) is a sixth-order ordinary differential equation with

constant coefficients and can easily be integrated. The boundary conditions

are given by (8.6) and (8.7). By including the statical conditions M=0 and

Q = (), four independent equations can be established for each beam end;

this number corresponds to the total number of integration constants*.

" The function f (x) is determined for the entire beam length except for six constants which corresponds to the

order of (8.20). Beyond the beam ends F(x) is determined except for two constants (cf. (B.B)).

1-1 1
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After F(x) has been determined from (8.20) and the corresponding

boundary conditions, the beam deflection and the reactions of the elastic

foundation can be obtained from (5.16)and (5.18)of Chapter I; the bending

moments and shearing forces are given by (1.11) and (1.12) of this chapter.

II
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Chapter IH

BENDING OF A RECTANGULAR PLATE ON AN

ELASTIC SINGLE-LAYER FOUNDATION

III

1. STATEMENT OF THE PROBLEM.

DIFFERENTIAL EQUATIONS OF BENDING OF A
PLATE ON A SINGLE-LAYER FOUNDATION

Consider a rectangular plate on an elastic foundation whose properties

are described by (7.8)of Chapter I (Figure 73)..The assumptions usually

made in the theory of bending of thin plates will be deemed to apply to this
case. Friction and adhesion between the plate and the surface of the elastic

foundation will be neglected.

.4 prz,_)

HGURE 73.

The differential equation of bending of the plate, referred to cartesian

coordinates, then becomes:

P" (I.I)VzV_w (x, g) _ T

(V2denotes the Laplace operator) or, in expanded form:

Ox' _ Ox'a_,÷ _ : -D' (Io2)

where _u= _(x, g) = vertical displacements of the plate surface, p"_ p'(x,g)

E_, - flexural rigidity of the plate.distributed load on the plate, D= _2(1--_,)

Although (1.2) is known as the equation of bending of thin plates, it can

be applied to the analysis of most rectangular plates. It was shown by

il-ii il
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academician Galerkin /17/ that (l.2)is valid even when the ratio of the plate

thickness to the smallest dimension in plan equals 1:3.

Since the plate lies on an elastic foundation, the distributed load

consists of the given surface forces p"(x, y) and the reactions q (x, y) of the

elastic foundation:

p'(x, y) = p(x, y)--q(x, y). (1.3)

Since the reactions are unknown functions of the coordinates x, y, our

problem consists in determining their distribution as well as the vertical

displacements w (x, y) of the plate. In addition, the equilibrium conditions of

the plate and the condition of equal vertical displacements of the plate and

the elastic-foundation surface have to be fulfilled.

It was established above (cf. (7.8), Chapter I) that the strains of a single-

layer foundation under the action of a load distributed over its surface are

given by the following differential equation:

-- 2tV_w (x, y) 4- kw(x, y) = q (x, y) _ (0), (1.4)

where

V2__ 0' 0'

is the Laplace operator.

H

E0

k = _ ! _,"az,
H

Eo

o

are the elastic characteristics of the single-layer foundation.

)(z) = function of transverse distribution of displacements.

The deflections of the plate and the vertical displacements of the surface

of the single-layer foundation are assumed to be equal. In addition, the

load q(x, y) acting on the foundation represents the reaction of the foundation

on the plate. Hence, (1.2) and (1.4)have to be considered simultaneously.

Assume that_(0)=l. Substitution of [(1.3) and] (1.4) in (1.1)yields:

(1.5)

where r_ and s4 are the generalized elastic characteristics of plate and

foundation, defined as follows:

H

f tr== 4(I +_)_
0

eo ! _" (z)dz= _

(1.6)

" I • U ": •
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Also,
Es VS

2 ' _0- (1.7)
E° I--vs I--vs

where Es and %, are respectively the modulus of elasticity and Poisson's

ratio for the material of the foundation (soil).

Differential equation (1.5) differs from that derived from the hypothesis

of Winkler and Zimmermann by the additional term containing r', which

makes allowance for the shearing stresses in the elastic foundation.

After w(x, V) has been determined from (1.5) and the boundary conditions,

the reactions q(x.y) can be found from (1.4), the moments and shearing

forces being given (Figure 74)by the known formulas of the theory of bending

of plates:

O'w't

n { 02w 0_w X

H = H, = --H. = --D(I -- Vt)o_--_y, (1.8)

N _ = --D O---/o2tv 0'_ _o, _ e: ÷ -_r:),

N v: --D O__{O,w + 0"_
o_/\ ax, O-_-I "

II

• I "-U

// f_. T::/

Nx¢ M/ ,,: ,I:£ ----_j_
• ti.--ax

/ / q/ • _, f // ,

/ , /'/? .... -_T

FIGURE 74,

Following Kirchhoff, the shearing forces N,, Nv, and the torque H at the

plate edges are usually replaced by the reduced shearing forces Q_ and Qv

which, for a rectangular plate, are:

-} (I .9)

i 1 i
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§2. REDUCING THE PROBLEM OF THE BENDING OF

A PLATE ON AN ELASTIC FOUNDATION TO

ORDINARY DIFFERENTIAL EQUATIONS

1. General considerations

The problem of the bending of a plate on an elastic foundation can _,,.]y

be solved in closed form for a relatively small number of boundary

conditions. In most cases the deflections w(x, y) cannot be given as a finite

polynomial in x and y.

Approximations, based on series expansions, are therefore mostly used

to solve problems concerning the bending of plates. One example is the

solution by single or double trigonometric series (the problems of Maurice

L_vy and Navier respectively}.

Although simple and convenient for practical calculations, this method

is only applicable to certain particular boundary conditions. The more

general method of reduction to ordinary differential equations will according-

ly be used here.

The general variational method of reduction to ordinary differential

equations, as applied to the problem of the bending of a rectangular plate,

is discussed thoroughly in "Structural Mechanics of Thin-Walled Three-

Dimensional Systems", by V.Z. Vlasov. Only the application of this method

to the analysis of thin plates on elastic foundations will be dealt with here.

No restrictions are imposed on the boundary conditions at the longitudinal

and lateral edges of the plate, whose thickness may vary exponentially in
one or both directions.

k(A A st

III

|-ii i

2. Reducing the two-dimensional problem to

a one-dimensional problem

We shall consider the _-axis to lie in the lateral, and the y-axis, in the

longitudinal direction of the plate (Figure 75).

The unknown deflections of the platew(x, y) will be represented as a

finite series :

w(x. y)= _ W,(y) x,(x). (2.1)
k=[

in which the dimensionless functions Z, (x) determine the lateral distribution

of the deflection of the plate, and are assumed to be known. The unknown

functionsWk(y), which have the dimension of length, can, in accordance with

their physical meaning, be called generalized deflections.

Different expressions may be chosen for the functions /., (x), provided

they are linearly independent and satisfy the boundary conditions at the

longitudinal edges of the plate. The simplest example of such a system,

satisfying the boundary conditions:

_,(0) - Z_(b) = 0.

k,x where k is an integer and assumes all values betweenis a series in sin "-K- '
1 and n.

Ill
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The introduction of the finite expansion (2.1) is equivalent to reducing

the plate to a system having a finite number of degrees of freedom in the

lateral direction and an infinite number of degrees of freedom in the

longitudinal direction. It is also equivalent to reducing the two-dimensional

problem of the theory of elasticity to a one-dimensionalproblem, since the

deflections _(x, y) are obtained by determining the n functions of the single

variable Wk (y) •

x,l_; _'_."
FIGURE 75.

FIGURE 76.

To determine the unknown functions W_ (y), we consider the equilibrium

of an elementary slab (composed of elements of plate and foundation)bounded

by the cross sections y=const and y+dy=const (Figures 75 and 76). In

accordance with the principle of virtual displacements, the equilibrium

conditions will be expressed by equating to zero the total work done by all

external and internal forces acting on this slab over any virtual displacement.

Let the i-th virtual displacement of the plate element be a cylindrical

bending in the vertical plane. The deflections of the upper surface are

determined by one of the functions _(_(x),while the corresponding generalized

deflection Wi(y) = I. Since all the virtual displacements of the plate are

defined by the n linearly independent functions _(x), (i = I... n), n inde-

pendent conditions of equilibrium can be established, from which the n

unknown functions Wk(y) (k = I... n) may be determined.

!!!
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3. Generalized equilibrium conditions of the elementary slab

The elementary slab defined above consists of a compressible layer

belonging to the elastic foundation and of an element lying on it(Figure 76).

To establish the generalized conditions of equilibrium, we consider

separately the forces acting on the respective elements of the plate and of
the elastic foundation.

0Mv
In addition to the given external load, moments My, My-_- _-udy, and

_Qu dy ,forces Qy, Q_ _ due to the remainder of the plate, act on the sections

y = consi and y-Fdy = const respectively of the plate element. At the corners,

.__ydylaHconcentrated vertical torces 2H and 2(H ÷ act, which, according to

Kirchhoff, result from replacing the torques by statically equivalent

additional shearing forces.

All these forces, with the positive directions shown in Figure 76, are

external forces relative to the plate element. The internal forces are due

to the stresses in the longitudinal sections x----const ; these stresses can be

reduced to bending moments M, and reduced shearing forces Q,.

The external forces acting on the element of the elastic foundation are

the normal and shearing stresses acting on the vertical edges y = const and

yt-dy = consi . The internal forces are due to the normal stresses _, _, and

the shearing stresses _zxand _,,.

In order to establish the generalized equilibrium conditions for the

system considered, the work done by each of these forces separately will
now be calculated.

The work of the internal forces acting on the plate element is equal to

the work done by the bending moments .44, and shearing forces Qx in the

corresponding deformations of the element. On the strength of the assump-

tion usually made in the theory of bending of plates, the work done by the

shearing forces Qx will be equal to zero; the work done by the bending
moments is:

I M,x; dx. (2.2)

where the integral is taken from 0 to b.

The work done by the external forces acting on the plate element consists
of:

a) Work done by the given external load

G_ = I P (x, y) X_(x) dx. (2.3)

where the integral contains not only the distributed load p{x, y), but also the

concentrated shearing forces and moments, and is understood as a Stieltjes
integral. We can therefore rewrite (2.3} as follows:

a, = f P_x,y)x, (x),_ + _, p, (y) z, (_)1- _, _, (_,)z; (c),

!11

"IE -: _

i i--I
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(2.4) m m m

where p,(y) and m,(y) are the concentrated shearing loads and moments

respectively, acting along the lines x = x, which include the reduced shearing
forces Q_(0). Q,,(b) and the bending moments M,(0), M,,(b).
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b) Work done by the reduced shearing forces

8(7v

Qv and Q_ + _ dy:

i_-yz_(x)ax. (2.5)

c) Work done by the concentrated shearing forces

OH
2.and2(.+ _)

_F OH G*
- _ [-aTx,j (2.6)

Henceforth, the brackets with an asterisk will denote the difference

between the values of the magnitude inside the brackets at x = 0 and x = b

respectively.

The work done by the bending moments Mu over the virtual displacements

/i(x) (W,(y)= 1) is zero.

In accordance with the assumption made for a single-layer foundation,

u(x, y,z)=0, v(x, g, z)=0,
the work done by the internal and external forces acting on the element

of the elastic foundation is represented by the work done by the normal

, (}_zt

stresses o= and the shearing stresses _,x, "_zy (at y =const), and "_.-r--_-vdy

(at y + dy = const)in compressive and shearing deformations respectively.

This work will be denoted by R_(y).

The integral equilibrium condition of the slab element is thus:

f MxZ_ dx q- l __y xtdx . FOH 3"-- z L-_-xtj + Rt + Gi= o

(i=l, 2, 3 ..... n).

(2.7)

4. Work done by the external and internal forces

acting on the elastic foundation

Consider first the most important case of free longitudinal plate edges.

From the condition of continuity of the vertical displacements w(x, y)

over the surface of the entire elastic foundation, we obtain for the region

beyond the plate edges:

or(x, y)= _ Wk(y)x_(x). (2.8)

where W,(y) are the generalized vertical displacements, and the dimension-

less functions :(0k(x) are:

at x_O ;qk = Xk( O)e='' / (2.9)

at x _._ b Z_ = 7.k (b) e'-alx-_), !

II!
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where at=l/ _ k and t = generalized characteristics of the elastic founda-
r 2t

tion (cf. {1.411.

This means that the element cut from the elastic foundation behaves

exactly like the plane single-layer model considered earlier: the vertical

displacements of the surface vary exponentially. Each virtual displacement

wl(x, y) = 1. Z_(x)

corresponds to a uniquely defined displacement of the surface of the elastic

foundation beyond the plate edges.

The displacements of an elastic single-layer foundation are determined

by (7.2)of Chapter I. Therefore, the virtual displacements of the surface

of the elastic foundation

_, (x, v) = 1"z,(x)

correspond to the virtual displacements inside the elastic foundations:

w_(x, y, z)---- l.z(x),],(z). (2.10)

ax_ t,

The work done by the shearing stresses x,v and x,v+ -_-ydy, distributed

along the edges y = constand Y -}-dy ----eonst, over the virtual displacements

given by (2.10) is:

-4-00 H

IdxI".,x_(x)_ (z)ez.
--.¢0 O

(2.11)

The work done by the internal stresses a, and x,x in the deformations

corresponding to the virtual displacements (2.10) is respectively :

+_ .

- _S_XS.oo,_,(x)_,(,),,,,I
.-..oo 0

(2.12)

where, in accordance with (6.4), (6.5), (7.1), and (7.2)of Chapter I and

(2.11 of this chapter,

n

o. --=, _---_,q/(z) - W, (y)X,_(x),

e, _ W; (y)zk (x), (2.13)

II!

I . ! II
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Only the stresses in the foundation directly below the plate can be

calculated by (2.13). In order to determine the normal and shearing

stresses beyond the boundaries of the plate, the functions Xk(x) and Zl (x) in

(2.131 have to be replaced by Z,A(x) and _(x) respectively.
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Substitution of (2.13) in (2.11)and (2.12)yields, after integration:

n

(2.14)

whe re

H

H

Eo
t =_I ¢_(z)_,

o

(2.15)

II!

!

The integrals in (2.14) are taken from 0 to b. The double brackets

denote the sum of the values, at x----- 0 and x = b, of the magnitude inside the
brackets.

When the longitudinal edges of the plate are built-in or simply supported

(×_ (0)= _ (b)= 0) , and the elastic foundation is not strained beyond the plate
boundaries, (2.14) reduces to:

n

A particular case of (2.14)is obtained when one plate edge is free and the
other built-in.

NI-Ni

5. Second method for obtaining the generalized

equilibrium conditions

We shall show now how the strains of the elastic foundation beneath the

plate can be taken into account in a different way.

As before it will be assumed that the deflections of the plate are given

by (2.1). The generalized deflections W,(y) will be determined from the

equilibrium conditions for a plate element bounded by the planes y = const,

y-_ d_ = const (Figure 77). It will be assumed that the plate element is acted

upon by reactions of the elastic foundation, in addition to the external load

and to the forces transmitted from the remainder of the plate.

Let the i-th virtual displacement of the plate element be a cylindrical

bending, the deflections of the element being determined by the functions

Zi(x) (W,(y) = 1); the generalized equilibrium conditions of the plate element

are then, [cf. (2.7)]:

I11

m m B
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where Or = Or(y) = work done by external load, and Rl = R,(y) = work done

by reactions of the elastic foundation over the virtual displacements:

@,(x. v)= l.z,(x).

The reactions of the elastic foundation consist, as in the case of a beam

in a state of plane strain, of the distributed reactions q(x, V) and the

fictitious forces Q®(y)* acting at the plate edges (Figure 77).

/;,'_ !
riLL_'

I

ol

Xl(O)e

FIGURE 77.
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We obtain from (2.1) and (1.4):

n

(2.17)

where k and t are given by (2.15).

The work done by the distributed reactions (2.17) over the displacement

L is then:

a

-Sq(',_')x,_=2_ tlxa,dx_",-
n

-_, (kIx.x,_x+ 2,I_;,x;,_-2,I_',_,1'),_,.
(2.18)

\
\

Ill

By the concentrated forces Q¢ allowance is made for the influence of the

free foundation beyond the plate edges. In other words, these forces result

from the work done by all the forces acting on the element of the foundation

over the virtual displacement Z¢ of the foundation beyond the plate edges.

" Q¢ (y) are given as forces per unit length.
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We thus obtain:

n

Q_ = -- 2t w_ [z;,(o) -- _;(,,(o)1+ _-x_ (o) w i ,

n

t
(2.19)

The work done by these reactions over the virtual edge displacements

7., (0) and 7.;(b) respectively is:

Finally adding together (2.18) and (2.20), we obtain:

n

R,(y) = 2tfzkT., dx + _-I[xkZ_I] W_--
= (2.21)

I!

• "il" .l

which coincides with (2.14).

6. Solution of the ordinary differential equation

The forces and moments M_. H, Q_ and their derivatives entering in (2.7)
are by (1.8), (1.9), and (2.1):

Mx=- D _, (_WI;GW Wkx'k),
k_l

o_- = - D (l -- _) W;Z;.

k=l

0% __ D _] _WIVz_+ (2--_)W;Z;).oy

(2.22)

i-i i

Ill

Substitution of (2.22) in (2.7) yields:

_,_l, I _ _;(2-_,)i_;x,,_x-i =_ XkZ,,dx + k-i

D D =0.
k=l

(2.23)

B m
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Integrating by parts:

Sx._;_ = u.z;]"- Sx;x;,_x,J
(2.24)

and inserting (2.21), equation (2.23)becomes:

i=l i=1 k=l

(i= 1,2,3 ..... n);

(2.25)

whe re

_,k= Y,D I z.x, _,

(2.26)

eh' - flexural rigidity of plate; _= Poisson's ratio of plateHere D= lv(l__

Es % = elastic constants of foundation material.
material; E0 = _--v_ ' % =--I--%

Expressions (2.26) are applicable to a plate whose thickness varies

stepwise in the x direction. The integrals are calculated for each part

whose flexural rigidity D is uniform; the expression in brackets with

asterisk then denotes the difference between the values of (Z,Z_+ X_Z,) at the

ends of each part. The summation is extended over all such parts.

The coefficients in (2.25) evidently depend only on the functions Xh (x) .

These coefficients are symmetrical:

a,_ = ak,. b,_ = b,,, C,k = C*,, p_ = po , _, = _,, (2.27)

in accordance with the reciprocity theorem of Maxwell and Betti.

The free term in (2.25) represents the functionsGi(y), obtained from

(2.4) as the generalized load per unit length corresponding to the virtual

displacements Xl (x).

By letting i assume successively different integral values between 1 and

n, we obtain a system of n ordinary differential equations with constant

coefficients for the determination of the , unknown functions tVk. By virtue

of (2.27), this system has a symmetrical structure. All the equations will
be of the fourth order in each unknown function.

II!
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7. Determining the moments and shearing forces

Solving the system (2.25)for given boundary conditions at x= 0 and x=b

we obtain all the functions tVk(y); the function w(x, 9)can then be determined

by (2.1).

We can then rewrite (1.8) and (1.9) as follows:

k--I

My = --D _ (tV_x_ -58W,z_), (b)
k--I

n

N_ ---- D k_,(W;xk -5 W"X_)' (d)

Nu = -- D _ (W_x_ -5 W_%_), (e)
k=l

Q, = -- D _ {(2--_) W_X_ -5 Wkx_}, (I)
k=t

Q_ = -- D _, {W_'x_4-(2--_) W_Z _}. (g)
k=l

(2.28)

III

§3. GENERALIZED INTERNAL FORCES.

BOUNDARY CONDITIONS AT THE LATERAL PLATE EDGES

As already mentioned above, the functions W,(y) represent the generalized

plate deflections corresponding to the virtual displacements Z,(x). The

derivative of the generalized deflection therefore defines the generalized

slope _(y) . The geometrical magnitudes W l (y) and _l(y) correspond to the

generalized bending moments Mi(y) and the generalized shearing forces

Ni(y), exactly as in the theory of the bending of beams.

The generalized bending moments M_ represent the work done by all the

bending moments A4_ acting in the section y = const over the corresponding

Ow l

virtual rotations _ = _,X_ (% =l); the generalized shearing forces N_

represent the work done by the shearing forcesNu, the twisting momentsH,

and the shearing stresses _z_ acting in the section y = const over the virtual

displacements w, = tV_Z_ (tVt= 1).

The shearing stresses _, acting in the section y=const of the elastic

foundation, are, by virtue of (6.5), (7.2)of Chapter I, and (2.1)of this

chapter:

n

Eo Ow Eo
_ = 2(,+ _0)o__(z)= _ _(z)_ w_(y)x_(x). (3.l)

k=l

The work of these stresses over any virtual displacement of the elastic

foundation must be calculated over the entire cross section y = const, i.e.,

for--_o< x <+oo and 0,< z-.<H.

ii-ii i
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The i-th virtual displacement of an arbitrary point M(x, y, z) of a single-

layer foundation is:

w,(x, y, z) = W_(y)Zl(x)q_ (z)" (3.2)

With W_(y) = 1 the virtual work done by the shearing stresses _,u is there-
fore :

II ,,,z, (x)_ (_)dxdz. (3.3)

Substituting (2.9), (2.15) and (3.1) in (3.3), and integrating, we obtain the

following expression for the virtual work done by the shearing stresses

acting in the section y = const :

!

k=l

(3.4)

[The integration limits are in fact: x = 0 and x =b ]

By (2.1), [(2.24)], (2.28 b, c, e, ), and (3.4), the generalized moments and

shearing forces acting in the section y = const are:

(3.5)

A,,=- _.(zoS_._,_,x)< +

+-_I[,_,_,,I]}_. (3.6)
(i = l, 2..... n),

[where the second term on the right includes the virtual work done by the

force _"_-].

The boundary conditions for y = 0 and y = b can now be expressed in

integral form with the aid of (3.5) and (3.6).

Since (2.25) is a system of order 4n, the functions Wk are determined

except for 4n constants. It is therefore necessary to add 4n boundary

conditions to (2.25) in order to obtain a complete solution. It is seen from

(2.1), (3.5), and (3.6) that 2n boundary conditions can be specified at each

edge y = 0, y = l . If the plate is built-in, the boundary conditions are given

as generalized displacements; when the edges are free the boundary

conditions are given as generalized forces, and when the edges are simply

supported, the boundary conditions are given partly as forces and partly
as displacements.

I!!

I-I-I

'i11

B B m

108

I • •

x 1 I 1 1 1 11 1 I [ [ [ [ l l



h ..-m

§4. SELECTING THE FUNCTION OF THE LATERAL

DISTRIBUTION OF THE DEFLECTIONS.

BOUNDARY CONDITIONS AT THE

LONGITUDINAL PLATE EDGES

The functions Z_(x), which determine the lateral distribution of the

displacements of the plate, can be selected in different ways provided they

satisfy the geometrical boundary conditions at the longitudinal plate edges

and are linearly independent. Several methods for selecting the functions

Z_ , and the corresponding properties of the matrix of (2.25), will now be

considered.

!11

1. Eigenfunctions of the transverse vibrations of a beam

The eigenfunctions of the transverse vibrations of a beam having uniform

cross section can be selected as functions Xk(x), when the boundary condi-

tions for the beam are similar to those at the longitudinal plate edges.

We begin with a short discussion of the theory of eigenfunctions*. The

free vibrations of a single-span massive beam of length b are described

by the differential equation:

xIV _=_-X, (4.1)

where X=X(x) is the deflection of the beam axis at x, and _ = parameter

characterizing frequency of natural vibrations of beam.

The general integral of (4.1)is:

x (x)= c,s_,_ + c,cos_x+ c,sh_ + c,ch_. (4.2)

The constants C_, C2, Cs, C4 and the parameter Fare determined from the

boundary conditions at the beam ends x=0 and x=b. The form of the

function X (J,_ depends therefore on these conditions.

Some particular boundary conditions will be considered.

1. Both beam ends simply supported.

In this case the boundary conditions for X (x) are:

at x=0 X(0)=X'(0)=0, |
(4.3)fat x =b X(b)=X"(b) 0.

Substitution of (4.2)yields:

C= + C4 = 0, /

l--C2-FC, = 0,

C_ sin F + C_ cos tt + C3 sh iz + C4 ch _ = 0,

--Ctsinlz--C2cosF 4- Casha 4- C_chF = 0.

(4.4)

-II-II _ il

II1

" For a more thorough treatment of this problem, see Viasov, V.Z. "Structural Mechanics of Thin-Walled

Three-Dimensional Systems", see also section 2 of Chapter VI.
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The first two equations give Cs = C+ = 0. The remaining two equations

then reduce to:

C, sin_ + Cssh_ = 0, }--C, sin_ + Cssh_= 0. (4.5)

Since, for a nontrivial solution, all constants cannot vanish simultaneous-

ly, the determinant of (4.5) must be equal to zero. The following trans-

cendental equation is then obtained for _:

sin _ = 0,

which has an infinite number of real roots _m(m = l, 2, 3,.. )equal to:

_, 2_, 33 ..... m_. (4.6)

In accordance with (4.6) we obtain a complete system of eigenfunctions:

• m_x a

Xm (x) = sm --F (,n = I, 2, 3.... ),

which determine an infinite number of modes of the natural vibrations•

Ill

"--I +:_U ": n

2. Both beam ends built-in. The boundary conditions are in this case:

at x = 0 X (0) -- X' (0) = O,}at x=b X(b) X'(b) = O. (4•7)

--l-i-I

Substitution of (4.2)yields, as before, a system of algebraic equations

in the integration constants C,, C,, Cs, C,. Equating the determinant of this

system to zero, we obtain:

cos v.ch{_= I,

The roots of this equation are:

O; 4.730; 7.853; 10•996;.. ,; 2n,_....___i,_. (4.8)

I11

The eigenfunctions X_, (x) determined by (4.8) are in this case:

where : R - R _

sin p_ -- sh p.m

COS P',n -- ch }L,a

I10
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No further cases will be discussed. Proceeding from (4.2)and the

specified boundary conditions of the problem, the eigenfunctions

X,n(x) can be determined for continuous multi-span beams. In each case

a system of homogeneous equations will be obtained for the determination

of the integration constants. By equating to zero the determinant of this

system we obtain a transcendental equation for the parameter _ , whose

roots define, together with the boundary conditions, all the eigenfunctions

corresponding to the problem considered.

x for the six basic casesTable 7 contains the eigenfunctions of _ -_

of boundary conditions of a single-span beam, together with the correspond-

ing transcendental equations and some of their roots.

TABLE q

L

2

3

4

6

Coeffic lent

o

c

sin y. = 0

_os_ch_

=t

--I

cost*chl_ =

tg F
= th :,

tgl_ =

_lh_.

Roots of tran_endental equaIioll

I'Ll _ It . I%

4.7300 7.8532 10.9956 14.t372

4.73OO

1.8751

3. 9266

_+B26_ 17 (_o8_I |0.2'02

general
formula
for P_
(n>l)

_._7_ __+!..

,.BO,| I _.BS_ [0.9_55 2n _-I

I--

7.0685110.2102 t3.3520 _-._.

I L3.3520 _

'._! ': IIW

i-I •

ill
In order to simplify the use of the eigenfunctions, values of Xm (x) and of

their first three derivatives, multiplied by constant factors:

b s b$
± x:.(b),..':TX;.(x), _ (x),

are given in Tables 5 to 10 of the appendix for nine intermediate sections

and the two end sections x=0 and x=b of the beam.

The eigenfunctions determined in this way possess some properties

which have very important practical applications. Firstly, they are

orthogonal over the entire length of the beam:

b

I X,. (x)X° (x)dx = O+ (m:# n)
o

III
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The second derivatives of the eigenfunctions are also orthogonal:

b

I x:, (x)x;, (x)_ = o. (m -+ n)
o

It then follows from (4.1)that all even derivatives of these functions are

orthogonal.

The corresponding integrals for rn=n are different from zero and

independent of the boundary conditions at x=0 ; they can be expressed

through the function and its derivatives at x = b only:

b

I X_m dx b ,(x) = -_ IX., - 2x'_x_ + (X;,,)'l,fb
o

Returning to the problem of a plate on an elastic foundation, we take as
eigenfunctions Zk(x)the functions of the lateral distribution of the

deflections Xk(X).

The solution of (2.25) is simplified when Zk = Xk. Thus, for the symme-

trical problem (cases 1, 2, and 3 in Table 7), the system (2.25) can be

divided into two independent sub-systems, each containing only even or

only odd terms of (2.1). The system (2.25) cannot be divided when schemes

4, 5, or 6 in Table 7 apply.

Furthermore, by virtue of the orthogonality of the eigenfunctions

and their second derivatives, the coefficients a,, and c_k vanish for i=_k.

2. Trigonometric functions

The problem considered is solved most easily when the longitudinal

plate edges are simply supported (case 1 in Table 7). In this case

the eigenfunctions degenerate into the trigonometric functions sin_- , all

derivatives of which are orthogonal. Hence, since Zk = sin k=X-0at x = 0 and
b

x=b , all coefficients (2.26) vanish for i_=k. System (2.25) then reduces to

separate independent equations of the fourth order in tV, (y).

Trigonometric functions may also be used when the longitudinal plate

edges are free, or when one edge is simply supported while the other is

free (cases 3 and 6 in Table 7). The elastic line can in this case be

approximated by a series consisting of the first (linear) terms of the

and of the trigonometric functions sin_ 5.eigenfunctions

The function w(x. y) for a piate with free ends (case 3) is then:

for symmetrical loading

w(x, y) = Wo(y) 1 + W, (y) sin T ÷ ws(y) sm T +"'; (4.9)

for antisymmetrical loading

• 2_x 4nz

w(x, y)= Wo(y)(l--_) + V/,(y)sm-E--1- W,(y)sinT +... (4.10)

I _A-A
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For a plate simply supported at one of its edges (case 6) we obtain:

w (x, b') -- Wo (y) _- + Wr (b') sin T + W2 (y) sm T +" ' ' (4.11 )

When the functions y.k(x) are defined by (4.9) or (4.10), and D=const

system (2.25) can be represented in the form of Tables 8 and 9 for sym-

metrical and antisymmetrical loading respectively.

TABLE 8

Matrix of ordinary differential equations for symmetrical loading

n

"n R_tX
_xy _ Wu" I _. _d W k sl T npH k = I, 8, 5, • , • , n

t

0

3

• '_ W_ W3 ...I iF Free Displacement
I term

aonD* --

.... 2 (b0, + po)/:)2 +

+ s_

''" 0

.-. 0

u_D'-- 2p_D2+

+ $"

t/oLD 6 --

_lll ol --

--2(bn + p?]_D =+

+. (su + q])

• 0

oosD 4 --

--2 (bos+ p°o:,)D= +

___ s0

_]s_D I --

-- 2 (b. + po) DI+

+ (s° + en)

• '[ ....... I .......... I ........

n • 0 0

Go

Gi

°,__

_x

Xl : sin -_-

3nx

Xs=sin- F

•"ns,,f_ _,,,re -

III

II :If

-i l l

The only nonzero terms in these matrices are those of the principal

diagonal, the first row, and the first column.

The symbols D 4 and D 2 in these tables denote respectively the fourth and

second derivative of the function indicated at the head of the column. The

coefficients :

ano, pO, Soo,° aot, • • ., Cnn, SOnn

are obtained from (2.26), by substituting in them the expressions:

for a symmetrical load,

n_

Xo = 1, X,, = sin --_ ( at n = 1, 3, 5, 7 .... );

for an antisymmetrical load,

2x rn_x

Xn : l -- _- , X,,, =: sin -_- (at m = 2, 4, 6 .... ).

I11
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The free terms in the last column but one of each table represent the

work done by the external load over the corresponding displacement W,/,
when W_ = 1.

These examples show that in order to obtain a complete solution it is

necessary to solve an infinite number of ordinary differential equations.

4

TABLE 9

Matrix of ordinary differential equations for antisymmetricaI loading

( "2x) _ IIF. sln_ rip. R 2, 4, fi,. ,m,_(x, Yl=Wo ,--_- + =

W o IF, IF_ -.- W,, Freel term Displacements

2x

X.=|--_

i

2_x

4n/

L, = Sm --_--

np. m=2.4 6.

II!

ii ii-Ii

Since, however, the series representing trigonometric functions or

elgenfunctions converge rapidly, it suffices in practice to take a small

number of terms in (2.1). Thus, if the load distribution is neariy uniform

in the x-direction, two or three terms in (4.9) and (4.10) are sufficient in

order to obtain satisfactory accuracy. This is also true for the other

methods of plate support.

When only a limited number of terms are taken in (2.1), the bending

moments M, and shearing forces N, and Qx can be determined directly from

the equilibrium conditions instead of from (2.28).

I11

3. Fulfilling the statical [equilibrium] conditions at

the longitudinal edges

As already stated, the functions X,(x) are selected in order to satisfy the

geometrical boundary conditions at the longitudinal plate edges. The

fulfilment of the statical [equilibrium] conditions depends on the type of the

boundary conditions and the form of the functions Xk(x), and is, as a rule,

I14
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only approximate; this does not, however, introduce large errors in the
calculations.

The statical [equilibrium] conditions at x=0 and x----b are particular

cases of the conditions of equilibrium which, generally speaking, must be

fulfilled at all points. On the other hand, the equilibrium conditions were

included only in an integral form when establishing (2.25). In this solution,

as usual for variational methods, the average deviation from the exact

solution and from the strict fulfillment of the equilibrium conditions is

small; at certain points, however, and particularly at the boundaries x = 0 ,

x = b ; the equilibrium conditions may not be satisfied.

The following examples will make this point clear.

a) In the case of free plate end x=0 , functions X,(x), can be selected

as eigenfunctions which satisfy the following boundary conditions:

at x=O x.(o)=x'=o, x(o)q=o, x'(o)#_o.

The following expressions are then obtained from (2.28a) and (2.28f):

M,(o) =--D _ _,tvh_,

Q, (o) = -- D _, (2 -- Ix) W_,X;.

(4.12)

These equations are identical with the statical boundary conditions only

for certain values of Mx and Q, ; in particular, they are not identical with

the homogeneous boundary conditions:

M.,(O) = O, Q_(O) = 0 (4.13)

Hence, the statical boundary conditions at the free ends are only approxi-

mately satisfied in the general case, the accuracy depending on the number

of terms taken in the series expansions.

b) When the plate is supported on hinges at x = 0 , the eigenfunctions

must satisfy the condition:

z(o) = o, x"(o) = o.

It then follows from (2.28a) that:

M, (0)= 0. (4.14 )

The homogeneous boundary condition (4.14) is thus identically satisfied

in this case. If an external moment is applied at x = 0, the resulting non-

homogeneous boundary condition will not be satisfied, irrespective of the

number of terms taken in the expansion. This contradiction is, however,

purely formal, since in a section an infinitesimal distance from the boundary

section we shall obtain a value for M, which is very close to the actual value

by taking a sufficient number of terms in the series expansion.

It will be shown in section 5 how the statical [boundary] conditions at the

longitudinal edges can be approximated with a minimum number of terms,

by means of a different selection or an extension of the system of functions

Zk (x)

115
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§5. SELECTING THE FUNCTIONS OF THE LATERAL

DISTRIBUTION OF THE DEFLECTIONS BY THE

STATICAL-EQUILIBRIUM METHOD

Eigenfunctions or trigonometric functions are not the only possible

choice for the functions Zk(x). They can also be obtained by means of the

statical-equilibrium method.

We consider the plate element of width d_, as an ordinary beam, its

elastic line being determined by the boundary conditions. Different elastic

lines can be obtained by varying the point of application of a concentrated

force acting on this beam; these lines, which are third-order curves, are

then taken as functions Zk(x)(Figure 78).

..... z:i_,.}

_llilllillilii_illiilIP,_

z:(.O

..... lit7 J

FIGURE 78.

Zs(x)

FIGURE79.

II!
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In the same way we can apply a distributed load to the beam. By

assuming different laws of variation with x of this load, we can obtain

different forms of the functions ×k from the differential equation:

x_v P=E-J

and the boundary conditions. A certain function X, will correspond to each

type of loading. With a uniformly distributed load, of differing intensity in

different parts of the beam (positive or negative) (Figure 79), the deflections

;(, of each part are represented by fourth-order parabolas when the rigidity

E]of each part is uniform. Since the functions X,(x) and their derivatives

may be expressed differently in different parts of the beam, we shall

consider the integrals on the right sides of (2.26) as the sum of the integrals

taken over all these parts.

This method is more general than the method of eigenfunctions. This

follows from the following property of the eigenfunctions:

x'v(#)= _ (x).

Ill
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In the particular case when the load varies like the ordinates of the

elastic line, the eigenfunctions themselves will represent the elastic
line.

Further, when a shearing force Q(x) acts at the free end x-O , or when

a moment M_ is applied at a free or hinged end, the elastic lines of the

beam, due toaforceQx(O)=! and moment Mx(O)= ! respectively, can be

included in functions X,(x). A better approximation to the exact solution at,

and near, the free end x = 0 is thus obtained than by taking a finite number

of terms in the expansions of the eigenfunctions.

This method is also simpler than the method of eigenfunctions, used

when analyzing complex structures, such as continuous plates and plates

of variable thickness whose rigidities vary exponentially in the x direction.

An elementary strip of width dy of such a structure can, depending on

the cross section of this structure, be considered either as a stepped or as

a continuous beam. By applying an external load to such a beam, we obtain

the functions Z_(x)by the known methods of the theory of structures.

_' -" .... -'a_. ,Z_..... ,T&

_. ___ Z,(.zJ

I Iz'r_

zsCz)
FIGURE 80.

Different functions Xk(x), approximating the deflections w (x) for y = const,

are obtained by varying the external load. Figure 80 shows the functions

Z_(x) obtained as deflections of a continuous beam under the action of three

types of loads, approx_matingthe deflections of a continuous plate built-in

along the edge x =0 and having rigid supports parallel to the y axis at

x=u_, x--a,+ a,, and x=a[+a_+a3.

§ 6. PLATE SIMPLY SUPPORTED AT OPPOSITE ENDS

1

Consider a rectangular plate on an elastic foundation, simply supported

along the longitudinal edges (Figure 81).

The functions of the lateral distribution of the deflections are assumed to

be:

_2_X

Z,, (x) = sin --U" (6.1)

Because of the orthogonality of these functions and their derivatives, we

find that all coefficients (2.26) having different subscripts vanish, while

II!

U _.' U

i l l
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those with equal subscripts become:

b n2n _ n¢_4

o b o b [ 2l n2n 2 Ip.,, = t -E, s.n = k T 1 + T -bi-j

System (2.25)thus reduces to n independent equations:

a W Iv o.n n -- 2 (bnn + pnn) W_ + (cnn + s"_°)W. = G_,

(6.2)

(6.3)

|I

F[GURE 81.

" "Ira :'ll !2 lllB

I[ I[-I[

The subscript n will henceforth be omitted. It should be kept in mind

that the coefficients (6.2)and the function W correspond to a certain value
of n in (2.1).

It is convenient to write (6.3) in dimensionless coordinates.

a new variable _]= _ and noting that:

d_' t dW d'W I a_W

d!t I d_ ' dge -- 12 d_ etc.

we can rewrite (6.3) in the form:

whe re

/ 6

W 'v-- 2r_W" + s4W = "-E'G.

r' = b +of,____o1_, }s4 = c + s,______2, i_"
{2

Introducing

(6.4)

(6.5)

-I11

: I " I
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Substitution of (6.2) in (6.5) yields:

r: = n_-n_"_- + _ I_-! ,

:_ n_,, 4 l_ [1 T n_l t )4- _ + _jIT,

(6.6)

where

l = plate length, b = plate width:

Introducting the notations.

we obtain:

2 2 ". I_ F0_ =: Itr, = n _ -bT , 2g'L' " (6.7)

: = 4 + d,

It is seen that (6.4) has the same form as the differential equation of the

bending of a beam (1.8) of Chapter If, differing only in the values of the

constants r_ and s4. It follows that methods similar to those used for two-

dimensional analysis of beams can be applied to this problem (cf. sections

2, 3, 6, of Chapter II).

II

§ 7. SOLVING THE DIFFERENTIAL EQUATION OF

THE BENDING OF A PLATE BY THE /VlETHOD

OF INITIAL PARAMETERS

When an arbitrary external load is applied to the plate, equation (6.4)

is most simply solved by the method of initial parameters.

The general solution is then:

W ('tl) = KwwWo + K_e,_o _- KwMMo -_- Kw,vNo -- F,,.

("1) = K,,_,Wo + K_o + K_,,,Mo + K,,NN,_- F,,

M (_) = KM_,t}'o + KM,_o + Ku,uMo + K,_,vNo -- FM,

N ('_) = KN_AVo + K,v,_o + Kn,,,Mo + KIw_No -- F,v.

(7.1)

where Kve_,, Kve_ ..... K_^. : influence functions; W0, _0, M_, No = generalized

deflection, generalized slope, generalized bending moment, generalized

shearing force respectively (at y = 0); Fw ..... F# = load functions.

In order to determine the influence functions in (7.1) we have to find

the solution of the homogeneous equation corresponding to (6.4), which is:

W (_) : C,Oa + C2@_ + CsO.__- C,O,, (7.2)

ill
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where C,, C, ..... C_ = integration constants; 0, ..... 04 = functions depending

on the roots of the auxiliary equation, i.e. on the coefficients r _ and s4.
The case:

s>r.

is that most frequently met.

The functions @, ..... O4 are in this case (cf. Table 3, p. 51):

0, = sh _ cos _, 0, = ch _ cos _, )

0, = ch;,_sin _'_, 0, sh_'_ sin _, I (7.3)

a=_, g=_. (7.3')

Since V/ is a function of the dimensionless coordinate -,7= _, the
generalized slope _ is:

aw d W'.
_=-_-y =T (7.4)

We then obtain from (3.5), (3.6), and (6.1)the generalized bending

moment M and the generalized shearing force N :

a /,v,, al,W), I

f--_)_-+

(7.5)

where _ = Poisson's ratio for material of plate; a, _, and p_ are given by (6.2).

Substituting (6.2) and (6.7) in (7.5), we obtain:

° 1M = -- -_ (w -- t,r_'w).

N = -- _{W" --1(2 --F)r_ + 2r_] W'}.
(7.6)

We then obtain from (7.2), (7.3), (7.4), and (7.6):

V/ = C10, + C,0, + C,Os + C404,

l_ = c, &o, - _0,) + c,&0,-_0.) + c,(go. + _0,)+
+ C_ (aO, + _¢,)

+ 2jo,} -c, {l(] - _)r_+ ,_,;¢. + 2_-¢,}

l-_-nN = C1 {_t [$' -- _tr_l@, -+-_ is'-4- tirol @,} +
Q

+ c, {_ Is' - Fr_l¢, + I_I'-' + _.r;l¢.}-G {1_Is' + _,r'l¢,-

-; I_'- _,_,io,} - c, {_I_' + _,h ¢, -; i_' - _dl ¢.}.

(7.7)

II!
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For _]=0 these expressions become:

U_ = C2,

1_,, = aC1 _ _C3,

/' M. = -- C, I(1 -- _) r, _ r_] -- 2_C.,

ix
-E No = C,_. [s' -- Fr_l -- Ca_ [s 2 -L Frll.

Solving (7.8) for C,, C,, C_, C, yields:

TP No] ,
m

C, = lY/o,

1

_,:- _ {,(l--.)r:+,:,Wo+-_Mo}
where _ and _ are given by (7.3'), and s, rl, and ro by (6.6) and (6.7).

TABLE I0.

U_41 _110 ,M 0 ,_r13

I
I l

r,q ¢,)

Q

KNW ,,,=_ {_ Its' + ,')(s_- _,,_)-

N_ _-- ltt -- _.) r12 + ro2J (s t + p-rl_) ] ¢, +

_-_ l(-_'--r')(s'+ _r;)--

,i -1(_ - _),,_+ ;o'l(,' - _,,_)1(_)

I

+ is'- _,r[) g*,l

1

+ [0 - _) r_ + to=] (p,)

a

× l0 + I,) ,_ + r_l +

+ (s'-- _r_)[s'+ r'l)¢, +

+ _ {(s'- _) l(_ - _)r_'+
+ r_l -- (s' + I'r}) Is' - r'l} _,1

Kjv_ = KMW

I

K_._ = - _ x

K,,jM = K_¢

KNM = K_ W

(7.8)

(7.9)

K_N = KwM

KMN = K_

KNN = KWW

!11

i i l
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By substituting (7.9) in (7.7) the solution of the homogeneous equation

corresponding to (6.4) can be expressed through the initial parameters and

influence functions (the functions F=, ..... F,v do not appear in the expressions

obtained). The influence functions are given in Table 10.

U I
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In order to take into account the external load, represented by the right-

side of (6.4), we subtract from the expressions (7.7) terms corresponding to

the functions Fw ..... F^,, which depend on the applied load and its distribution

over the plate. This dependence was discussed in section 3 of Chapter II.

One example of the application of this method will be given here.

Let a load as shown in Figure 82 act on the plate. It is seen that in

part 0 < _ < t_ the homogeneous differential equation is applicable so that

all unknowns are determined by the initia] parameters

W 09 = Kww(a) Wo-C-K_., (_) ,_o+KwM ('_) Mo-!. Kwtv (_) No,

(_) = K,_(_) Wo + K,, (,_) _o + K_,_ N) Mo + K_N (_) No.

M (_) = KMw(_) Wo+K,_ ('_) _o + KMM (7) Mo +, KM.,_.(71)No,

N (',1)= KNM (_) Wo+ Ks, 01) _o + Kt;M ('11)Mo + K.,_N('_) Nn.

(7.10)

II

For t, < _ < t2 the following expressions have to be subtracted from the

respective equations (7.10):

Fw =GtKw^,(_--ti), F._= GxK_,v(_--tl), IF, = GIK_N (_--tl), FN GtK_s('_--tl); (7.11)

whe re

G, = _, Pcz (c) = P]X (c,) + P2X (c..),

and X (c) = value of _ {x) at the point of application of the concentrated force.

For t.,_< 7,< t, the load functions are:

Fw = G_K_^ (V-- tj) + GsKw_(_-- t,), I

F, = G_K_^ 61 -- t_) + GIK.N ('_ -- t2),

FN = G_K_N (_1-- Q) + G=K^N ("1-- Q),

(7.12)

where

G_ = P_X (Cs).

0

I' I J

/ /I _ /,.../

_._,@ o -/

HGURE 82.

J
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For

whe re

G<'_< I the load functions are:

Fi = OlKw_'(_1-- t,) + GsKwN(3 -- t_) +

+ 16, (t) Kw.(_ -- t) at,
o

F= = G,K_N (_--tt) + G:K,_N (71--f_) +

+ i 6o (t) K_,v (_ -- t) de,
o

F_ = G,KM,v (_ -- 10 + 63KMN("l--t=)+

+ IG,(t)K_N('_--t)dt,
o

t'7 = GIK,w, (v, -- t]) + GaK,vN ('£ -- 1=)4-
r,

-F 1 G, (¢) K,,',,, (wl-- t)dl,
o

b

G, = ! p (x, _) ;((x) dx.

(7.13)

!11

I :'l L WB

§8. DETERMINATION OF INITIAL PARAMETERS.

CALCULATION OF BENDING MOMENTS

AND SHEARING FORCES

Since the origin can be in any plate cross section, two of the four

initial parameters W.. %, M,, No in (7.1) are usually determined directly

from the boundary conditions (cf. sections 3, 6 of Chapter II). The two other

parameters are determined, irrespective of the applied external load, by

solving simultaneously two equations written for a different cross section

(_ = const) of the plate. This will be illustrated by several examples.

i-i i

Simply supported lateral plate edges

The load applied along the _ axis will be divided into symmetrical and

antisymmetrical components. 'The origin of coordinates lies in the center

section of the plate (Figure 83).

The boundary conditions for symmetrical loading (Figure 83, a), are:

•l= _- = o ¢p_,= o, N(, = o. (8.i)

the general solution then becomes:

W (_]) = WoKvvw (_) + MoKwu (_) -- Fw (_), I

_p(,_)= _/og,w h) + MoK,M (_)-- F, (_),

M ('_)= WoK_w (_)+ MoKwM (_I)-- Ft4 (_,_),

N (_1)= WoKmv (_) + MoKjv,w ('rl)-- FN (_).

(8.2)

I11
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where the functions Fw,_ .., FN correspond to the load on only one half of

the plate (_> 0). The parameters W0 and Mo are determined from the

boundary conditions at the lateral edge:

i_--_(_=-_-): w:0, M=0. <8.3)at

Substitution of (8.3) in <8.2) yields:

(8.4)

M (-_) = WoKM_(½) + MoKMM(_) --rM (½) = O. [

!!

FIGURE 83.

The solution of system (8.4) is:

,t 't

We = i i i '

I 1 1
<8.5)

For antisymmetrical loading (Figure 83, b), the boundary conditions at

_----0 are:

at _=_-=0 : W0=0. M,=0. (8.6)

The general solution for this case is:

M (_) = 9oKM_ (71) + NoKMN ('_) -- FM ('q),

N (_) = _oKN, 09 + NoKNN (_)-- F_ CTl),

(8.7)

where the functions Fv (_l) ..... FN(_I) again correspond to the load on only one

half of the plate.

l-I l

-ill
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The boundary conditions (8.3) yield:

whence

N 0

'1 t F 't' ,1'

1 1

(8.8)

(8.9)

III

' w

Built-in lateral plate edges

In this case (Figure 84), the boundary conditions at _ = 0 for symmetrical

and antisymmetrical loading are given by (8.1) and {8.6) respectively. The

solution of the problem is given by (8.2) for symmetrical and (8.7) for

antisymmetrical loading.

IK-li- i

FIGURE 84.

The boundary conditions at the built-in lateral plate edges are:

_=_ _= V/=0, _=0. (8.10)

The initial parameters are determined from (8.10) and (8.2) or (8.7):

for symmetrical loading:

W° = FwK®_ -- F_Kw_ lKw_K_M -- KwtaK,_B, '

1.Mo = F#KwW -- Fv/K,_ w ;
Kw_Kg_ -- Kw.'MK_ w

(8.11)

Ill

R rail mmn
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for antisymmetrical loading

FwK,_ N -- F_KwN

_o = Kw_K_I V_ Kwj,,Ko _

N o = Kw_K_N_ Kw_.K_

:/
where

KgM, KwM .... , K_, K,N, F_, F_

1

are the values of the corresponding functions at _ = _-.

(8.12)

I!!

Free lateral plate edges

The boundary conditions at the free plate edges are (Figure 85):

N(_)=s,,
M(_)=0

(8.13)

t
where Wf = vertical displacement of foundation at 7= _- =y , Sf = generalized

shearing force exerted by foundation in this section.

" -"_ :-mm

E -i

-Ill

FIGURE 85.

The first condition (8.13) is purely geometrical and expresses the

equality of the vertical depressions of plate and foundation surface. The

second and third conditions are statical equilibrium conditions, similar to

the corresponding conditions for the free end of a beam of finite length on

an elastic single-layer foundation (cf. section 6 of Chapter II).

m u
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The vertical displacements of the free foundation surface (I_L >-_) can

be approximated by an exponential function (Figure 85):

(8.14)

_/_77.

where m= _/b' and Z(x) is given by (6.1). The first boundary
condition

(8.13) is then satisfied by (8.14).

The generalized shearing force Sf in the free foundation, determined by

the work done by the shearing stresses x,v over the corresponding virtual

displacements, is given by (3.4). Since in this casex(x) differs from zero

only when O< x< b, (3.4) reduces to:

Sf.-2t _, Wf iXh%tdx. (8.15)

k I 0

III

II ,'_" ,,Ban

Substituting (6.1) in (8.15) and taking (8.14) into account, we obtain for

!

sf=-=tbwf(½)e-("-") (8,6)

, (_=+)is:The values of this expression at y = -y

s,=-.,_w,(_).
Since

we can write (8.13) as follows:

_(_)=0 } (8.17)

For symmetrical loading, the general solution is as before (cf. (8.2):

W (71)= WoKww ("])+ MoKw'w ("})-- Fpz (_), I

# (',]) WoK,v/ 01)+ MoK,_ ("I)-- F,, (',]),

M ('1) WoKu,/("1) + MoKM/a ('11)-- FM (,q),

t¢ (_) WoKtcw ('q) + MoKtcM (,q) -- F_v (_).

(8.18)

Substitution of (8.17) in (8.18) yields:

Wo = (KN, _ + albKwM) F M -- K,,_/_ (F N + atbFv¢)

KM_ (KNM + albKwM) --KI_ M (KNw+_IbKww) '

Mo = KMw (F N + ,',lbF¢,) -- (KNW, Jr ¢lbKV;'w) F M
KMw (KNM + ,,tbKw,_) -- KMM (KNw+ "'ibKw/w) •

(8.19)

I-I I

I11
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For antisymmetrical loading we obtain:

w 0]) = _oKw, (_) + NoKwN (_) -- Fw (_), I

(_) = %K,, (_]) + NoK,N (_) -- F, (_), IM (_) = *_oKu, (_q)+ NoK,_N (_]) -- Fu (aq),

N ('_) = %Kn_ (aq) + NoKt,'N ('_) -- F _ ('_).

(8.20)

Substitution of (8.17) in (8.20) yields:

(Km_ + atbKwN ) Ftd -- KMN (F u + atb Fw) ]

9o = KM _ (KNN + ,ytbKwu) __ KM N (KN, _ + albKwt) ' IK u_ (Fly + atb F w) -- (K t_ _ + atbKw, _) F I_

No = K,_ (KNN + cztbKwN)- KMN(KN, + albKw_) "

(8.21)

The values of K_N (_) •, K_,(_) Fw, ('_) F# ('_) in (8.19) and (8.21) are taken for

' (y=_). Asbefore:_=-_

/ff B

,c= , k (t _,,or) - 4 (t +,_0) o (8.22)

II!

"!

whe re

E S v S

E° _ i --_ _ V° _ $"-- "_s
i-i I

Different boundary conditions at the lateral edges

If the boundary conditions at the two lateral edges differ, the x axis is

placed along one of these edges (Figure 86). The initial parameters can

then be determined in exactly the same way as for a symmetrical plate.

From (8.17), we obtain for the free edge _l =0:

M o = O, NO= xtbW o. (8.23)

/

,t

/
b ---/

FIGURE 86.
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The general solution is then:

('_)= (K,w + atbK,N) Wo + K,, _o -- F,.

M (-_)= (KM_, + _tbKMN) W o + K_,% -- FM,

N (-@)= (KNM + _tbK_w) W o + KN,% -- F_.

(8.24)

The values of V. and _,,can now be determined from the boundarycondi-

tions at 6 = I (y = l} . Thus, if this end is simply supported the boundary

conditions become :

at _=l: W=0, M=0. (8.25)

From (8.24) and (8.25) we then obtain:

KM_F _/-- K_._F u

W° = Kt_, (Kwv + atbKw_)- Kw_ (KM_, + atbKuu) '

(K_w + atbKwN) FM-- (KMw + atbKMN) FW

q_o = KM" (Kp_ W + atbKwN ) _ KI_, (Klw_/+ albKMN) '

(8.26)

Ill

where the functions KM,, Kw,,...,F_,FM are taken at _]=1 (V=0. In this

case the functions Fw, FM correspond to the load on the entire plate(0<-_ _< 1).

Calculating the bending moments and shearing forces

When the generalized plate deflection W (_) has been determined, the

bending moments and shearing forces can be found from (2.28). Noting that

1i:' (_)is a function of _--_-, and taking (6.1) into account, we obtain for each

term of (2.1):

n_X

_.=-_[_ _'(,-_(_-) _ (,],rot
H = H_=--H v=-D_"_ " ._x_- W (_)cos -_- , (8.27)

N'=--DLI* b-

-- -7- \-T; W' (_] sm -_-.

i I I

Ill

§ 9. CYLINDRICAL BENDING AND TORSION OF A NARROW

PLATE. THREE-DIMENSIONAL BEAM ANALYSIS

Consider a narrow rectangular plate loaded symmetrically with respect

to the V axis (Figure 87).

m_ - m
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If we assume that the cross section of this plate (which in the general

case is of varying thickness) is not deformed, only the translational

displacement

;(o-----I. (9.1)

remains from all the possible displacements X_ of an elementary strip

of width dy=, I. The coefficients (2.26) entering in (2.25) then become: Ill
aoo = _, D.b.,, boo =¢oo = O, I

p_=,(b+_). _=k_+4.,.!
(9.2)

where
Eh'_

Dm=

is the flexural rigidity of the plate for a part of length b_ of the cross section

(Figure 88).

!

v_

h b_

• r iiiiillll]llllrlllrJIlllHllllllltlllllilllrllllliriiilr]/Jil]F!rlz,,-,.

I
!!!'I1!1_!,,r .,_,

Since

we obtain

FIGURE 87. FIGURE 88. Ill
El m

Dmbm = l--t*' '

_ eJao, = J" = I--_'' (9.3)

where J is the total moment of inertia of the cross section relative to the

x axis.

Substituting (9.2)and (9.3) in (2.25), we obtain:
m ! In

W w -- 2r'W" + s4W =
6 (t -- _,')1

EY '

(9.4)
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where

s' = _ (kb + 4,,t).
(9.5)

In this case, the value of 6 is that of the actual load, as can be seen

from (2.4)and (9.1).

The differential equation (9.4) of the cylindrical bending of a plate has

the same form as the equation of the bending of a beam in the two-dimen-

sional problem ((1.8) of Chapter II); it differs from it in that Poisson's

ratio F enters in (9.4). The values of the coefficients # and r _ are also

different. Through the terms

1 p t * __ _t• --_. t t
4_t,--tT-- EJ

entering in these coefficients, allowance is made for the fictitious reactions

Q* distributed over the longitudinal plate edges, i.e., for the three-dimen-

sional state of stress in the elastic foundation.

We then obtain from (3.5} and (3.6):

M = -- ,--2-_, W".

EJ W.+2tb(l+!_W,N i --_ ab/ •

(9.6)

We can now integrate (9.4)by the methods of sections 2 and 3 of

Chapter II. When the generalized deflection of the plate has been determined,

the actual bending moments My and shearing forces Nv are obtained from

(2.28b, e), which in this case reduce to"

Mv=--DW', Na=--DW _. (9.7)

It is seen from (9.7) that the bending moments My and shearing forces Nv

in each cross section are proportional to the flexural rigidities D=

(Figure 89).

2

Consider now the same plate acted upon by an antisymmetrical load

(Figure 89). Putting

xl=x, X'(x)=l. (9.8)

where X_(x) has the dimension of length, the generalized deflection becomes:

W(y) - w (x, y)
x

II!

i l l
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which is a dimensionless magnitude, being the angle of twist of the plate:

0- e(_)

By (2.4) and (9.8), the generalized load is:

G = Ip(x, g)xdx+ _pcx, = re(y) (9.9)

and represents the twisting moment re(y).

III

.o(.z,.¢2

U_LL_ I

......... b_ ii _

_J
J_ NI[[IN[LLUJ[I,.,,.0,,,

! -"__-_

FIGURE 89.

U

II

The coefficients of (2.25) are again obtained from (2.26):

=mDmCx=dx ElL/ll
= t--:_P,

E,/
t_,,= (i --_,) _ O,.b,.= _ -_.,
Cll = O,

-TT l+_,

IcM (. t2

(9.10)

where

k and t = constants characterizing the compressive and shearing strains

respectively of the elastic foundation, J = total moment of inertia of plate

cross section relative to x axis; p = radius of inertia of rigidity diagram

(Figure 89):

I _ Dmb_ 02c_, + b_ (9.11 )
p2 = t2 F, Dmb,n

ill

m _ n
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[where c m is the distance between the origin and the centroid of that part

of the cross section whose rigidity is Dm ].

For a plate of uniform thickness:

b 2

pC_ _-"

Equation (2.25) then becomes:

a,, 0'v -- 2 (bn + pO) 0"4- s_°, 0 -- m = 0. (9.12 )

The generalized bending moment M and shearing force N are, by (3.5)
and (3.6):

EJ _0" (9.13)

_J " _[1 3,+ + -_-]0. (9.14)

where p2 is defined by (9.11).

The actual bending moments Mw, torques It, and shearing forces N_ are

by (2.28):

Mv = -- DxO",

/-/=--D(L--I,)O', I (9.15)
N _ = -- DxO _.

The distribution ofMvand Nu over the cross section y =const is thus

similar to that of X, = x multiplied by the flexural rigidity D; while the

twisting moments are directly proportional to the flexural rigidities D

(Figure 89).

Together with (9.1 3) and (9.14), (9.12) determines the deformation of the

plate, characterized by the presence of bending moments Mr in addition to

the twisting moments H.

The generalized moment (9.13) represents in this case a bimoment, i.e.,

a system of normal stresses acting in the section y = const, statically

equivalent to a zero force. The generalized shearing force determines the

total twisting moment acting in the section y =const, due both to the

shearing forces Nw and to the reactions of the elastic foundation; these are

respectively given by the first and the second term of the right side of (9.14).

II!

"l . 'BB u

i-i i

III

We can apply (9.4) to the three-dimensional problem of the bending of

a beam by putting a = 0, and considering El as the rigidity of the beam.

The free term (/ then represents the load per unit length.

Exactly as in the two-dimensional problem (cf. Chapter II), the beams

can be classified as long, short, or rigid, depending on their rigidity.

Long beams acted upon by concentrated forces and moments can be

analyzed by the method developed in section 4 of Chapter II. In the three-

dimensional problems the generalized shearing force N entering in the

boundary conditions is determined by the second equation (9.6), while r" and

are given by (9.5).

U I
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Short beams acted upon by aribrary external loads are most simply

analyzed by the method of initial parameters (section 3 of Chapter II, and

section 7 of this chapter). When solving (9.4), the influence functions must

be obtained from (9.5) and (9.6). The initial parameters are determined

from the boundary conditions, given in generalized form, which, for free

beam ends, correspond to {8.13).

In the case of rigid beams we can proceed directly from the equilibrium

conditions of a beam acted upon by the known external load and by the

reactions of the elastic foundation (cf. section 5 of Chapter II). Thus, for

a symmetrical load, we obtain:

w (y) = Co. (9.18)

The reactions of the elastic foundation consist of the reactions q

distributed over the surface supporting the beam, the reactions Q_ distributed

along the longitudinal edges and the concentrated reactions T'applied

at the beam ends (Figure 90). The concentrated reaction T* are introduced

in order to make allowance for the effect of the deformation of the elastic

foundation beyond the beam ends (y < 0, y > l) on the stresses in the beam.

X

FIGURE 90.

III

i-l-I

From (2.17), (2.19), (9.1), and (9.16), we obtain:

q = kC., Oct = 2=tC,,. (9.17)

The concentrated reactions T ® are obtained by assuming that for v < 0
and y > l , the vertical displacements of the surface of the elastic foundation

decrease exponentially. Thus, for y < 0 we have (Figure 91):

b

at x_

_v(x, y) = Cue = " e'_,
b b

w (x, y) = C,,¢'_',

at x_ b

U:(X, y) = C,e ''_ ('- _-) eaL'.

(9.18)

I11
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We assume that the work done by the reactions T _ over the displacement

C 0 = I is equal to the work done by all the internal forces in the elastic

foundation in the region y < 0 over the virtual displacements (9.18) when

C,, = ]. We thus define the fictitious force T ¢ as the virtual work done by

the normal and shearing stresses _z. =_x, _z_ in the elastic foundation in the

region9<0. We then obtain:

T* = Co(2_¢h -- 3t). (9.19)

Strictly speaking, the concentrated reactions T ¢ consist of the reactions

Q_' distributed over the lateral edges of the beam and the concentrated

reactions I_ _' at the corners (cf. section 10). However, since the beam is

by definition rigid in the lateral direction, we can introduce the resultant

concentrated force T ¢.

III

FIGURE 91.
i-i_i

The equilibrium condition of the beam is obtained by equating to zero the

vertical projection of all forces acting on the beam. Taking (9.17) and

(9.19) into account, we obtain:

[kbl + 4_tl + 4_tb + 6g] Co = P0,

whence

P0
Co = lkbl + 4at(z+b) +6q' (9.20)

where Po = resultant vertical load acting on beam; l = beam length; b = beam

width.

When Co has been obtained, the reactions of the foundation are found

from (9.17) and (9.19); the bending moments and shearing forces are then

determined by the known methods of the strength of materials.

The analysis of a rigid beam acted upon by an antisymmetrieal load is

performed similarly. If the origin of coordinates is placed at the beam

center, the vertical displacements are:

le (y) = OoV,

Ill
\,,

\
\

l IIII _I

135

II •

l l l[ I I I I I I I I I i [ [ [ I I



h-i-m-lm

where 80 is the slope of the beam, whose value can be determined by

equating to zero the sum of all moments about the origin, actin_ on the

beam:

_Mo--- 0

(cf. section 5 of Chapter II).

Consider a symmetrically loaded rigid beam. Assume that:

(9.21)

Substitution of (9.20) in (9.17) and (9.19) yields:

Po t

q= ,b [l+_b(i+"l-)+_-"_btbJb' 3 1'

q_ = e_ t
b -I [t 2

T°=_o ['÷_]
=,[,÷_(,÷_)÷_] •

(9.22)

When ¢(z)is given by (9.21), the coefficient = = ]/-_t entering in (9.22)

(cf. (5.23), (5.24) of Chapter II) becomes:

H ?H H___ /-sh-7.-_. ch -- + 7n
_"]/ _ 11/ b ' b b

:'=Tr t---_o l/ _--_'
--sn "_-.cn %- ---6-

(9.23)

If the single-layer foundation is an elastic semi-infinite space (hH__--_,oo),

we obtain:

Po

'+T ,+÷I÷_ '-,.,].
QL_ = P__._o Ib

Z ._1" 1 2 1 1./-_'_--vo/1+ 3 b

_ 1t/'r_-jo
t+27 V 2

T ¢ = Po
2 2 i--v o b 3 b "' _[,+_ v_(,+ T)+_T,,-,,]z-g

(9.24)

Iii

l-I i
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Figures 92 and 93 show the dimensionless bending moments _ for two

l I
cases of loading, obtained from (9.24)for-_=l.5;_0=0.3; _-=5, and_-=10.

Results obtained by Gorbunov-Posadov for the two- and three-dimensional

I
rigid-beam problem (_- = 10), are also given:

- 3-dimensional analysis

/ /
% /

\ _.$ 4J

/
t

j,
_v

/

f, '_ 2-dimensional analysis

FIGURE 92.

QO0$

P

FIGURE 93.

!!!

-i i-I

Ill

The actual bending moments are:

M = Mpl s,

for a uniformly distributed load, and

M = _pl

for a concentrated load.

i - R
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It is seen that the respective curves obtained by the two- and the three-

dimensional analysis differ considerably: the maximum moment obtained

l
by the two-dimensional analysis (for _-= 10 and a uniformly distributed

load) is almost 3.5 times the maximum moment obtained by the three-

dimensional analysis.
1

It is also seen that the bending moments vary inversely with T : the

wider the beam, the smaller the difference between the results obtained

by two- and three-dimensional analysis.

A comparison of the results obtained by the method proposed and by

Gorbunov-Posadov (for_ = 10) shows that the difference between the

maximum bending moments is relatively small (about 15% for a uniformly

distributed load, and about 1.5% for a concentrated load).

§ 10. APPROXIMATE ANALYSIS OF A PLATE WITH FREE

EDGES IN THE CASE OF SYMMETRICAL LOADING

Let a symmetrical load p(x, y) be applied to a rectangular plate with free

edges on a single-layer elastic foundation (Figure 94 ). The origin of

coordinates is at the center of the plate. The differential equation of the

bending of a plate on a single-layer elastic foundation is:

DV'V'w--2tV'w+kw=p(x, y), [cf. (1.5)] (10.1)

where w(x, y) is the unknown deflection function of the plate, and

H H

k=_ _.,_, [cf. (1.6)1. (10.2)

If p (x, y) is distributed nearly uniformly over the plate a simple approxi-

mate solution can be obtained by writing:

_:x _y "_x ny
w (x y) = Co + CI cos _ + C2cos _- + Cs cos -_ cos _-, (1 0.3 )

where C0, C1, C2, Cs are constants having the dimension of length.

The first term in (10.3) determines the translational displacement of

the entire plate, the second and third terms represent the cylindrical

bending of the plate in the x and y directions respectively, while the fourth

term defines the three-dimensional bending.

The coefficients C, in (10.3) are determined by Bubnov and Galerkin_s

variational method based on the equilibrium conditions, i.e., equating the

total work done by all external and internal forces acting on the plate over

each virtual displacement to zero:

-- -- ny
Wo= l, W2 = COS-_-,

- ,_, ,¢x _Y / (10.4)w_ = cos _-, w._ co_ -._ co_ _F

!!!

i-i I
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FIGURE 94.

2. Determining the reactions of the elastic foundation

An analysis of (10.1) shows that the first term depends on the internal

forces in the plate, while the other terms depend on the reactions of the

elastic foundation, distributed over the surface supporting the plate and

caused by the compressive and shearing strains in the elastic foundation.

In addition to these forces and to the distributed load p (x, y), reactions

Q*, distributed along its edges act on the plate. These reactions are

introduced to make allowance for the three-dimensional deformation of the

elastic foundation beyond the plate edges. In the case of rectangular or

polygon-shaped plates, concentrated reactions R i arise at the plate corners

(Figure 95). In order to determine the reactions Qt and R* we shall assume

that the vertical displacements wf of the elastic-foundation surface beyond
the plate edges obey the folIowing law (Figure 96)*:

in the positive direction of the x axis

wf(x, y) = llv,(y)e-_( :'-l'' (I0.5)

in the positive direction of the x axis

If(x, y) = w_(x)_ -_ cv-i), (10.6)

l= _-t' wl(y) and wb(x) are respectively the vertical displacementswhere

of the longitudinal and lateral plate edges. The following law is also assumed

for the vertical displacements of the foundation in the region x > b, y > l :

\

III

\
\

IE . "HE'- '

i-I l

Ill
wf (x, y) = w¢ e--_--lie-_ w-r), (10.7)

where we is the vertical displacement of the plate corner.

It was shown in section 2 of this chapter that if the distribution of the

vertical displacements of the foundation beyond the plate edges is given by

(10.5), the fictitious reactions q_ at the longitudinal plate edges will be
given by (2.19), which can be written in the form:

Q,*= 2t [_w_+/_--A _ ! r'_______1\Ox,h 2,, t Oy' )tJ' (10.8)

* These expressions are only approximate, since in the three-dimensional problem the vertical displacements
of the foundation beyond the plate edges obey a more complex law (see for instance section 7 of Chapter I).

I i
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where the derivatives of w(x, #) are taken at x = + b.

The fictitous reactions Qb¢ distributed over the lateral plate edges are

obtained similarly. Defining these reactions as the work done by all forces

in a strip of unit width, cut from the elastic foundation, over the virtual

displacement of the elastic foundation beyond the plate edges, we obtain:

(10.9)

where the derivatives of w(x, y) are taken at y = + 1.

FIGURE95.

!11

I - ! U

i-i I

FIGURE 96.

i11

The concentrated fictitious reactions Re are determined by the vertical

displacements of the elastic foundation beyond the plate edges in the regions:

(x<--b, V<_--b), (x_--b, y>l), (x>b, y_--l), (x_b, y>l).
U m m
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These reactions are defined as the work done by all the internal forces in

the elastic foundation in the corresponding regions:

3
Re =_- lw¢, (i0.i0)

where t is given by (2.15) and we is the vertical displacement of the corre-

sponding plate corner.

FIGURE 97.

Indeed, for x_b,[y>_l], the vertiealdisplacementswf(x.y) of the

surface of the elastic foundation are given by (10.7). The virtual displace-

ments of the elastic foundation are therefore:

w(x, y, z)=wf(x, y)_b(z)= J-e-_(x-b'e--_cv-_b(z). [when wc = 1 ] (10.11)

The internal forces in the elastic foundation are the stresses a,, _,x, _,v, :

o,= _ @'(z)_f(x,v),

Eo O_vf (x, y)

Eo o_f(x, y)

[cf. (2.13)]

(10.12)

The work done by these stresses over the virtual displacements (10.11)

for x_[_, y_t is:

o_ n , - O-fw
R'_=I I I la,_f*' +,,,-_-x *+,,,_*)dxdydz, [cf. (2.11), (2.12)]

b I 0

(10.13)

where

_f(X, y) = e"-= (x--e')e--=(_'-").

111
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Substituting (10.12) in (10.13) and integrating we obtain (10.10).

The reactions Re given by (10.10) are relatively small and their influence

on the strains of the plate is insignificant. Furthermore, plastic deforma-

tion occurs in practice near the plate corners. The reactions R ¢ can

therefore be neglected.

3. Variational equilibrium conditions

The following four algebraic equations in the four integration constants

appearing in (10.3) are obtained by forming the expressions for the work

done by all external and internal forces in the plate over the virtual dis-

placements (10.4 ):

fI[D o'w_-- _t9 o-_°_+ kw -- p] cos -_-_dx dy -_-'x

+2SQ0cos d :0
SS[ 

÷ 21 Qlcos _y_Tdy = 0,

([D (a'w a_ o,m za,m a,m\

_X 1¢y+ kw -- p cos _ cos _7 dx dy = O,

(10.14)

where w is given by (10.3); p=p(x, y) is the known external load and

Q_, Q_, Re are given by (10.8), (10.9), and (10.10) respectively. The

integrals in (10.14) are definite and have the following limits: -- b _ x _ b,

--l_)_l.When concentrated external loads are present, these integrals

are to be understood as Stieltjes integrals.

The first equation (10.14) defines the work done by all forces external

with respect to the plate over the vertical displacement w 0 = I. In the term

containing k allowance is made for the compressive strains in the elastic

foundation.

The second equation (10.14) defines the work done by all forces during

the cylindrical bending of the plate in the z plane. By the terms containing

D and t allowance is made for the work done by the bending moments M,,

and by the shearing strains in the elastic foundation respectively.

Similarly, the third equation defines the work done by all forces during

cylindrical bending of the plate in the yz plane. In this equation, the term

containing D corresponds to the work done by the bending moments Mw •

The last equation (10.14)corresponds to three-dimensional bending of the

plate, similar to the bending of a plate simply supported along the edges.

In this case, the work done by the internal forces consists of the work done

by the bending moments M, and Mu, and the twisting moments H.

Substitution of (10.3), (1_.8), (10.9), and (10.10) in (10.14)yields the

system of four algebraic equations (10.15) from which the coefficients

nhA A

III
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C o, CI, C_, C__can be obtained:

TABLE 11

Free Virtual displace-C,, Ct
term ments

klekoo

• /111 nil fill

GO

GI

Gll

Wo

Here

+---'I" +-', +b>++,],
klo = -_ [lbk + 2_tb I,

klo = -_-[Ibk + 2_tll,

t6
ks. --- --_ lbk;

and

nn 2[lbk+ _---_!f t "s t =, t ]= + 7"6 _ D -h- 2_tb W T- -d_J'

ns* = !_, lbk,

4 [lbk n' l _ n" t 1.,,= -; + --:Tt--:::rDl,

n,2 2[lbk+ =' b .. b n n, t__]= T -f t + {'6 W -- + 2..tl + 4 at ]'

__ [ ." b _i+ b._b..ln.. = lbk + T "-f t + t6 t" --1'

., {,__ l

Ehs
D = 12 (i--_,)

(10.15)

(10.16)

(10.17)

!11

\
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is the flexural rigidity of the plate, while k and t are given by {10.2).

It is seen that the coefficients (10.16) determine the work done by the

reactions of the elastic foundation, while the coefficients (1 0.1 7) determine

the work done by the reactions and the internal forces in the plate. These

coefficients are symmetrical:

kl0 = k01, klo = k02, k,0 = k0,, }nil = nsl, n,a = nsl, nD= n82, (1 0.1 8 )

in accordance with Maxwell and Betti's reciprocity theorem.

The matrix of (10.15) is symmetrical by virtue of (10.18), which

considerably simplifies the determination of the unknown constants when
more than four terms are taken in (10.3).

The free terms on the right sides of (10.15) (Table 11) represent the

work done by the known external load over the corresponding displacements

(10.4), and are obtained in the form:

Gt = IIp(x, y)widxdy. (i0.19)

II

4.

System (1 0.15) could have been obtained without introducing the fictitious

reactions Q_, Q_, R v , had we followed the procedure in section 2 in deriving

the generalized equilibrium conditions of an elementary strip of width _y, in

which we considered the work done by all internal forces, including those

acting in the elastic foundation beyond the plate edges. The final result

would have been the same, since the fictitious forces Q_, Q_, R _ were defined

as the work done by all the internal forces acting in the elastic foundation

beyond the plate edges, and were only introduced to simplify the expressions.

i-i-I

After the constants C0, Cl, C2, Cs have been determined from (10.15), the

plate deflections can be obtained from (10.3), the bending moments and

shearing forces being given by (1.8). Substitution of (10.3) in (1.8) yields:

= _- ¢._cos _ + C_cos _K '-

b _

,_ (l + F_ .__)Ca cos _x _y], -_- cos -_].

_s f b s _ _y Irx

M v = u _ L7¢ t._cos _- + ,_c_ cos :2_ +

+ "7 + Iz Cscos -_ cos _7- "

From (10.15) we obtain as particular cases approximate solutions for

a plate simply supported along its entire contour, or only along either

its lateral or its longitudinal edges. In this case we have to substitute

C0=Cl=C2=0, C0=Cl =0 , or C0=C,=0 respectively in (10.3).

(10.20)

III
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If a higher accuracy is desired, or if the external load has a pronounced

nonuniform distribution, a larger number of terms must be taken in (10.3)

(cf. section 12). We must then set up a system of algebraic equations

similar to (10.15), each equation of which defines the work done by all

external and internal forces acting on the plate over the corresponding

displacements.

§11. EXAMPLES

k-A A-A_

!!!

Consider a rectangular plate, for which we assume that:

]'f--Z

sh "f b
_(z) = (11.1)

sh yH
b

where -f = coefficient depending on elastic properties of foundation; b = plate

half -width.

The generalized characteristics of the elastic foundation are in this case:

[cf. (5.23) and (5.24) of Chapter II]

•i'H "fH +
k E o'?" sh -_- ch "_-

2b (t -- v_) sh I

t = Eob
8"f(t + %)

sh _ ch __._ TH--%-

shl_.

.___//F yH .YH , "fH

2 sh Tcn-$--vT

_= -t -" vo sh _. ¢h__.._- yH'b

(11.2)

where

E$

E o = t_v--_s,

V s

YO = --
1 V$

(] i .3)

Ill

( E s and _s are, as before, the modulus of elasticity and Poisson's ratio

for the elastic foundation respectively).
I ° I
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Substituting (11.2)in (10.16)and (10.17),

we obtain:

, ,0 +__)_(,_,o)m,m. +koo = 4 IT -'F m, + --(

3 t--v e ]
+_Tmt],

8 y*,.=-_[T':, ++_r-_-,),_,re.I.
8 'r

j%o=_..[_.__ l 1 I m,m.],T In* + T T V6(I -- %)

k_0 t6 -f l

"_ ] m, +-i_ kT] +

+ ,,. (t -- v.), mr]+ ['-6-0 - ",o)m,m, 4 _ "e_ ",'
t6 ¥ t

a_l = -'_- T -b'- mh,

'f l x t t--'% b _o bn22= 2 --_-ym, 4 t6 _ -T'mt-t-T_-r T -I-

| I _(_ (t -- %)nt #Jr b ]+T_-_ rntm°4 _ ._2/_(t_v= ) m= "7 '

4 [_ I ._ t--v, b .6 _]ass = ---_----_.--_-m, Jr" t6 "_ I ?tIt -_ t6r I J'

naa=[__/ .'l--,(l+t'\b ,' ,'- /' ' b

t --v_
and multiplying (10.15) by E--__-'

(11.4)

(11.5)

where

/71 k

/71 t _-

• yH . yH "fH
staTen- b- +_-

sht._ -

h TH , yH

sht___

yH yH yH

/ t shTChT+T

r sn-_-en_----_-

(II .6)

and

r= .E,ts_ (11.7)
0(t--¢0)

is the "f]exibility index" of the plate. *

!11

- !_ - _ .11

.|-ii-1

-Ill
\

\

\

I - I •

" A similar value for r is used by Gorbunov-Posadov/25, 26/.
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The free terms in (I0.15) are by (i0.19):

G, = ---_vb _p(x, y)dxcly,

i--_,_r_ =x d "G,=--E-_-v_P(x, Y) cos-_-xay,

Gs = _p(x,y) cos-_-dx dy,

i -- v0s _ _ nx _y

G, = _ _ _ p (x, y) cos _- cos _ dx d.c.

(11.8) II

2. Approximative analysis for a uniformly distributed load

Consider a rectangular plate acted upon by a uniformly distributed load

of intensity p (Figure 98). We assume that:

I =2b, ,f= 1.5, r-----.l.0, _0 = 0.4. (ii.9)

and that the plate lies on an elastic foundation of infinite thickness, H _ _ .

/," /-- /12r / -

FIGURE 98.

Substitution of (11.9) in (11.4) and (11.5) yields:

koo = 9.58, n1_ = 3L0.4, nn = 23.50,

klo = 4.51, n_z = 2.44, ass = 14.22,

kjo = 5.23, nsl = 197.8; au = 241. ].

k_ = 2.44;

(11.10)

"B! .-U ..'RB

I i- l

Ill
The load terms (II.8) become for p = coast :

Go = 4 --_" pl,

8 i--V_n I

C' =T--_-."-

8 i--,,_p I
Gs = _ Eo '

16 t --re 1 .
Gs == ,,'w -"_-o PC

(11.11)
r R ° I I
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The following formulas are obtained for Co, CI, C_, C,_ by substituting

(Ii.I0) and (II.ii) in (10.15) and solving:

-- _o_
Co =: 408.10 -'_ _ pl,

Cx = 2,37.10 -a -_--o°pl,

t-g
C2 = 17,4.10-s---_o pl,

t -- VOS

Cs=0,4"10 "_ _pl.

01.12)

Hence,

,Yx ,_yw (x, y) = 408 + 2,37 cos _ -4- 17,4 cos 2_

-- 0,4 cos -_- cos -_-j _ IO-L (11.13)

II

Ill l

oo);

#05

D. 15

Du-nensionless bending moment _=

for section i,-O

b

=-" r--"-" l t
FIGURE 99.

Dimensionless bending moment M#
for section z-0

t" l "1o #

_.o l 2

-"-_"- 1
oo8 l 1 oo_

(205

/2/0

0,t5

FIGURE lOO.

| | 1

iI' L

Figures 99 and 100 show the dimensionless bending moments M. and M,j,

at y=0and x=0 respectively, determined from (I0.20) and (ii.12) for_=0.

The actual bending moments are:

Bending moments, obtained for r = 5 by this method, as well as by
lGorbunov-Posadov s method for a rigid plate {broken line) are also shown. <'

* See Gorbunov-Pnsadov, M.I. Raschet konstruktsii na unrugom osnovanii (AnMyzing Structures on Elastic

Foundations), p. 457. 1953.

! - m |
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In view of the approximative character of our method, and taking into

account that according to Gorbunov-Posadov, plates are rigid when

the agreement between the results obtained by the two methods can be

considered as satisfactory.

3. Approximative analysis of the foundation slab of a spillway dam

Figure 101 shows a section of a spillway dam of light-weight design.

The foundation of this section is a rectangular concrete slab of constant

rigidity having piers at its lateral edges. One of the most critical stages is

the period when the slab and piers have already been erected, but the

spillway sections are not yet in place. This case will now be considered.

!11
\

.\
. ! m_ "!

f
FIGURE I01.

Since the rigidity of the piers in their planes is very large, the lateral

plate edges can be considered as unbendable. The joint between the slab

and the piers can be considered as a hinged support. Applying (10.3) to the

slab deflections, we must put C_-----0. We then obtain Table 12 from 00.15).

TABLE 12

Virtual displacc-
C. C.. Cs Free term

ments

koo k2". /,',,o

nSj

GO

G_

UV_

l l-I

Ill

m I m
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The coefficients in Table 12 are given, as before, by (11.4), (11.5).

Assuming that a load p is uniformly distributed over the entire slab and a

load g is uniformly distributed along the lateral edges (Figure I02), we
obtain:

co = 4 (pl+ g)
s t-_:

G; = -_- pl -_o '

t6 l t--v_
G_ = -_.P Zo "

(11.14)

After the constants C,, C_, C3 have been determined from the equations

in Table 12, we obtain for the slab deflections:

Try , _¢x _y .
w(x. y) = Co + C2cos-_- :_ C3cos _- cos -2Y ' (11.15)

The bending moments are therefore by (10.20):

M.=D_T -NC2cos _- , t'sc°s _- c°s "Z-J,

n= _ b* ny
M v : D _ [_- C_ cos-_7- + (-_," '_ nx _y]+ t*)c_cos _-cos _j

(11.16)

I!

WM I

4. Taking into account additional loads transmitted by

the adjacent sections

Consider now the case when a system of slabs, loaded symmetrically
and arranged in a row, lies on a soil foundation. We thus consider not a

separate section, but the dam as a whole (Figure 103, a). If the base of

each section is an absolutely rigid plate, no shearing forces will act in the

elastic foundation at the boundaries between the different sections. The

concentrated reactions Q¢ at the lateral plate edges will therefore vanish,
as can be seen from (10.9),

,g

/!lll ll[]

/_//13_LI3_L/_p

/,'_ ------

/ / ; /

Z /._./

FIGURE 102.

I | -II
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If each plate lying on the elastic foundation has a finite but sufficiently

large rigidity, the shearing forces acting in the elastic foundation at the

boundaries of the different sections will be small, so that the concentrated

reactions Q_ may be neglected. In this case we shall be able to disregard the

influence exerted by the adjacent sections, and analyze such plates according

to the scheme in Figure 103, b.

w

a b

FIGURE 103.

!1

\

U

By expressing the deflection of each plate in the form (10.3), we obtain,

as before, the system of algebraic equations (10.15) (Table 11). Since,

however, Q_ and R _ are zero, the coefficients of this system are:

koo= 4[_-_-raj I I+ _-_-_-- _m,_],

"r l

I i I mtrr_],8 [T_g m_ + _- T V'6(L -- vo)

16 7 1
k3n _ .... mk;_z 2 b

nzz----- 2 _-rnk + t6 "r Trot + t6r kbYJ'

t6-f l

417 I n'i--.o I _ (_)']nsl = -_ T "T mk + 16 "r b mt + ]-O-r '

[.._. I n s l--vo b n* bn2_=2 2 Trek + 18 "f l mt+_T +

+ "__/"6 (1 --vo)Tmttn._+'_2.f,]/_(t_vo)m. ,

n.=_- -$-mk-F i6 _. lrnt+_ ,

Tm_+T6---_mt(l+ +

+_('+_)_],

(11.17)

(11.18)

i - i-- I

Ill

where rnk, ml, in, and r are given by (11.6) and (11.7).

The free terms are, as before:

G_-----_--_flp(x. y)wtdxdy.
(11.19)

R I m
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If we assume that the lateral plate edges do not bend, due to the presence

of perfectly rigid piers, the deflections will be given by (11.15}. The

constants Co, Cs, Ca are determined, as before, by the system of algebraic

equations in Table 12, the coefficients being given by {11.17} and {11.18).

By making allowance for the additional loads transmitted from the

adjacent sections, marked reduction of the positive, and an increase in the

negative, bending moments Mw may result, the general deformation pattern

changing considerably.
!!

$ 12. GENERAL CASE OF LOADING OF

A PLATE HAVING FREE EDGES

1. Method of solution

Consider the general case of loading of a rectangular plate lying freely
on an elastic foundation. Let the external load consist of concentrated

vertical forces P and of forces p(x, y) distributed over the plate.

To solve this problem we have to find the deflections w(x, y)from (10.1)

for given boundary conditions. Whenthe plate edges are neither built-in nor

loaded, the statical boundary conditions are [by (1.8) and (1.9}]:

b
at x=__+_

l
at y=-_-y

_w

M_ = -- D (-_--¢**+ _w_,--_-) = o,

- n W--_ 0,_
Q"= - tox, + {2-- _) o-)-_y,]= Q_,

= -- +_-_-_) = O,

a_

(12.1)

(12.2)

where Q_, Q_, determining the strain of the elastic foundation beyond the

plate edges, are given by (10.8) and (10.9) respectively.

The problem will be solved by Bubnov and Galerkin's variational method,

in which the deflection function w(x, g) is represented as a series each term

of which satisfies the boundary conditions:

m n

w(x, y)= _,C.,._,,,.(x, g), (12.3)
1 1

where _m. (x, y) are known functions, and Cm. are constants which have to
be determined.

The functions _m. can be selected arbitrarily, provided they are linearly

independent and satisfy the geometrical boundary conditions of the problem.

Rigorous fulfilment of the statical boundary conditions is not required, since,
when setting up the Lagrange equations, the equilibrium conditions are

approximately satisfied at all points of the plate.

I I "!
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We represent the functions _,.,as trigonometric functions, together

with linear terms defining the translational displacements of the entire

plate. We thus satisfy the geometrical boundary conditions, since at the

plate edges w=/=0, _4=0 , andalso, for _=0 , the first of each statical

condition (12.1)and (12.2). The remaining statical conditions are fulfilled

only approximately.

Proceeding from Lagrange's principle of virtual displacements, we can

establish a system of algebraic equations for determining the constant

coefficients C,..in (12.3); in each equation the work done by all external and

internal forces acting on the plate over the virtual displacement _, is equated
to zero:

m n

i i

-k_ lQm.(s)-kQ® (s)]_,,(s)ds}= 0 (I2.4 )

(i=1, 2, 3...., ,n; k=l, 2, 3..... n),

where _,,, (s). _k(s) are the values of the corresponding functions at the

contour.

The double integral in (12.4) defines the work done by the internal forces

acting in the plate (bending and twisting moments), the work done by the

shearing and compressive stresses in the elastic foundation beneath the

plate, and the work done by the external load. The contour integral defines

the work done by the shearing forces acting on the plate edges over their

virtual displacements. The first term represents the work done by

Kirchhoff's reduced shearing forces (cf. (1.9)), which appear at the plate

edges because the static-equilibrium conditions (12.1), (12.2) are only

approximately satisfied. The second term represents the work done by the

reactions (I0.8), (i0.9), acting at the plate edges and determining the

deformation of the elastic foundation beyond them.

As already stated, the concentrated reactions R _ acting at the plate

corners (given by (10.10)) can in practice be neglected, so that the work done

by them is not taken into account in (12.4).

The integrals in (12.4) are taken over the entire area and the entire

contour of the plate respectively. In the presence of concentrated external

loads, these integrals are to be understood as Stieltjes integrals. Thus,

for a finite number of concentrated forces, the integrals should be replaced

bythe sums of the products of each force by the function _ at its point of
action.

We can rewrite (12.4)in canonical form:

(12.5)

ii-ii I

Ill
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whe re

+ _ IOta. (s) @ Q¢ (s)l _,., (s) ds.
(12.6)

These coefficients are symmetrical (8,-,.m. = 8..,_,) by virtue of Maxwell and

Betti's reciprocity theorem; the matrix of (12.5) is therefore symmetrical.

The free terms in (12.5) are:

A,_= ftp(x, y)_p_kdxdy (12.7)

and represent the work done by the external load over each virtual displace-

ment.

In the solution of practical problems it is convenient to resolve the

external load into four symmetrical and antisymmetrical components. For

example, Figure 104 represents the resolution of a concentrated force

applied at x = a, y = c.

!!

Ii" ill

a _°--7
fJo_/ /.

Zi ,." li

b Ip ,lp _ P,X

&J;,l

P 't" < r ,t'_

/ f o #'a r

FIGURE 104.

The calculations are considerably reduced when each load component is

analyzed separately.

i i-I

Ill

2. Symmetrical load

When the load is symmetrical with respect to both axes (Figure 104, b),

(12.3) becomes:

n rann.y m.x ..y (12.8)w (x, y) = C0o + C_.0cos ,,_x __ _ C_ cos --7- + _'_ C_,, cos -y- cos -7-
1 b ' _ 1 1

(rn, n = l, 3, 5, 7 ..... (2k-- l)).

r I i n
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By forming the expressions for the work done by all forces acting on the

plate over each virtual displacement, we obtain the coefficients (12.6).

Whenthese are inserted into (12.5), we can solve this system for the unknown

constants Coo. C.0. Co.. Ca..

Table 13 presents the matrix of the algebraic equations when nine terms

(m = 3 , n = 3 )are taken in (12.8), corresponding to nine possible displace-

ments of the plate: tran_ationaldisplacement of the entire plate, four dis-

placements characterizing cylindrical bending in the xz and yz planes

respectively, and four displacements similar to the deflection of a plate

simply supported along the contour.

It can be seen that the matrix is symmetrical about the principal diagonal.

It is therefore necessary to obtain 29 dimensionless coefficients.

The magnitudes a, _, k, t and D entering in these coefficients are

determined by the formulas:

V_g ba= , _=T'

E° [
k--__--_},',ez

. (12.9)

_ Eo _2

v

D ---- E hJ
12 (t -- I") "

Here l and b = length and widthof plate respectively; D = flexural rigidityof

plate; /_ and t = generalized characteristics of elastic foundation; # = #(z) =

= funotion describing the distribution of displacements over the depth of the

elastic foundation;

Es Vs (12.10)
and E°-- t--v_ ' v°=t--v s

The free terms are:

!!1

. BB' "U

i

i

A,,= _iI.(x, y),,,a_ay. (12.1l )

When concentrated loads are present, the integrals in (12.11)are to be

understood as Stieltjes integrals.

Ill
3. Load symmetrical with respect to one, and antisymmetrical

with respect to the other axis

If the external load is symmetrical with respect to the x axis and anti-

symmetrical with respect to the y axis (Figure 104, c), we can write:

m n

2x q_ _ C,,,o sin ,.nx 2x _ _ nnyW(x, y)= Coo-- 6- ---K- +-F Za _o_ cos-7-- +
It 1

nl n
m_x

+ _ C,,,, sin T cos ""7- (12.12 )

I 1

(m=2,4,6 .... ; n=1,3.5 .... ).

I - I I
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The first term defines the rotation of the entire plate about the y axis.

The single series defines the cylindrical bending in thexz plane, and the

deformation of the longitudinal plate edges respectively. The double series

defines the displacements corresponding to a plate, simply supported along

its contour. Inserting (12.12) into 02.6) all the coefficients of the solving

system (12.5) can be found. Exactly as for symmetrical loading, we

restrict ourselves to nine terms in (12.12) (m=2;4;n= I;3) . The system

of nine algebraic equations thus obtained is presented in Table 14. The

free terms in these equations represent the work done by the known external

load over the corresponding virtual displacements and are obtained from

(12.11). The magnitudes _, _, k and D are given by (12.9).

In the similar case of a load, symmetrical with respect to the y axis and

antisymmetrical with respect to the x axis (Figure I04, d), we can write:

1

•"Iny m_x nny
+ _ Co_ sin _- + C,,,_ cos %-- sin -V-

(m=l, 3, 5.... ; n=2, 4, 6.... ).

(12.13)

The matrix of the algebraic equations for this case (re=l; 3;, = 2; 4 )is

represented in Table 15.

4. Antisymmetrical load

When the load is antisymmetrical with respect to both axes (Figure 104,e),
we can write:

m m_x_(,,.y)=c. ,-_+-_Sc.o,_._+
g

n m n

C_, sin "-'7-- "4- C_n sm --_ sin -V-
2

tm, n=2, 4, 6, 8.... ).

(12.14)

The first term defines the deformation of the entire plate, in which the

edges remain straight. The single series defines the deformations of the

plate edges. The double series defines the displacements corresponding to

a plate, simply supported along its contour.

The coefficients in 02.5) are again obtained from (12.6}, the free terms

being given by (12.7}. The matrix obtained when only the first nine terms

are taken in (12.14} is given in Table 16. The elastic characteristics are

determined, as before, by (12.9), and the free terms by (12.11). Tables

13 through 16 permit approximate analysis of a rectangular plate acted

upon by an arbitrary external load.

It can be seen that in the general case we have to solve four system of

algebraic equations, each containing nine unknowns and having the same

structure as the system of canonical equations of the theory of frames. The
Gauss method is recommended for this.

!11
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After the deflections of the plate have been determined from (12.8),

(12.12), (12.13). and (12.14), the bending moments and shearing forces are

determined from (1.8) and (1.9). The accuracy of the solution obtained

depends on the type of loading and on the number of terms taken in (12.8),

(12.12), (12.13). and (12.14). Since trigonometric series converge rapidly in

the case of nearly uniformly distributed loads, only nine terms were taken in

each series. This approximation is thus satisfactory in practice if the

external load is distributed over part of the plate. When greater accuracy

is required, the obtained solutions can be extended on the basis of (12.5)

and (12.6). If, on the other hand, a lesser accuracy is sufficient, a smaller

number of terms can be taken as, for example, in (10.3).

The functions _,_ can also be expressed in different ways, provided the

boundary conditions of the problem are satisfied. For example, a high

accuracy can be obtained with a small number of terms in (12.3), when the

functions _ are formed by means of the eigenfunctions of the transverse

vibrations of a beam (Table 7) p. 111. Various polynomials may also

be chosen as functions _, *.

III

13. GENERAL EQUATIONS FOR THICK PLATES
ON ELASTIC SINGLE-LAYER FOUNDATIONS

Consider the three-dimensional deformation of a thick plate on a single-

layer foundation (Figure 105). i-i-i

Ill

FIGURE 105.

In accordance with the general variational method, the unknown displace-

ments of plate and foundation are assumed to be:

u (x, y, z) =., (x, tl) _, (z), I
v (x, y, z) = v, (x, y) _, (z),
w(x, y, z) =w_(x, y)_, (z) + w_tx, y)_,,tz), f

(13.1)

* Some p_oblems of the analysis of _ectangula_ plates on elav_ic foundations are discussed by Kosab'yan in/45[,

'- I! II 11
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where

u_ (x, y), vl (x, y), wl (x, y), w_ (x, y)

are unknown functions of x and y,
and

h -- 2z

_el(z) = T'
at z<h

h--z

_, (z)= --_--, ¢;,(z)= 1;

_ (z) = o,
at z>h

_(z)=o, _,(z) ="+_--=

i!i! +j:IT......
......._........_:: r, .... e,-----b

FIGURE106.

(13.2)

III

It is seen from (13.2) that Sj(z) and ¢l (z) define the deformation of a plate

on an absolutely rigid foundation. It is assumed that the surface of the

foundation is perfectly smooth: no friction or adhesion exists between the

plate and the foundation. In contrast to thin plates, vertical compression

is taken into account by introducing the function _ (z).

The function _,=(z) permits us to make allowance for the elasticity of the

foundation: it defines the latter as a single-layer model subjected to both

normal stresses z, (characteristic of the Winkler foundation) and shearing

stresses _zx, _v. For z > h, the function _2(z) may be defined in any other

way such as a decreasing exponential function or a hyperbolic-sine function

(see (11.1)).

The solution given is approximate from the viewpoint of the rigorous

mathematical theory of elasticity. The system considered has a finite

number of degrees of freedom in the z direction; the horizontal displace-

ments of the elastic foundation are neglected. The solution is, nevertheless,

considerably more accurate than that obtained by analyzing a plate on an

elastic Winkler foundation, both as regards the strains in the plate itself,

as well as those in the elastic foundation.

To determine the unknown functions u_ (x, y), vl (x, y), wl (x, ._), _= (x, y) ,

consider the generalized equilibrium conditions of an elementary column

cut from the plate and the elastic foundation (Figure 105). The equilibrium

conditions are obtained by equating to zero the work done by all external
and internal forces acting on this column over each virtual displacement:

__(x, y, _)= _,(z). 5, [x, y, z) = _, (z),l
w, (x, y, z) = q_,(z_. w_(x. y, z) = q_.(z)I
for ] (13.3)

ul(x, y)= l, v,(x, y)= l, |
w_(x y) = 1, w_ (x, y)= I I

-il-I

\
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In the general case these equilibrium conditions can be expressed

in the form of (6.6) of Chapter I. Substituting (13.1) and (13.3), we obtain:

for dx=dy=l

f d% dz_Iz,,, ' . r o.r,_ Ip_ldz= O,

i Oo u
___y Tl dz __f .:v,T; dz.4_ I O'ryz"_z_tdz + Ig_ldz =0,

I OT., dz__ I , CO%._5;-?, % 4, dz + 3_ q_xdz + I qdh dz = O,

I d'r, zx -__,_- Io_;_+I_,_ +f_,_=o

(13.4)

The integrals in equations (13.4) are taken over the entire height of the

elementary column: 0 _ z _h+ It. The stresses a_, %, %, _,,, _u2, _u are

determined by substituting (13.1) in (6.2) of Chapter I, and assuming that

the elementary column consists of two layers, whose elastic characteristics

are E and v forz<h, and E0 and *o for z>h.

We assume that no body forces act on plate and elastic foundation, and

that a vertical surface loadq(x, y)is applied to the plate. In this case the

load terms in (13.4) are:

I P_J dz = O, I gTl dz = O, I

I qd?, dz = qd/, (0) = q, _ qqb=dz = qd?, (0) = q. I (13.5)

Substituting (6.2) of Chapter I in (13.4) and taking (13.5) into account,

we obtain:

(13.6)

III

,-RI"
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where

u_=u_(x, y), v_=v_(x, y), w_=w_(x, y), w.=w_(x, y);

E, v, Ev. v0 = modulus of elasticity and Poisson's ratio for the plate and the

elastic foundation, respectively; q = q (x, y) = vertical load acting on the plate.

From (13.2), we obtain for the coefficients in (13.6):

all : l_dz : hi |-iT' sn = f (_)_ dz = -K'

b,,=f(_),d,=h, s,,=I_;_z= 0

I 1s° = (_;)' az = -a-,
cn = I%d/1 dz = 2 ' h

r_l = f _,_dz = _,

c. = _ az =- h, r. = _,q,, az = -Z'
h

/I+H
H

r_= f ag az= T"
d12 = f _1_ dz = O, n

(13.7)

Substitution of (13.7) in (13.6) yields the system of differential equations

given in Table 17 where the symbols D_, Du, D_, /_u represent differential

operators and indicate that the function written at the top of the column is

to be differentiated once or twice by x or y respectively.

This system of four differential equations in the four unknown functions

u_, o,, w_,w.., describes the problem of the bending of a thick plate on an

elastic foundation completely. When these functions have been determined,

the displacements and stresses in the plate and the elastic foundation can be

obtained from (13.1) of this chapter and (6.2) of Chapter I respectively.

TABLE 17

ul vl w: wl Load term

t

2

3

4

o_,+ -7- o_-
6t't-- v

h s

t+v
2 D2

xy

t

--TDx

--D_r

1+ "D',,

t--V

2 _+o_-
6(I --,)

-- /is

t

-- _D W

-o,

! t
__ g __ 2

3 Dx-F 3 D_-

'2

1
| t

7 (D. + Dv)

IEot+vH_
(1 + 2 _, _--;7_j °; +

Ent+vH

_E._n 1 +v I

--'Et+v 0 Hh

2 (t + v)
Eh q

2 (1 + v)
-- --E-T--- q

II!

m .-!

i-l-i
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Chapter IV

AXIS YMME TRICAL DEFORMATION OF CIRCULAR PLA TES

ON ELAS TIC SINGLE- LAYER FOUNDATIONS

Ill

§ 1. STATEMENT OF THE PROBLEM. BASIC

DIFFE RENTIAL RELATIONSHIPS

Consider a circular plate of uniform thickness h resting on an elastic

foundation possessing two characteristics {Figure 107). Let the external

load be applied symmetrically relative to the plate center, so that the plate

is subjected to an axisymmetrical deformation. Polar coordinates (0, p)

will be used, the origin of coordinates being placed at the plate center, and

the distance from the center to a given point denoted by p. The differential

equation of bending of a plate resting on an elastic single-layer foundation

(cf. {1.5) of Chapter III) is in polar coordinates:

where

' = P (1.1)V=V,W -- 2r'V_W + saw = -_,

M /r= = Eo ! _' (z) dz,4 (1 + vo)D

Eo ! _'_ (z) dz,s'= (t-_j--------_

(i .2)

Eh' - flexural rigidity of plate.and D = t2 {t -- _2)

--ii ii-i

I11

plt

F[GUKE 107.
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By virtue of the axial symmetry, the plate deflections W = W (_) are

independent of the polar angle 0, and the Laplacian of W becomes:

V_W dW'(p) t dWO)=-W,- + 7_. (1.3)

The problem stated is thus completely described by (1.1) and the

corresponding boundary conditions. Equation (1.1) differs from the equation

of bending of a circular plate on an elastic Winkler foundation by the term:

--2r'V_ W

through which allowance is made for the work done by the shearing stresses

acting in the single-layer foundation.

II!

In the case of axisymmetrical bending, radial bending moments M,, and

shearing forces Qo appear in the cylindrical plate sections p = const (Figure

108). In the radial sections O =const only bending moments M0 act. The

radial and peripheral moments and shearing forces are:

alr -- D[V:W-- t--t, aw] ]

t aW'_ D[I_V_W + l --_.dw 3Mo= --D(_ _ +-: _j =-- -T- _J' [
I

d :a_W t dtP'_ d s ]
Q°= -v_k_P'_ + T_J = - D _ VoW. J

(1.4)

Shearing forces Qo acting on areas having positive outer normals are

considered as positive if their direction coincides with the positive direction

of the z axis. Bending moments Mo and Me causing tension in the lower part

of the plate are cormidered as positive.

i-i-i

t4 dMaa

FIGURE108.

___ w:p, ', _,o".S'_

_L____,___21
FIGURE 109.

I11

We now introduce the generalized shearing force (per unit length) which

for p_R defines the shearing stresses in the plate and elastic foundation,

acting in the cylindrical sections p = cons{, (cf. (1.10) of Chapter II):

D _ -- 2r' _-_), (1.5)N,=- (_v:w

162
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where H

r' t E° f _' (z) dz.=D-= 4(I q-_)D

a

The sign of the forces N o is determined as for the forces Q_.

The generalized shearing force acting in the foundation beyond the plate

edge (p_R)will be denoted by So in order to distinguish it from N o. Its

value is by (1.5) (cf. (3.10) of Chapter I):

S, = 2t eW
ap ' (1.6)

Consider thus a plate with a free edge on which no forces act (Figure 109).

The boundary conditions for p = R are:

M.(R)=0, W,(R)= W,(R),No(R)=S°(R), (1.7)

where W land 117,are the vertical displacements of plate and surface of elastic

foundation for 9 _ R and p > R respectively.

The last two conditions (1.7) describe the continuity of the deformed

surface of the elastic foundation; throughthern allowance is made for strains

of the elastic foundation beyond the plate edge.

Substitution of (1.5) and (1.6)in the last condition (1.7)yields:

--D_ 2 2taW' =2td-w-!
d_ VoWI + -_ dp "

In virtue of (1.4), this boundary condition can be written:

d , =2t(_' dte,'_.Q,(R) = --D--g-p-pVoW, -_p / (1.8)

A fictitious contour force Q® = Q_(R) thus appears at a free plate edge

on which no forces act, due to the coherence of the single-layer foundation

and to its capacity for taking up shearing stresses.

We can rewrite (1.8) in the following form*:

Q¢ = Sp,--So,, (1.9)

where S0. and Sp, are the generalized shearing forces in the elastic foundation,

obtained for sections p R--¢ and p=R+s}respectively, whens-.0.

ill
\

\.

• '! !

i l-l

Ill
§2. GENERAL INTEGRAL OF THE DIFFERENTIAL

EQUATION FOR A CIRCULAR PLATE ON

A SINGLE-LAYER FOUNDATION

1

We replace p by the dimensionless coordinate E = L-_' where:

4 D

Lo= 1_, (2.1)

" The fictitious forces Q_ were similarly defined in the analysis of beams (see section 5, Chapter II).

R - _11
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H

E, ! d?'2(z)dz defines the compressive strain of the soil, D =and k = i -- v-----_

= flexural rigidity of plate.
We can now write (1.1) in the form:

' ' ' P/"°_ (2.2)VcVcW -- 2roVcW + W -------_,

where

H

tL_ EoL,

r_ = --B- = 4(I +v,_O I d/S(z)dz' (2.31
o

I1|

and

a_ i d _2.4)v!=_4 _ d_"
Ill .'lIB _ II

2

When no surface load acts, (2,2) reduces to the homogeneous equation:

v_v_w- 2r_vlw + w = o. (2.5)

This can be reduced to an equivalent system of two second-order differential

equations. Let W = W (4) be a particular solution of (2.5) satisfying at the

same time the differential equation

V_W + XW = O, (2.6)

where X is a constant to be determined.

It follows from (2.6) that

V_W = --Xl_, } (2.7)vlvlw _,w.

Substitution of these expressions in (2.5) yields the following equation
for},:

},' Jr 2rS0}`Jr 1 = O. (2.8)

Its roots are

For actual soils

}`, = - to'+ V(r')'-t,
}`, -- r_ -- V (r_)'-- 1. J (2.9)

0<to t< 1. (2.10)

i i !

ill
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The case r_= 0 is limiting; it characterizes the absence of shearing

forces in the elastic foundation (t = 0).

The roots of (2.8) are therefore conjugate complex numbers:

}'l = a = -- al + b,i, I
)'2=a --ax--bli, I (2.11)

where

at = r_, b, = V I -- (r_)t

The complex numbers (2.11) may have the following values (Figure 110):

> arga >_ _-, (2.12)

-- _ < arg _<-- 2

In accordance with Vi_te's theorem, their modulus is equal to the free term
in (2.8), i.e., to unity:

lal = ! I-_1= I. (2.13)

L

-!

FIGURE 110.

!

3

Ill

\
\

" I ,':"" !
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Proceeding from (2.6), we find that the following two independent second-

order differential equations correspond to the conjugate complex roots (2.11):

SW: 1 dW, -I-

_Ws 1 dW, . aIVs O. /d_, + _-Y(" "+ =

(2.14)

Ill

3

The general integral of (2.2) can now be written in the form:

W = Wx + W,+ Wp, (2.15)

where W, and W_ satisfy the first and the second equations (2.14) respectively

and Wp is a particular integral of the nonhomogeneous equation (2.2).

i - i
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By introducing the new variables:

u= l,:-d_,v= V-_,

we can transform (2.14) into zero-order Bessel equations:

dSW: i dW] , ._-yyru:+ -_ --_. + w : = O,

-T-_t := 0.

The solution of (2.17) can be represented in the following form X,_:

w, (_)= B_So(V'h-_)+ B,/-fo"(V-_), I
w, (_)= BJo (V'_d_)+ B,I¢o")(V_a_),J

(2.16)

(2.17)

(2.18)

I!!

where
J0 (V_a_) and J0 (V'-a_)

are zero-order Bessel functions of the first kind in V'-a_ and V_a-_; and:

fl_o1_(V'a_) and HCo_' (Pt'al_)

are zero-order Hankel functions of the first and second kind respectively,

also in ]:a_ and }#a-_.

Using (2.16), we can write (2.15) in the following final form:

_ =_,J0(V_-_)+ 8,H_o" (V-Y_)+

+ B,So(U_¢)+ B,n_o"(V-_¢)+tv ,.

For the solution of practical problems it is convenient to write:

V_ = e'* = c°sT + i sin _' }V_= =e-'* cos_-- isin%

whe re
t

= _arga

and the modulus of the complex numbers V_a and

accordance with {2.13}.

It can be seen from (2.12) and (2.20) that the functions:

are determined in the regions:

_>_>_ ---<_T' 2 ¥"

V-a is equal to unity in

(2.19)

(2.20)

(2.21)

In the particular case t = 0, (r_ = 0), these functions are determined

along a line forming an angle _ =-_ with the axis of real magnitudes.

* For a thorough treatment of the theory of Bessel functions, see /4/.

-ii ii !1
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Since the functions

are complex while the plate-deflection function tY must be real, the

constants C,, C2, C3, C4 must be complex. In order to express the solution

through real functions, we write (2.19) in a different form:

tr/ = C,uo (_) + C=vo(_) + c3fo (_) + C,go (_) + wp, (2.22)

where, as before, Wp is a particular integral of the nonhomogeneous

equation (2.2), and

uo (_) = Re Jo (J/_ _) = Jo(l'r&aS)+ Jo(J/_oS)
2

v 0(_) =]m Jo (J/-_) = Jo(_ -- Jo ('_a_)_.

f,_(_)= ReH_'>(V_) = H2>(_¢) + m°'>¢F__)

n_,)(v_)- mo'>_V_¢
go(_)= i'mH_'_ (V-_) _

(2.23)

It is seen from (2.23) that uo(_ ) and f0(E) represent the real, v0(_) and

g,,(_), the imaginary parts of the zero-order Bessel and Hankel functions.

Since these functions are real, the constants C_, C2, C3. C, will also be

real. The behavior of functions u0(_ ) and v0(_) resembles that of the functions

e'-cos_, e_sin_ appearing in the theory of beams on elastic Winkler

foundations: they remain finite when _---_0, and tend to infinity when _---_c_.

At _-. 0, the function _o (_) has a singularity of the type _=In _ ; the function

go(D becomes infinite when _---, 0. Both functions tend to zero when_--,oo ,

resembling the functions e-_cos_, e-_ sin_ .

II

%

i i

The following expressions are obtained for the slopes, bending moments,

and shearing forces in the plate by substituting (2.22) into (1.4) and using the

known rules of differentiation of cylindrical functions:

dW _ "I

_ _ [ c,o,(_)+ ca, (_)+ c,e, (_)+ c,o,(_)- --_-]
dp Lo

D {C, IM, (_)-- (1 -- p.)/_ (_)1-I- C, IM, (_)--M.= L-_o

- (_-- _)M, (_)l+ c, [M, _) -- (_-- _.)_, (01+

+ C, [M, (_)-- (1 -- _) M, (_)l-- [V_ _--_ '_
(2.24)

_o = _ {c, [_,M,(_)+ (] -- _,),_, (_)]+ c, [_,M,(_)+

+ (_-- _,)_, (_)l+ C,h,M,(_)÷ (_-- _,)D,(_)] +

d
Q.= - _rc,e, (_)+ C,Q,(_)+c,o, (_)+ c,Q, (_)+_v,_,].

167
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where

01 @) = ul @) cos _-- ul (_) sin _, I

0, @) = ul @)sin _ 4 m @)cos _, [
0s (0 = fl (_)cos _-- gl (0 sin _, l
O. (_) = Is (_) sin _ + gx (_) cos _; ]

/141(_) = uo(_) cos 2_ -- v o (_) sin 2%

M_ (0 = uo (_) sin 2q_+ v o (0 cos 2_,

Ms @) = lo (0 cos 2cp-- go (_) sin 2_,
M, (0 = [o (_)sin 2_p-F go (_)cos2_;

(2.25)

(2.26)

III

i
MI (_) = -_ [ul @)cos _ -- ul (_) sin _],

i
,_s (0 = -6[u_(_)sm _ + m (_)cos_I,

t
_/s (_) = _ [/'l (_) cos _ -- gl @)sin _1,

i
"_@) ---- T [[_(_) sin_ + g_@)coscpl;

(2.27) U

Qz (_) = ul (_)cos _ -- vl (0 sin _,

Q2 (D -- u_ (_) sin 3q_+ vx (_) cos 3%
Qs @) = [_ @) cos 3_-- g_ (_) sin 3%

Q, (_) = [1 (0 sin 3_ + ga (0 cos _,

(2.28)

and

t
= -_ arg a_ (2.29)

the complex number a is given by (2.11).

The functions u_(_), v,(_), and [1(_), ga(_) represent the real and the

imaginary parts of the first-order Bessel and Hankel functions respectively,
and are determined from the functions

in a manner similar to (2.23).

Ii ii-!

Ill

Expressions (2.22)and (2.24)are the general solution to the problem of

the axisymmetrical deformation of a circular plate on a single-layer

foundation. The integration constants C_, Ca, Ca, C_ must be determined

from the boundary conditions. Establishing the latter presents no difficulty
in the usual cases of plate support (simple support or built-in edge). Thus,

for a simple support along the edge,

= o,iV

R (2.301
Mo (T;) = O;

I - l I
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for a built-in edge

_-(¼)_-o,I
/_)°°.___=o,I (2.31)

If the plate is freely supported on the elastic foundation, the coherence

of the soil and the possibility of strains appearing in it beyond the region

of load application necessitate a consideration of an infinite region lying

beyond the plate edge. As was shown in section I of this chapter, this is

expressed through a fictitious shearing force Q_ acting along the plate edge,

which has to be taken into account in the boundary conditions.

III

§ 3. ABSOLUTELY RIGID PLATE

Consider a circular plate under the action of an axisymmetrical load

whose resultant is P0. Let the plate be so rigid that its deformations can

be neglected: itcan then be considered as a circular punch whose displacement

is W I =Co (Figure 111).

I I
FIGURE 111.

I-i l

The states of strain and stress of the elastic foundation beyond the plate

edges (R <p < oo ) are determined in the general case by (7.8) of Chapter I.

When no surface loads act within the region considered, this equation

reduces to the homogeneous equation:

d,w, , t dw, -zlv/
dp' _- _-_---_ w, = O, (3.1)

= V_t' and W I = Wl(p) is a function characterizing the verticalwhere

displacements of the foundation beyond the plate edges.

The solution of (3.1) (cf. section 7 of Chapter I) is:

W, = C, Io (_p)+ C,Ko (_p). (3.2)

The problem is thus reduced to determining the integration constants C,

and C,, as well as the vertical displacement of the plate Co, from the

boundary and equilibrium conditions of the plate.

Since the deformed surface of the elastic foundation is assumed to be

continuous, while the vertical displacements of the foundation are equal

Ill

I I Ill
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to zero at infinity, the boundary conditions are:

at p=R: W,=C0; 1
{

at p---_ oo: W,--_0. ]

(3.3)

Taking into account the behavior of the function I o(=P) at infinity, the

second condition yields:

C, = O. (3.4)

The first condition gives then:

co
C, = 7G(_R) " (3.5)

To determine C o, the equilibrium condition of the system (plate +elastic

foundation) will now be formulated by equating to zero the total work done

by all external and internal forces acting on the system over the virtual

displacement:

_(p,z) = n._(z),

We obtain:

H_B H_oo

--[I I I _z,%b'(z)pdpd8 dz + I I I a,,@'(z)pdpdOdz ]-k (3.6)
0 0 0 0 0 R

+ Po_(0)= 0,

where o,, and a,, are the normal stresses appearing in the elastic foundation

beneath the plate and beyond its edges respectively. According to (6.4) of

Chapter I, these stresses are:

Eo (3.7) _'

o,,= __,__/,(P)_'(_). \ ,

Substitution of these expressions in (3.8)yields, after integrating between

the limits shown:

or finally:

where, as before:

K, ("R)
kCo[=R' + 2_R' _RKo(aR) ] = Po,

Po

Co= [ K,(=R) ] '=R'k i + 2aRKo(=R) j
(3.8)

I'/

Eo

k = ,_--z_o,! ¢'dz (3.9)

III
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The reactions of the elastic foundation can be obtained from (7.8) of

Chapter I by putting W,---=C o :

P0

q=kCo= _R'[_ +2_jK'(_R) 1" (3.10)

In addition to the distributed reactions (3.10), fictitious reactions Q%

whose dimensions are kg/cm or t/m, act along the contour of the circular

plate (Figure 112). These are due to the strains of the elastic foundation

beyond the plate edges and correspond to the infinitely large pressures

beneath the edges of the circular punch, found by the exact methods of the

theory of elasticity.

The fictitious reactions Q¢ can be determined from (1.8), putting W,=C0:

Q_ - 2t {aw,_ (3.11 )-- \ dp ) p-R"

Substitution of (3.2), (3.4), (3.5), and (3.8) leads to the following final

expression for Q_:

Q_ _-- P. K, (aR) (3.12)
,_R[t . _ K,v'RJ ] ¢xRKo(_R) "[ _-__j

The reactions of the elastic foundation, obtained from (3.10) and (3.12),

satisfy the static-equilibrium condition of the plate _Z= 0. It is easily seen

that:

_R2q + 2_RQ # = P0" (3 .I 3)

This solution is true for any function _(z), with the same accuracy as

that with which:

,,=_/r_ (3.14)

has been obtained. In many practical problems it is convenient to select

_(z) in the linear form (2.7) of Chapter I, or in the form:

sh -'/'(H --,)

R (3.15)(z)=

where H = thickness of compressible soil layer, R = plate radius, and "f

= dimensionless coefficient depending on the elastic properties of the

foundation. When @(z) is given by (3.15), the integral characteristics of

the elastic foundation are [cf. (7.11)of Chapter I]:

k : Eo @k,

Eo/'/ .f.

t = _w.
(3.16)

v - Ill' •
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where [cf. Chapter I, (7.12)]:

[ _'H "/H _-m
sh--R-chT÷ R J

"/H 7H 7H
_p= __ ._.._ ! sh --_- ch "-_- + --_

3 "fH "TH "rH "

(3.1"/)

Reactions. according to Winkler

_o_ I I
!,

n P' m........ °'
,4'"":'"'f,'

FIGURE 112.

y-I,0

#0 I..0 ZO 3.0 40 £0 5,0

FIGURE 113.

H
Curves of q as a function of the reduced thickness _- are easily plotted,

using (3.10), (3.16), and (3.17), as in Figure 113 for % = 0.4 and _ = 1.0,

= 1.5. In this diagram the ordinate defines the ratio (in %) between q a_d

the corresponding values of the reactive pressure as given by Winkler. It

is seen that for a single-layer foundation acting like the base of a press,

q is less than the value according to Winkler. This is due to the fictitious

forces Q* acting along the contour, which characterize the state of strain of

the single-layer foundation beyond the plate edges; they are equivalent to

the infinite stresses obtained in the exact solution of the theory of elasticity:

These curves also show that q becomes practically constant for
H
_-> 2.5, so that, for /_ _2.5, the foundation can be considered as a semi-

ff
infinite elastic space (H = oo). For _- < 1.0, on the other hand, the single-

layer foundation approximates WinklerTs model in its behavior, the

distributed reactions q increase while the concentrated reactions Q¢
decrease.

After the reactions of the elastic foundation have been found, the bending

moments and shearing forces acting on the rigid plate can be determined

by the ordinary methods applied to symmetrically loaded circular plates.

In this case the external load consists of the given actual load and the

reactions of the elastic foundation.

The following expressions are thus obtained for the radial bending

moments at the plate center, induced by the distributed reactions q and

III
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the concentrated reaction Q¢:

M, (o) = qR'_q (o), MQ(0} = P/_Q (0), (3.18)

where, using the same notations as in (3.10) and (3.12):

K, (" R)
__ (3 + I'.) .RKo(.R)

M_(o)=[ ,_,(=R,],8 i +2 "RKo(=R)

_Q (o)= -- 3+ _,
t _ K,(=R) ]

(3.19)

H
Curves of Mq(0% and M0(0) as functions of _, obtained fromthese formulas,

have been plotted in Figure 114 for the function #(z) given by (3.15). The

elastic characteristics of the foundation are defined by (3.16) and (3.17).

The following numerical values were used: _0 = 0.4, _ = 1/,, T = 1.0 and

.r = 1.5.

It is seen that the radial bending moments at the plate center increase

with the depth of the elastic layer, tending toward a finite value; for %, = 1.5

and H
> 2.0 the solution presented is practically identical with the solution

given by the theory of the semi-infinite elastic space; for -_ -- 1.0 the

difference is about 20 to 25%.

olo

008

o 06

o_

000
_0

Jt--
The6ry of semi-infinite

X/-I I /.,_
//

-/

I.o 2,o 3o 4o
./R

FIGURE 114.

II!
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§4. ANNULAR PUNCH

Consider an annular punch subjected to an axisymmetrical load P,

distributed along the circumference of the circle p = R (Figure 115), whose
resultant is:

Po = 2.RP.

The inner and outer radii of the annulus will be denoted by R_ and R,

respectively. The following notations will be used for the vertical displace-

ments of the elastic-foundation surface: W', (p) = vertical displacement

inside annulus, W, = Co = vertical displacement beneath annulus , W, (p) = ver-

tical displacement outside annulus.

I I i
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The homogeneous differential equation (3.2) holds true for 0_p_R, and

R=_p < oo; the vertical displacements in these regions are thus:

w, (p)= C,lo (=p)+ C,Ko(=e),
Ws(p)= C3Io(=p)+ CiKo(=p).

The boundary conditions are:

411'_= 8"
atp=0: _ ,

atp = Rl : lY/l = Co;

atp = Rt : Wt = Co;

at p-, oo : PE== O.

(4.1)

(4.2)

I!

The constants C1, Ci, Cs, C_ are, by (4.1) and (4.2):

Co Co }C1 -- lo(=R_)' C4 = K=---'_-_=)" (4.3)
Cn = C3 = Oo

The vertical displacements of the surface of the elastic foundation are,
the re fo re:

cot_, (p)= _ Io(=p),
w, (p)= Co,

Co
w, Lo)= _ Ko(_).

(4.4)

ii ii

We determine Co by the equilibrium conditions of the system considered,

applying Lagrange's principle of virtual displacements. We obtain by
analogy with (3.6):

H_ Jo,._'(z)odpdodz + Po0,(o) o.÷;;Joo =
(4.5)

The expression in brackets appears with the minus sign since it re-

presents the work done by the internal forces;

Substituting the values of the normal stresses, given by expressions

similar to (3.7), and integrating, we obtain:

P0

Co=/=F =_ = 2. •- ___I_(=R') -s K_(=R=) 1 "[ (R= Rz)+ RIIo(=RI)=R 1 +2=Z<=Ko(=R=)=Rs] (4.6)

I11

i - I

174

I I !

x 1 I 1 1 1 1 1 1 I [ l [ [ I |



h A-AA

_ , 07-: ,--3_,,

FIGURE 115.

R,

.....:.........j....j.....'..._..........:._..:........

FIGUP_ 116.

Using (4.4) and (4.6), the reactions of the elastic foundation are, by

(7.8) of Chapter I and (1.9} of this chapter:

P@

q=

cR_- RI) _+ z R; - R' aR,/° (_t,_ + R,23_R[ =R,Ko(=R,)

PoRx =RIIv(aR D

K, (:R.)

n(_--R[) t+2 2-- , aR,I°(:R,) +R, - R_ Rz,- R_ _R,Ko(aR,)

-!i ='W ; •

Here, q¢ and Q_ are fictitious forces acting along the inner and outer punch

contours respectively (Figure 116). I-i ]

5. INFINITE PLATE UNDER THE ACTION OF

A CONCENTRATED FORCE

Consider an infinite plate loaded by a concentrated force P (Figure 117}.

The origin of coordinates is located at the point of application of the force.

The problem is then one of axisymmetrical loading, and can be described

by the homogeneous differential equation:

* --2tv_W +kW O.Dv_wW = (5.1)

As was shown in section 2, the solution of (5.1) can be represented in

the form:

W=C,uo(_)H-C,vo(_)H-Csfo(_)-'FC,go(_), [cf. (2.22)] (5:2)

where
4

_, and Lo =

Ill

"\
\

m m •

The solution thus reduces to determining the integration constants Ct, C,,

C_, C4 •
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All forces and displacements must tend to zero when _--, 0o.

functions uo(_) and Vo(_) tend to infinity when _--+oo, then

C1 = C, = 0.

FIGURE 117.

f

FIGURE 118,

Since the

(5.3)

II

I I

The plate deflection must remain finite at the origin (4--0). Since the

function f0(_) remains finite when _--_0 , while g0([) tends to infinity, the
coefficient of go (_) must be zero: C4 = 0.

It therefore follows that:

w = Cdo(_). (5.4)

To determine the constant C3, consider the equilibrium condition of an

infinitesimal cylinder (p---_0) cut out of the plate and the elastic foundation

at the origin of coordinates {Figure 118). Applying the variational principle,
we obtain:

I NppdO + P = O, {5.5)
o

where N o = generalized shearing force, given by (1.5).

The generalized equilibrium condition {5.5} could also have been written

in the form:

f Q,_o+p= o, (5.6)
o

since, for reasons of symmetry, we have:

dW

at p = 0 a---;= 0.

The last equation {2.24) yields for the shearing force:

Q, = -- _ C_Q_).

Substituting {5.8)in {5.6)and integrating, we obtain:

PL_
Cs= 4Dsin2_ "

(5.7)

(5.8) m nm

(5.9)

l-I i
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From (5.4) and (2.24), we finally obtain the displacements,

and forces for an infinite plate:

PL_

dW PLo Os _,W'e',
dp _--- 4Dsin 2_

p
M, = _ [M, (0 -- (] -- _')N, (0l,

p
MD = _ I_-M, (0 + (t --_)N,(0I,

P
Q.= -- _ Q,(0,

The functions 0s, M_, M_, Qs are given by (2.25)through (2.28),

expanded form, by the following series:

co (-I)" (_v"+tcos2(m+ I)_ --

TnI0

=o _k2/

t _ (-- 1)_+ _sin 2_ +-_ _ ×
iIlIl

Ma (_} = (1 o_ ,.__-/ z_.o-_-iji-\_ ] sin2(m+ l)_e--
oo

--'_'\ _'+ ]m-o tin,) \_/

2 _._ (--i)" _ |m • ( i,.-7-_7_(_'_ sm2(m+ l)_ I+T4-

+_-+ -_],

m=om _m+l) \_/

mffi0 ml(m+t)l \2]

sin2# t _ (--1) m+ --_ +-Z _x
rni1

×(_)"_,o_(m+ ,), ('+_-+... +k),
co

oo

2 sin2T__sin4_ + _._ (--1) ra

X(_)t"+tsin2(m+2)'( I-_I--2 -}'"+m-)'

moments,

(5._o)

or, in

(5.11)

Ill
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Taking a finite number of terms in (5.11), it is possible to determine,

with sufficient accuracy, the displacements, moments, and forces in the

most highly loaded sections (for _ -_ 0 ).

At _ = 45°, i.e., if no shearing forces act in the elastic foundation, the

solution obtained coincides with Hertz's solution for an infinite plate on an

elastic Winkler foundation.

§ 6. ELASTIC PLATE OF FINITE DIMENSIONS

The general solution for a circular plate on an elastic foundation was

given in section 2 of this chapter. We shall now give some examples which

clarify the general theory.

For practical calculations, tables of Bessel functions of the first kind,

of a complex argument, and tables of the functions:

0,(_),0_(0,M,(_),M, (0,_, (0,M_(}),

which define the states of strain and stress of the plate, are given in

Table 12 of the appendix. The tables have been compiled for 45°<_65 °,

and give the various functions for:

_ P_
_--_o--0; 0,05; 0,10; 0,15; ... ; 1,0.

When the dimensions and physical properties of the plates are such that

the argument _ of the corresponding functions is not contained in the tables,

reference has to be made to /4/ and /86/. After the Bessel functions have

been determined, the functions:

0LC0, 0, C_)..... M, (_),

are obtained from (2.25)through (2.28).

In addition, series defining all the required magnitudes are given in the

examples below in order to permit calculations for:

R
fa = _ > 1,0

without having recourse to tables.

!!!

i-l-I

Ill
I. Circular plate under the action of a uniformly distributed load.

Consider a circular plate of radius R, subjected to a uniformly distributed

load p,lying on an elastic single-layer foundation (Figure I19).

FIGURE 119.

I I ira,
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The differential equation of bending is:

o pLo4
v_v.w, - 24v_W, + w, = _-,

where _ = L_' and

(6.1)

tLo=
rg= -G' Lo= ]/_. (6.2)

The following homogeneous differential equation holds true beyond the

plate edges:

v_.W=-- =_W, = 0, (6.3)

where

and

kLo'
=_= "=L°== -_T (6.4)

_ tt z | d=_-t _d_" (8.5)

The general solution of (6.1) and (6.3) is:

_, = Czuo(_)+ C,uo(_)+ C,fo(_)+ C,go(_)+ P,
W== Cdo("d)+ C,Ko(=d),

(6.6)

(6.7)

where p = particular integral of the nonhomogeneous differential equation

(6.1); I0(=0_). K0(=_) = modified zero-order Bessel functions of the first and

second kind, of the argument =0_; CI ..... C, = integration constants.

To determine these six integration constants, the following six independent

boundary conditions are used:

at p=0 (_=0):

at
Lo ' "

at p--. o_ (_--, oc):

2n

dW_ = 0, I QoPdO = 0; (6.8)dp
o

M.= O, }
Q_ = 2t(al_"kap aW,)_/, Wx(R) = W, (R);

w, (p)= o.

(6.9)

(6.1o)

I!!

i[-g IE

Ill

\

Conditions (6.8) state that the slope and the shearing force vanish at the

plate center; condition (6.10), states that the vertical displacements of the

elastic foundation vanish at infinity. Expressions (6.9) are the boundary

conditions at the free plate edge _ = R ; the second condition (6.9) accounts

for the effect of the free foundation beyond the plate edges on the stresses

in the plate (cf. (1.8)).

l - m

179

1111 1 I 1 I 1 I 1 I I f I I[ 1 I



• AA/

Recalling the considerations which led to (3.4), (5.4), [and (5.9)], we
obtain:

Cs = C, = C6 = 0, (6.1 1 )

The plate deflections W, and the vertical displacements Ws of the free
foundation surface are then:

P (6.12)WI= Clu0(_)+ Csu0(_)+ _-.

I_'_= C_Ko(=_). (6.13)

From the third condition (6.9) we obtain:

III

Cs = K0 (=0_R) ' (6.14 )
where _R= R

The remaining two constants Ci and C_ can be determined from the first

two conditions (6.9), rewritten with the aid of (1.4) in the following form:

v_w: t -- _,dWl

d --"-w:__ 2IL_I'dW!
(6.15)

Substituting (6.12)and (6.13)in (6.15)and using the rules of differentiation

of cylindrical functions, we obtain:

whe re :

talC, -f- m_Cs = O, tn,Cl + n,Cs = Op, (6.16 )

m_= Ms(_e)-- (_ -- _)Ms(_,_),
n_ = qz (_e) + o, (_.) K_("o_e)

n,= q, (_R)+ _'(¢R_._)..... K_(_',¢R)
_ '_o_1 _;_-'_-_) ,

* ad_, (no D"

(6.17)

The solution of system (6.16) is:

_pml

el _ tnl'q| -- m_?]l _ /

Cs = _ Opm,
mln l -- m_fli *

II1 _ •

I i-!

I11

(6.18) _- mm m
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The displacements,

whe re

moments,

W, = C_u.(})+ C,vo(0 + -_ ,
dW_ t

= -- E, [CI% (0 + C3, (D],

M_ = _ [C,LL (_)+ C,L, (01,

M_ = 5 [cLT_(b+ GE: (0],

Qp = D
-- L'_ [CtQ, (}) + C2Q, (_)l.

and forces in the circular plate are then:

(6.19) II

% (-,)"{i?-
Uo(_)= _ (m)' \"/ cos2m_,

m_O

(--t)" _ 2,,, ._oc_=_ ____,_(_.)s,.9.,_,

_,(D _ (-')_--/k_m+_= I,,T]_'T I)_\2/ cos2(m + 1)%
m =0

(-11m (!Vm+,02(_) = mt(m+t)lk2] sin2(m+ 1)%
m_O

M,(_)= _ (-Z-_-.b*\-2/ cos2(m+l)%

= _--ff) sin2(m+ I)%
m_o

= _k_} cosztrn+ I)_p,
m_o

- '° '-"'(}FM_-(-:)== 2- Y, ml(m+t)t sin2(m+l)_,

QJ. (_) -- ml (m+ tlt
m=o

_._ (--t)" 2m+ 1Q,(_) = m,_m + i), ("_) sin 2 (m + 2)%
m_o

Lx (_) = M_ (_) -- (] -- p) Mx (_),

L,(_--M_(_)--(i--_)M,(_),
7., (b = I_M,(0 + (l --_) M---_(0,
7.,(_)= _,M_(0+ (z--[_)M--,(0.

(6.20)

-iiI ¸ .-_

l[-ll ]

2. Circular plate under the action of a uniformly

distributed edge load

If a circular plate is subjected to the action of an edge load P,(Figure 120),

expression (6.1) reduces to a homogeneous differential equation. The

general solution of the problem considered is therefore:

_, = C,u. (D+ c,uo(_)+ Cdo(0 + C,go(0, I
W, Cdo (_o_) + C.Ko (_o_). I (6.21)
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The boundary conditions are given, as in the first example, by (6.8)

through (6.10), only the second condition (6.9) being replaced by:

2t {dW, dlr,_
p=R Qp= \_p --'-_p/+Pk. (6.22)

8_-'-- ,P+ P,,

FIGURE 120.

III

By analogy with (6.11) and (6.14), we obtain:

Cs = C4 = C_ = O, C+= Ctu. (_,_)+ C_=,°(_) (6.23)
K0 (=o_k)

The plate deflections IV1 and the vertical displacements W_ of the free
foundation surface (p> R) are then:

W, = C,uo (:;) + C,vo (_), W, = C+Ko(=0_). (6.24 )

From (6.22) and the first condition (6.9), we obtain:

( d_. = 0,

,4 = 2tL_ /dW= dW,'_ , P,+L_ (6.25)
_wW_ +--_- (,_-(--- _--C)* --b- =0.

Substitution of (6.24) in (6.25) leads to a system of two algebraic

equations in the constants C1 and C=:

mlCl -F rtz_C2 = O, nlCl -_- n=C2 = Gpk, (6.26)

where m,, m=, nl, n2 are determined from (6.17), while

P*Lt (6.27)Gp_ D

The integration constants C_ and C2 are thus again given by (6.18), with

Gp replaced by Gp k. The plate deflections are determined from the first

equation (6.24), while the slopes, bending moments, and shearing forces

are given by (6.19).

Ill

3. Circular plate under the action of moments

distributed along the edge

Consider the plate shown in Figure 121. It can be seen that all the

results obtained before also apply in this case. In fact, the general solution

I - I
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for 0< : :,_<,R and }_<}<_ can be written in the form (6.21), whence, as
above:

C_=C4=Ca=O, IC,= C'"°(_R) + C,o_(_)
Ko(_o_R)

(6.28)

The integrations constants CL and C2 are determined from the boundary
conditions :

p=R(_=_.) M=M., q=2tf'_w' dw,._', dO -g;P/" (6.29)

From (1.4) and (6.21), taking (6.28) into account, we obtain:

m,C,+m,C2=GM, nIC,+n_C2=O. (6.3o)

i

PHc. 12I.

II

--llr : !

The coefficients in (6.3) are obtained, as before, from (6.17), while:

Gjt = M_L_D (6.31)

Thus, the constants C_ and C2 are:

C, ._,G,_ C, .,G^, (6.32)
/.Tlllll - nltM 1 t R_,ltl ' -- fZlff_2

i-i i

m B m
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Chapter V

AXISYMMETRICAL DEFORMATION OF A SHALLOW SPHERICAL

SHELL ON A SINGLE-LAYER ELASTIC FOUNDATION

§ 1. BASIC DIFFERENTIAL EQUATIONS OF THE

THEORY OF SHALLOW SPHERICAL SHELLS

A shallow shell is a thin-walled three-dimensional structure whose

height is small in comparison with its dimensions in plan. A shell is called

shallow if the ratio of its height to its smallest dimension in plan /m,, is less

than sA .
Since for __t_t < t

l_, _- the shell curvatures are very small, we can apply

Euclidian plane geometry to the middle surface of a shallow shell. This

assumption is equivalent to replacing the first fundamental form [also known

as ground form] of the shallow-shell surface by the corresponding funda-

mental form for a plane. This also means that the Gauss curvature:

K= k,k== t
R_R, '

is very small for shallow shells and can be approximated to zero.

An additional assumption, made when considering the general equations

of equilibrium of a shallow shell, is that only the principal moment terms,
which do not contain as factors surface curvatures and curvature derivatives,

need be taken into account. All other moment terms are neglected as being

very small and having an insignificant effect on the internal forces and

bending moments of the shell*.

III

' I :" I ] •

|-I-I

-|If

Consider a shallow shell having the form of a spherical surface of radius

R (Figure 122). Let p and 0 be the polar coordinates measured in the plane

of the shell base. It will be assumed that the projection of the shell apex

on this plane coincides with the origin of the p, 0 coordinate system. On

the strength of the geometrical hypotheses underlying the general theory of

shallow shells, all points of the middle surface of the shell will be defined

by the coordinates p and 9 •

" The general theory of shallow shells was first expounded by V. Z. Vlasov, For a detailed treatment of this

theory, see /8/.

i I I
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Let the shell considered be subjected only to the action of a normal load

Z, positive when directed along the outer normal (Figure 122). In this case

all statical and geometrical equations characterizing the states of stress

and strain of the shallow spherical shell can be reduced to the following

system of two differential equations:

!
-_- V_ -5 DVZV_ -- Z _- 0,

(1.1)

where w = w (p, e) = radial displacement of shell (positive if directed

along the outer normal), and ¢ = ¢(p, O) = stress function determining

membrane forces acting in shell:

S= p apao -5_-_"

(1.2)

II!

" 'llJ _ - "_lr "7"_1

u nu m

The symbol V 2 in (1.1) denotes the second-order differential operator:

= t a i_' -_[_-('¼)+T_] (l._)

The magnitudes h and D represent the shell thickness and its fiexural

rigidity respectively :

£a
D = _. (1.4)

m In in
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The first equation (1.1)has a geometrical meaning: it expresses the

condition of continuity of the deformations; the second equation has a statical

meaning: it characterizes the equilibrium condition of the shell in the

radial direction.

We introduce the scalar function F=F(p, 0), which satisfies the following

relationships :

w = V2V'F,

(1.5)

The first equation (I.i) is then satisfied identically.

the second equation (I.I)yields:

DV'V'V2.V2F + _, V'V_F -- Z = 0.

or

Eh
DV_V_ + _- w -- Z = 0.

Substituting (1.5) in

(1.6)

(1.7)

The radial displacements w of a spherical shell are thus determined by

a fourth-order differential equation having the same form as the equation

of bending of a plate on an elastic Winlder foundation whose foundation
modulus is

Hence, with respect to the strains due to the deflections w, complete

analogy exists between a shallow spherical shell and a circular plate on an

elastic foundation, suitably supported along the edge. Exactly as in the

case of bending of a circular plate, the additional curvatures x,. x0 and the

twist _ are:

8,_v

xp = ap-_--,

t @*w 10w
_'=-_-_ +-6-_ ' (I.8)

i a'w i aw

p Op09 _* 6@ "

ll-li-ll-ll-

\
\

I!!

I -mlW

i-I i

ill

The internal forces and moments acting in sections p = consl, 0 = const ,

of a shallow spherical shell can be divided into two groups: the normal

(membrane) forces N,, N,, S, corresponding to deformation without bending,

and the bending moments Ms, M,, torques H, and shearing forces Q_, Q0 due

to bending. The positive directions of these forces and moments for

surfaces with positive outer normals are shown in Figure 123.

As already mentioned, the first group of forces is determined by the

stress function _ = _)qp, 0)with the aid of (1.2). The second group is

determined by the displacement function w=w(p, 8) . By virtue of the analogy

m m
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noted above, these forces and moments are calculated in the same way as

in the case of bending of a circular plate:

Mo = --D (_,,,+ P'..o), l
Me = -- D (xo + l_x_), J

H = D (I --[_) .t,

(i .9)

Q_ = -- D-_--{pV'w. I

t o
Qe= -- DT-_V_, I

(1.10)

where z_,_._,= are defined by (1.8), and 9 * by (1.3).

a I I

FIGURE 123. FIGURE 124.

II!

_gi .'ill !1

I l I

We determine the tangential displacements u(p, O) and v(p, 0) in the

directions of the tangents to the curves p = const, 0 = const respectively

{Figure 124), from the relationships between the membrane forces N_, No, S

and the strains:

Eh _ Eh "e Eh
N_==_(e_+_o), No--(t---_( +_¢p), S-=2(--V-/_,, (1.11)

where e_, e0, co are the tensile (compressive) and shearing strain respectively,

determined by the displacements u, v, and w as follows:

au w

E°=-_ + W-'
! Ov , u w

¢o = _- _'_'_ + _ - , (1.12)

i Ou Ov v

When the stress function q) and the displacement function _v have been

determined from (1.1), and then e.,e,, and w from (1.2) and (1.11), ,_ and

v can be found from (1.12).

I11
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§ 2. DIFFERENTIAL EQUATIONS OF A SPHERICAL SHELL

ON AN ELASTIC SINGLE-LAYER FOUNDATION

Let a shallow spherical shell lie on an elastic foundation whose pro-

perties are described by the differential equation:

2tV%--kw + q _ O, (2.1)

where V2 is defined by (1.3), k and t are the generalized characteristics of

the elastic foundation, and q is the load per unit area, acting on the foundation.

Since the radial displacements tv of the shell and of the elastic foundation

are equal along the entire area of contact (Figure 125), (1.7) and (2.1) can

be considered simultaneously:

Eh
DVtVtw +_w-- Z=O, 2tV2w--kw-¢ - q=0. (2.2)

The external load on the shell consists of the known forces v and the

foundation reactions q [all referred to unit area]:

Z = p-- q; (2.3)

eliminating q from (2.2), we obtain:

DVtV2w 2tVtw ( (2.4)____)_hw = p.-- + _k +

This equation has the same form as the equation of bending of a thin plate

on a single-layer foundation (cf. for instance (1.1) of Chapter IV), differing

from it only in the coefficient of w. This coefficient is larger by Eh/R 2 than
the corresponding coefficient in (1.1) of Chapter IV.

/

_ _ss _ I

FIGURE 125.

The problem of bending of a spherical shell on a single-layer elastic

foundation is thus similar to the corresponding problem of a circular plate,

discussed in Chapter IV.

To determine the stresses and displacements when the membrane

problem is considered (in which bending stresses are neglected}, we use

the first equation (1.1):

--_-RV_V'® = V%. (2.5)£^

I!!

i-l- I

Ill
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This is a nonhomogeneous biharmonic equation, the function w being

assumed known (it can be determined from (2.4)). Having determined the

function @ from (2.5) and the corresponding boundary conditions, the normal

forces, moments, strains, and displacements of the spherical shell can

be found from (1.2), (l.ll), (1.12).

If the problem is axisymmetrical, all derivatives with respect to @ vanish

in the equations determining the states of stress and strain of the shell.

The Laplacian then reduces to:

Vl _ d i t d
nu p dp i (2.6)

while (1.9) and (1.10) become (taking (1.8) into account):

Mp = -- D[_=W (t--_) dW]
p dp '

Me= --D[p,'W-b (17P)_-_-],

Q° = -- D_ V_W,
dp

Qo=H =0.

(2.7)

III

'l , 1 •

Equation (1.2) and (1.12) respectively take the form:

N,,= P ap ' No=-_-p,, S=O;

du W u W
¢o = _ +_, ¢, = _ + _ to = O,

where tV =W(p), _=q)(p), depend on p only.

(2.8)

(2.9) i i-i

§ 3. GENERAL SOLUTION FOR AXISYMMETRICAL

DEFORMATIONS

1. Bending of shells

Exactly as in bending of a plate, we replace p by the dimensionless

coordinate _ = _, where

1'/" De' (3.1)Lo
F Eh + hR i

Equation (2.4) then becomes:

z 2 PL_o

VtY_W -- 2r_7_W -'F W = '-d-" '

where

(3.2)

r 2 = IL_
-b--', (3.3)

Ill

1 1 1
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a_nd

_ an + i d (3.4)

By analogy with the integral of (2.2) of Chapter IV, the general integral

of (3.2) can be presented in the form:

ve = C,,o(_)+ c2vo(_)+ Cdo (_)+ C,g_(0 + wo. (3.5)

where

uo (0, Vo(}), fo (0, go (})

are respectively the real and imaginary parts of the zero-order Bessel and

Hankel functions, and lVp is a particular integral of (3.2). On the basis of

the general solution of (3.2), all statical and kinematic magnitudes referring

to the state of bending stress of the shell are determined from (2.24) of

Chapter IV, with L0 defined by (3.1).

2. Deformation without bending of shells

We determine the stress functionO=O@) with the aid of (2.5). Replacing

the variable p by the dimensionless coordinate _=p/Lo, where L0 is defined

by (3.1), (2.5) becomes:

VIV}O = EhL'° V_.tV. (3.6)---h-

The function W = W(E) is defined by (3.5), and the Laplacian by (3.4).

The general solution of (3.6) is then:

EhL]
• = T(Oo+ Our), (3.7)

where O0 = O0 (f) is the general solution of the homogeneous biharmonic

equation corresponding to (3.6) and Ow = Ow(E) is a particular integral of

the nonhomogeneous equation:

V_V_Ow = V_W. (3.8)

The solution of the homogeneous biharmonic equation is for the axi-

symmetrical case is:

II)o = C6 + C,E' + C,E_In E + C. In E, (3.9)

where C6, Cs, C7, C8 are constants.

The particular integral of the nonhomogeneous biharmonic equation (3.8)

is:

Ow = -- [C,_,(_)-I-C,_=(E)-I-Caq_3(E)q-C,_4(_)lq-Cp, (3.1O)

I!!

\
l ='! '1

i[ Ni-il

Ill
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where @p is a particular integral corresponding to the particular integral
Wp of (3.5) and:

_ (_) = uo (_)cos 2_ + vo (_) sin 2_,

72 (_) = -- uo (_) sin 2¢p-Fvo (_)cos 2%

_3 (_) = to (_) Cos2_ -_-go (_) sin 2%

9, (_) = -- to (b sin 2_ + go (0 cos 29.

(3.11)

Here as before:

!

_p= arg (V;) = T arg a,

where a is a complex number defined by (2.11) of Chapter IV in accordance

with expressions (3.3) and {3.1) of this chapter.

It is easily seen by direct substitution that (3.10) does in fact satisfy the

nonhomogeneous equation (3.8).

In accordance with (3.9) and (3.10), the general integral of (3.6) is

therefore:

ehL_
® = ---_ I-- C,_, (0 -- C,,p, (t) -- C,,p, (b -- C,,p, (0 +

+ C, + C,_.2 "b C7_2 In _ + C, In _ + 0o]
(3.12)

Substituting this in (2.8) yields the following expressions for the normal
forces :

Eh , _ ( ) + C,n, (0 + C,n, (_) +
(3.13)

+ 2C, +CT(l + 21n_) + Cs-_-_+ J- amp]a_ J'

Eh

Jvo = #- {c, I"o (_)-- nx (_.)1+ C, Ivo (_)-- n, (hi +

+ Cs lto (b -- n, (hi -t- C, leo (b -- n, (_)1 + 2C, + (3.14)

+ C7 (3 + 2 In _)-- Cs-_r + _Op [a__ J '

where

1

nx (b = T lul (b cos 9 -F vl (b sin 91,

t [__ ul (_)sin ¢pq- vx (_)cos _1,
n, (_) = T

n' (t) = 2- If, (0 cos _ + g_ (b sin ¢P],

1

n_ (t) = T I-- t, (_) sin _ _ g] (b cos _],

(3.15)

and u,, v,, ft, kq are respectively the real and imaginary parts of the first-
order Bessel and Hankel functions.

To obtain the deformations of the shell, we rewrite (2.9) in dimensionless

coordinates :

t _ , iP' ,_

% = _ _- -t- _- ' } (3.16)1 u , IV

=T, T± _--.

II!

Ii-ii i
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From these expressions and from (l .l l ) we obtain:

Eh Eh [t du u .__].N, + N. =_ (,, + _.)= _ L-LV.(7 + T) + (3 17)

On the other hand, (2.8), written in dimensionless coordinates, and

(3.7) lead to:

N.+_, = _vi® =_ vl(¢0+ tw) (318)
L;

Since, by (3.8):

V_Ow = W,

we can rewrite (3.18) in the form:

m + m = -_ (vl¢0 + w)

Equating the right sides of (3.17) and (3.20) yields:

e'h It ( eu u 2__w] ,

(3.19)

(3.20)

(3.21)

Ill

or

du u Lo

2E_t_ T = _K.[(l--F) V_(_o-- (i -4- _)WI. (3.22)

This equation establishes the relationship between the unknown tangential

displacement u and the known functions ®0 and W. Substitution of (3.9) and

(3.5) in (3.22) yields finally:

du , u Lo

d-_--c -_- = _ ((1 -- _) [4C6 + 4C7 (In _ -_ l)l --
(3.23)

-- (I + _)[C_uo (t) + Czvo(_) + Ca/o (_) ± C, g0 (t) + _'A}.

The general solution of (3.23) is:

u = _ {-- (ll+ F) [Gya (f_)+ C,X, (_) + C,X, (f) + C,X, (_) +

+ A,¼]+ (_-F)12ca+c,(2_,._+_)l+..},
(3.24)

where

AI Lo (t+ _) t

is the integral of the homogeneous equation corresponding to (3.23), de-

termined up to the constant factor L,(t + a_) ; up is a particular integral
R

corresponding to the function Wp; and:

Z_ (_) = u_ (_)cos _ + v, (_) sin _, I

X2 (E) =- -- ul (_) sin _ + v, (_)cos _' ] (3.25)_* (_) = It (_)cos(p+ gl (_) sin@,

Z_(_) = -- Ix (_) sin _ -b g_ (_) cos _.

192
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Due to the summation of (3.13) and (3.14), the constant CB no longer

appears in (3.23). On the other hand, a new constant A, appears in (3.24)

It is seen that these two constants are identical by substituting the solution:

u, = -- "_-E_L°(t + I') A, _- (3.26)

into the following equation, obtained from (I.11) and (3.16):

(3.27)

The first term of this equation, which only depends on u0 , then becomes:

Eh . t (3.28)N o= --E- A, -p-.

l
Comparing this with [the coefficient of -_- ] in (3.13) we find that:

A I _ C 8.

The analysis of a shallow spherical shell thus reduces to determining

eight integration constants whose number corresponds to the order of the

initial system of differential equations (i.1). The first four (C:,C,, C,, C4)

determine the bending of the shell, while the last four (Cs,Ce, C7, CB) determine

its deformation without bending.

The constant C6 does not influence the states of stress and strain of the

shell, and it can therefore be disregarded. The logarithmic terms in (3.13),

(3.14), (3.24), must also vanish, since the logarithm is multivalued for

doubly-connected regions which the shell may form, and does not therefore

fulfill the requirement of uniqueness. Hence, the constant C7 must be zero.

There remain thus six unknown constants. To determine them, three

boundary conditions are required for each edge of the shell. Of each group

of three, two will determine the bending deformation, and one the deforma-

tion without bending.

The boundary conditions corresponding to the bending deformation can

be given in displacements W, _V' (geometrical conditions), in forces and

moments M_, Q_ (statical conditions), or partly in forces and partly in

displacements (mixed conditions).

The boundary conditions corresponding to the deformation without bending

are determined either from the tangential displacements u or the value of

the normal forces Np.

4. SHALLOW SPHERICAL SHELL SUBJECTED TO

A UNIFORMLY DISTRIBUTED LOAD

I

Consider a shallow spherical shell on an elastic foundation, subjected to

a uniformly distributed load p (Figure 126). Letthe shell edges be free, so

I!!

I ,'I

i i i
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that the elastic foundation can be deformed beyond the limits of the structure.

In accordance with (3.5), the normal displacements of the shell are:

where

IV, = C,uo (})+ C,vo (0 + Cdo (_)+ C,go (_)+ W,, (4.1)

Wp = PRt
Eh + hR I

is a particular integral of (3.2).

The following differential equation holds true for the region beyond the

limits of the structure: [cf. (6.3) of Chapter IV]

vlw, - _,Iw, = o, (4.2)

The general integral of this equation can be represented in the form:

IV, = B,lo (at_)+ B2Ko (_0i), (4.3)

al = "iLl = k/'°t V DR' (4.4)
--_ i J-(' = Eh + kR I "

where

Here, B,, and B2 are integration constants, while lo(a0[) and K0(ad) are

modified zero-order Bessel and Hankel functions of the argument ad.

, p wz !

FIGURE 126.

The solution contains therefore six integration constants which are

determined from the following boundary conditions (cf. the case of a circular

plate, (6.8) through (6.10) of Chapter IV):

at p=0 (_=0) : a) aw, = 0, b) I Q,pd6 = O:
o

at Ro (¢ Ro_ 0, td)q.= 2 ttdW,'_ = = Lo ] " C) M,= dp

e) iV, (Ro) = W,(Ro);

at p--,oo Oi-+oo) : f) W,(p)=O.

III

-I-i-I

I11
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The fourth boundary condition of (4.5) differs from the corresponding

condition in (6.9) of Chapter IV by the coefficient cos_, where [3 is half the

central angle subtended by the shell. The reason for this is that the

fictitious shearing force acting on the shell is equal to the projection of the

fictitious shearing force acting on a circular plate, onto the normal to the

middle surface of the shell at the edge.

Conditions a), b), and f)yield:

C, = C, = Bl = 0, (4.6)

so that the normal displacements of the shell are:

pR'
W_ = C,uo(_)+ C_vo(_)+ E h+ _n' "

Condition e) yields:

(4.7)

B 2 ==

C,uo(_R)+ C'vo(_R)+ oR'
Eh + kR' (4.8)

Ko (aO_R)

where

!11

" IB _ :" llm __"

Substitution of expressions (2.7) for Ms and Q_ in conditions c) and d)

yields :

D [v_W, t--_,aW,_ =0, I

(4.9)

Substitution of (4.3), (4.6), (4.7), and (4.8) leads to the following two

simultaneous equations in C, and C,:

a,C1 _-a,C, = O, bxCl ",. b2C2 = Gp, (4.1 O)

where

i i-|

Ill
a,= M, (_R)--(l--_)_, (}u),

Ko ("J,R)

Gp= PR_= Kn (=o_R)

Eh-b kR 2 Ko(_ZO_R) "

(4.11)

(4.12)

I I
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The functions :

appearing in (4.11) are given by (2.25) through (2.28) or series (6.20) of

Chapter IV (see also (6.16) and (6.17) of Chapter IV. )

The solution of (4.10) is:

G pal G pai

C1 = -- alb, -- albl' C$ = _ . (4.1 3 )

The slopes, moments, and shearing forces of the shell are then by (4.7)

[cf. (6.19) of Chapter IV]:

w; = --

D [C_/., (_) + C,Z_ (_)l, [ (4.14)Me _ L2

JD

Q_ = -- 1_-_[C1Q_ (_) + ClQ2 (Di.

I!

! '+i

Consider the state of plane stress of the shallow shell. By virtue of

(4.7}, the stress function C defined by (3.12) takes the form:

EhL_ r
= --Y- L- C@_(_)-- C_= (_)+ C_+ C6P+

. (4.1 5)

pR; _j+ C7__ In _ q- C_, In _ + Eh + k_ "

The functions _, (}), ?_ ([) are given here by (3.11 ) or by the corresponding
series :

oo

_ ,__ _(-t)"7_\_
'lq_J-- _.a_-J cos 2 (m-- l) ?,

(4.16)

(-t) _/_l_ .

As already stated, the constants C6 and C7 in (4.15) vanish; we thus

obtain:

EhL_ r pR I
_] (4.17)= "-'g-- [-- Ci_l (_) -- C_eI (_) -t- CI_ _ ÷ Ci In _ _ Eh + I_R_- "

From (3.13) and (3.14) follows:

N, = C_n, (D + C,n_ (_) + 2C,+ C, D -_ _ E_¥ _mJ'

t PR' _ (4.19),v. = _{c.l,,o(o -,,.(ol + c, [,,o(O- ,,.(_)l+ _c.-c.-_+ _ _,.-4-_1'

iiii

iI

I - !
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where n,(}), and n._(})are defined by (3.15), or by the corresponding series:

co

I _ (--I)_" / _,\2,,,n_(,_)= _- _!(m+ I)!_Y) coszrn_,
0

n,(_) = _- rn! (m + t)}
rn=o

(4.20)

Hence, (3.24) becomes:

. =_{- (, +t.)ic,_,(._)+c,_,(_)+c,¼+

where X,(_), X=(_) are defined by (3.25). or by the series:

(4.21)

co

(--i)m / _ _.+1 ^

= _ (-I)_ /_,_+_

X_ (_) ='_-o m! (m + t).r k.2-/ sin 2m_p.

(4.22)

The constants C, and C, in (4.17), (4.18), (4.19), and (4.21) are obtained

from (4.14), while the constants C, and C, have to be determined from the

boundary conditions for the tangential strains, which are:

at p=0 (}=0) : u=0;

21 , WI] sin_.at p= R. (}----L_): N_=--O_sin,3=--_ lw_--

(4.23)

The first condition states that the tangential displacements vanish at the

shell apex; this is a consequence of the axial symmetry. By the second

condition allowance is made for the existence along the shell contour of

fictitious forces :

N ¢ = -- QCsin_, (4.24)

equal in magnitude to the projection of the fictitious shearing forces acting

on a circular plate, onto the tangent to the middle surface of the shell at the

contour. The minus sign results from the convention according to which

a negative value of N _ corresponds to a positive shearing force at the
contour.

The first condition (4.23) yields:

C8=0. (4.25)

The second condition yields:

I ['RN 4" I pR' ]

Co = _ I -K -- C,., (}R)-- C2"2 (}R) _ £h-'-+--/_R'J' (4.26)

II!

i-i I

Ill
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where
N¢ 2t

= -- _sin_ ×

PRS 1C'_u°(_R)+C'v°(_R) + Eh+kR--'------'T_0KI(a0_R). (4.27)

§ 5. SHALLOW SPHERICAL SHELL SUBJECTED

TO A CONTOUR LOAD

Let a shell on an elastic foundation be subjected to a vertical contour

load P, [per unit length] (Figure 127).

The differential equation (3.2), is homogeneous in this case; its solution
is:

IV, = C,uo (_) -I- C,vo (_) + C,fo (_) + C,go (_). ( 5.1 )

For the region beyond the limits of the shell (R0 < p < oo) we have:

W_ = B_Io (_t_) + B,Ko ("o_). (5.2)

The constants in (5.1) and (5.2) are determined from the boundary
conditions which can be formulated as in (4.5) with the exception of condition

d), which is replaced by the following, having the same physical meaning:

I i-I

where P_ is the vertical load per unit length of the contour.

.... l;---f
FIGURE 127.

Ill

I i •

Conditions a, b, e, and f of (4.5) yield:

C3 = Ca = BI = 0,

B2= C,uo(_e) + C2vo(_R)
Ko(aO_R)

(5.4)
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Using (4.9), (5.1), (5.2), and (5.4), the following two simultaneous

equations in C, and C_ are obtained from conditions c) and d):

Their solution is:

a,C,÷a:C_=0, _ (5.5)

h,C, -_- b2C _ _ Gp. J

G po_ Opal

C, -- a,_ -- o2b_' C2 a,b,--a,b, ; (5.6)

where o,, a_, b, b2 are defined by (4.11), while:

Op - PkL°_eos_. (5.7)
D

The normal displacements are thus:

W, = C,u_ (_) + C2vo(_). (5.8)

The slopes moments, and shearing forces are given by (4.14), the constants

C, and C2 being obtained from (5.6).

The normal forces are in the case considered [cf. (3.13) and (3.14)]:

N°:_ It,n,(_)+c,n,(_)+2c.+c4] }N. _{c,_.o(_)-n,(_),+_.,o°(,)-..(_)_+2c,-c._}. (5.9)

the tangential displacements being [cf. (3.24)]:

u= Lo I_) [ ClZ] (}) ÷ C:Z, Ca --[_) (5.10)_{-(,+ (_)+¼]+_.(l_}.
The boundary conditions are:

u(0) = 0, N_(Ro)=N°--Pksin[3, (5.11)

where N * is the fictitious normal contour force given by (4.24). In the case

considered [(ef. 4.27)]:

N_ : __ 2t_L_zFro,(_R)+ c,o_ (_R)-- c,uo (_R)K0(agR)+C,v0(_R)_K_ (a_r)]sin 2. (5.12 )

The first and second boundary conditions (5.11 )yield respectively:

Ca = 0. (5.13)

C, = 2 L Eh C,nz (ER)-- C_n, j .
(5.14)

!11

-'IE .l

i-I I

Ill
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If a horizontal load N, is applied to [unit length of] the shell contour

(Figure 128), the problem is solved in exactly the same way, the only

difference being in the boundary condition (5.3), which become:

I!1

N, , _j

mr

1

FIGURE 128.

The integration constants C, and Ci are again determined by (5.6), the

load term Gp being now:

N_L_

ON = --_-- sin I_. (5.16)

The forces are obtained from (5.9) and the displacements from (5.10).

The corresponding boundary conditions are:

u (0) = 0. No(Ro) = N `_ -- N, cos[3, (5.1 7)

which yield the following values for the integration constants C6 and C8 :

Ce - 0,

p _ i [ (N*--N, co_)R C,nz(_)_C_n=(_R)]J_' -- 2 L F.a

(5.18)

Here N ¢is the fictitious contour force, determined by (5.12).

i -l-!

Ill

Let the shell be subjected to moments M, applied to [unit length of] its

contour (Figure 129).

It is easily seen that the solution can in this case also be presented in

the form of (5.1) and (5.2). The boundary conditions are given by (4.5), with

the exception of condition c) which is to be replaced by:

M, (Ro) = Mk. (5.19)

i - i I
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We obtain:

C_ = C4 = B, = 0,

Cxuo(_R) + C,_o (_R)

B= = Ko (ao_a) "

(5.20)

The following two simultaneous equations are obtained in C, and Cs :

aiC, + a,C, = Ga, _ (5.21)

b,C, + b,C, = O, )

The magnitudes a,, a2, b,, and b, are defined by (4.11), while:

M,,L_o (5.22)
G. = --5-- "

The solution of (5.21) is:

GMb= GMbi

CI= a,bl--asbl ' C_= a, bt--asbl (5.23)

II!

! .'! U

FIGURE 129.

The forces and displacements are in this case again given by (5.9) and

(5.10), with Ca=0 and:

t RN _
C, = -_[ --_7_--- Clnl (_R)-- C,n, (_R)] • (5.24)

ill

6. APPROXIMATIVE ANALYSIS OF A SHALI_K:)W SPHERICAL

SHELL ON AN ELASTIC FOUNDATION

1

Taking into account its small deformability in relation to that of the

elastic foundation, we shall consider the shallow shell as a rigid punch.

m I m
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The reactions of the elastic foundation are then determined by (3.10) and

(3.12) of Chapter IV, valid for a circular punch of radius R0 (Figure 130, a):

Po

q=no=[,._':' K,(=R,) ]'
(6.1)

"'0 "|-L K,(R,) R°J

q_ = P, K, (,,R°) (6.2)
nRo [I + 2 /q (=Ro) ] K,(aRoJ,,Ro'

L Km (=R,) ¢RoJ

II!
where P0 is the resultant of the given vertical load.

The analysis of a shell on an elastic foundation thus reduces to deter-

miningthe strains and stresses in the shell subjected to a given external load

and to the reactions q and Q_ of the elastic foundation, all these forces being

in equilibrium. For a uniformly distributed external load p, the system is

shown in Figure 130, b, where:

p'=p--q, (6.3)

and

Q¢, = _R_p* P" Ra
2--_ _o = 2 (6.4)

FIGURE 130.

• l l

I11

It was shown in section 1 that the problem of a shallow spherical shell

subjected to a vertical distributed load p' reduces to integrating the two

differential equations [cf. (i.I), (1.7)]:

_ }DV'V'tV + _V/--p" = 0,

E-_V=V'O -- V'IV 0,
(6.5)

the first of which yields the displacement function W, and the second the

stress function _.

B - m i
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We introduce the dimensionless coordinates:

where
_=_,

to=_/ z--W'

We can then rewrite (6.5) as follows:

2 _ p" L_

' ' EhL_° V_W,

where

(6.6)

(6.7)

(6.8)

d _ t d

v_ = _ + -#_. (6.9)

IlL

The homogeneous equation obtained from (6.7) for p" = 0 can be reduced

to an equivalent system of two second-order equations:

d2W t dW

d_, _-_--_-+iW=O, }_W . t dW

a_., P -__-C-iW=0"

(6.10)

The general integral of this system is:

W= AaJo(}'I/-[)+ A,Jo(} I/"_)+ AsI-I(o')(_ I/"[)+ A,H_')(_--i), (8.11)

where J0(__-7) and 10(_V_-7) are zero-order Bessel functions of the first

kind, of the arguments (_V'7)and (_V'-_); HgX)(_V-7) and Hi" (_V-_) are

respectively zero-order Hankel functions of the first and second kind, of

the same arguments.

The only difference between (6.11) and (2.19) of Chapter IV is in the

arguments of the functions considered. Integral (6.11) is a particular case

of the more general solution (2.19) of Chapter IV, since the straight lines

along which the Bessel and Hankel functions in (6.11) are determined make

angles of 45 ° with the real axis in the complex plane:

= arg ]/7 = 45 °,

= arg _ = -- 45 °.
(6.12)

-l l-l

I11
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4

It is convenient to express (6.11) through real functions:

W = Cxuo (_) + C_vo (_) + CJo (_) + C, go (_),

where

Uo(b = ReJo(I/7_), to(_)= ReHfo"(VT_),
vv (_) = Im Jo (I/T0, go (_) =lm H_o') (I/"_-_0. f

(6.13)

(6.14)*

I!!

The following relationships are obtained from (2.20) of Chapter IV and

(6.12) of this chapter :

V2uo = Vo, Vt.Vo= --Uo, VSlo = go, VSgo=--fo- (6.15)

The general integral of the nonhomogeneous equation (6.7) is then:

w = C,uo(_)+ C,vo(_)+ Cdo (t) + C,go(_)+ w,, (6.16)

where Wp is a particular integral of (6.7).

For instance, if p'= const we can put:

Wp _ P'Rt-gK

From the boundary conditions a) and b) of (4.5) we obtain:

(6.1 7)

C3 = C4 = O. (6.18)

Substitution of (6.17) and (6.18) in (6.16) yields:

p" R 2
W = Cwo (0 + C,v, (_) + TK"

We then obtain for p'=const from (2.7), using (6.15) and (6.19):

(6.19)

ave= _ IC,u"o(_)+ c,v'_(_)1,
dp

V u'o(_) 1
_°=-,_(c,Loo(_i-(,-_)_--j+

o;(_)1}
+C_[--Uo(_)--(l--_) _ j,,

_,=-_{c,b,_o,+(,-_,_]+
+c,[-_o°(_)+(,-_)_]}

Qo = -- _. [C_v'_(_) -- C,u"o (_)l.

(6.20)

"'Ill .!

ii -I-|

I11

I l I

* These functions are known as Thomson functions. "they, and their derivatives, are tabulated in the

appendix (Table 11).
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These expressions could also have been obtained from (4.14) by substituting

in them (2.25) through (2.28) of Chapter IV, taking into account (6.12).

Equations (4.17), (4.18), (4.19), (4.21) are again valid. Taking into

account (4.25), they become in the case considered:

EhL_o f (o. 2p. R' _s1 1 )
¢ = -W--[--Clvo(D+ C,uo(D+ C,_'+ -_-_j,

No=_[-c,-v+ ,-r-+ c, 2 _ j. (622,)

(6.22")

These expressions contain three integration constants which are

determined from the boundary conditions at the shell contour.

III

Consider as numerical example the shallow spherical shell shown in

Figure 131.

Let the geometrical and physical characteristics of the shell and the

elastic foundation be as follows*:

R = 13.5 m,

h = 0.46 m,

Ro = 5.1 m,

ELs = 4.10'cm/m 2,

Vs= 0.4,

H/eo = 1.0,

f=l,0 m.

E = 2- 10Scm/m 2,

I_ = 0.167,

T= 1.55,

P = 1.0 cm/m.

D = 16.2. 104cm/m.

(6.24)

i-I i

Ill
We then obtain from (3.16) and (3.17) of Chapter IV:

k = 1.6.10 _ m]m 3 2t = 1.85.10 _ m/m, ]a = 0.93 I/m, "R0 = 4.72. (6.25)
J

By (6.1) and (6.2), the reactions of the elastic foundation are:

q = 0.269 m/m 2 Qo = 0,315 m/m, (6.26)
l l m

* It is assumed that the function _ (z) determining the vertical distribution of the displacements in the el_ctic

foundation is given by (3.157 of Chapter IV.
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Their substitution in (6.3) yields:

p* = -- 0.269 m/m 2.

Insertion of the values (6.24) into (6.6) gives:

L0= 1.34 m, }R= L_ = 3,8.

The functions entering in (6.19) through (6.23) are for

uo = -- 1.967, u o =--2.822, |

vo = -- 2.345, v o = 0.0526 J
_--_ = --0.742, _ = 0.138.

_e= 3.8:

(6.27)

(6.28)

(6.29)

II

,��k'g[ _ "tg'

'kIj'

FIGURE 131.

'MM : " ! !

i-I i

The boundary conditions are in the case considered:

at p= R0(_e = L_) : M.=O,

q,= (p - q®)cos_,
Np=-- (P-- Q¢) sin _, J

or [by (6.20) and (6.22'):

u_(_)
C,[Vo(_R)--(I--_)--_-R 1+

r

+ c,I --u0(_)--(2- _)
VO (_) I

_e j=o,

D

--C,-y_---R+ C, --_--R-v -,_,T } _ =

R (P --q¢) sin va.Eh

(6.30)

(6.31)

ill

i n n

2O6
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Substitution of (6.26), (6.28), (6.29) in (6.31) yields finally:

Cx= -- 3.68.16 _ m, C, = -- 3.26.10 "_ m. Ce = m 0.948- 10-era, (6.32)

The moments Mp and M0, and the forces N, and N0, obtained from (6.20)

and (6.22) for the numerical values (6.32), have been plotted in Figures 132

through 135.

_ L/
-_ - " , ,_ " _ According to Winkler

08 08

0,6 06

02 (22

ao o_

oP a; _o _* _o o6Ro as_o _a

FIGURE 132.

Me T

_ccordins t_

a: az _o a, Po a66 as _o _,

EIGURE 133.

FIGURE 134.

\

I!!
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\

Figures 132 and 133 also show values of the moments Ms and Me, calcul-

ated for a circular plate of radius R = R0, with the same values of the

characteristics of the elastic foundation and of the structure. The calcula-

tions were performed by three different methods: the method employed in

Chapter IV (for H/Ro=l, T-----1.55), the method of the elastic semi-infinite

space /26/, and by Winkler's method, the foundation modulus being :

k = 1.6.10 _ m/m 3.

I " 1 1
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Comparison of these curves shows that the bending moments M,,, and M0

acting on a shallow spherical shell are considerably smaller than those

acting on a circular plate.

-40_ I i
-_0II]lJilflll_
-2_IIIilltlllllll_ Ill_.

IIl[lll]ltllll I] Illllllll!ll]
I _2Po Q4_o

I

I ,
I I 'I

FIGURE 135.

a6_lll Ill_:_illII£_:_
_lll[ _]lttl]ll
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§ 7. APPLICATION OF THE ABOVE METHOD TO THE ANALYSIS OF
THE BOTTOMS OF CYLINDRICAL RESERVOIRS

The preceding sections dealt with some problems concerning a shallow

spherical shell on an elastic foundation. It was assumed that the shell edges

are free and that the shell is acted upon either by a uniformly distributed or

by a contour load (Figures 126 through 129).

We shall now consider the case when the spherical shell forms the bottom

of a cylindrical reservoir on an elastic foundation (Figure 136}.

I
_Ttr_

'! I '

rt-7,_--_ p',,, Ip

'L °/

o'l _ 1i°

FIGURE 136. _IGUP, E 137.

The bottom is usually secured to the cylinder by a supporting ring and can

be assumed in a first approximation to be a spherical shell built-in along

its contour. In other words, we consider the system shown schematically

i i l

Ill
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in Figure 137, disregarding the remainder of the structure. In this figure,

the contour forces P represent the load transmitted to the shell by the

reservoir walls, while the uniformly distributed load p represents the

pressure of the liquid in the reservoir. The reactions q and Q_ of the elastic

foundation are obtained from (6.1) and (6.2}, assuming that in relation to the

elastic foundation the shell can be considered as a rigid punch.

As before, the stresses and strains of the shell are determined by (6.19)

through (6.23). These contain the three integration constants C_, C,, and

Ce, which can be determined from the following boundary conditions:

!1

R0) W=0, W'=0, u=0.at p-----Ro _----L-_o (7.1)

-a2 .....

e
oo

_2

M,
-Q'e

-LZ2 .......

_o

n2_

\

..... l

' 1
T"-

0,,_'= O_o O,q_'q _,,

FIGURE 138.

'°::t ____ll-10 - =_=_,,.._--_
-20

--tO

ao
_2R, o4Ro a6 _o _a_o Po

_v,

;; =:_f

O0 "_,,

-a2 "-

_aJI ""

FIGURE 139.

i-i I
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These conditions yield:

p*e i
C_uo(_R)+ C,_o(UO= Eh '

C1u'o(_R)+ c2v'o(_)= o,

-- (z + t.)l-- C,v'o(_R)+ C,u'o(_R)I+ 2C,(Z-- _)_R--
(i + _) p'R s

2 Z_ _R = 0,

where p* = p--q .

The solution of these equations is:

(7.2)

Ill

"o(_e) p,m
C,= l"o(¢.) v_(¢.) - ._(¢R).o(¢R)I Eh'

"_(_,) p.n,
Cl -----

c.= ¢_+") [ _[._,'gR)+._'g,_)l

(7.3)

The bending moments M, and Me, and the forces N, and No, calculated by

means of (7.3), (6.20), and (6.22) for a reservoir bottom subjected only to

a contour load P, have been plotted in Figures 138 and 139. The values of

the elastic constants of the soil and the structure are given by (6.24). The

results obtained for a shell with free edges have been plotted in broken line
in the same figures.

It is seen that reinforcing the shell along its contour by a rigid ring

preventing radial displacement and rotation, reduces to a certain degree
the values of M_, M0, and N,, while the tension N, at the shell contour

becomes considerably less. This is very important when a shell forms the
bottom of a reservoir.

i-i-I

If the supporting ring prevents only radial displacement, the shell can

be analyzed according to the scheme shown in Figure 140.
The boundary conditions are in this case:

at p=_o (_=_.) : w=o, M.=o, ...o. (7.4)

or
p'R o

C,uo(_a)+ C,vo(_)= _a '

c, [.0(_R)--(]- _)
g,)]

%--RJ+

_- C° [-- uo(_R) -- (1 --_)
(_.)]
_ j=o,

-- 0 4-_,)[- c,v'_(bO+ qu"o(_)l +

+ 2C, (1 --[z)_R (1 + t*) p'R'2 _= O.

(7.5)

i11

I I l
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The integration constants are thus:

where

Kn pOR:

Ct = [Uo(_R)K,+_,o(_R)K,IEh '

Ca = K_ p*R_
[_,°(_)K,+ Oo(_R)K,l Eh ,

c, = o + ._ [-_ (_R)K,- _;g.,, K,

uo(_R)+(I--p.)_'o_R)'_,K1

K, = Oo(_) +(l-- _,)"_g_).
_R

(7.6) III

FIGURE140.
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3,

To obtain a more accurate solution it is necessary to make allowance

for the effect of the cylindrical reservoir walls on the strains of the bottom.

This can be done by the methods used to analyze statically indeterminate

systems, i.e., the method of forces or the method of displacements (strains).

I11

x

i+

FIGURE 141.
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In the first method, a cut is made in the zone where the bottom joins the

cylindrical reservoir wall, and the constraints there are replaced by

unknown forces [and moments] (Figure 141). In accordance with the

convention adopted for the signs, the canonical equations expressing the

continuity of the deformations are:

c b c b _ b _Abp = O,(An + Au) Xl + (An -- An) XI -- Ai_+ h,p

c b c b c b _ Abp = O. f (7.7)

The first equation states that there is no relative rotation at the cut; the

second states that there is no relative displacement in the direction of X_.

The coefficients and load terms in (7.7) are given in absolute values.

The first subscript indicates the place and direction of the displacement.

the second subscript, its cause. The superscript "c" refers to the cylin-

drical reservoir wall, the superscript "b" to the bottom.

The load terms:

define the absolute values of the displacements due to the external loads q

and p, while the load terms Abm Abp correspond to the displacements due

to the contour load P transmitted by the reservoir wall to the bottom.
All coefficients and load terms with superscript "b" can be obtained

from (6.19), (6.20), and (6.23).

To obtain the coefficients with superscript "c", it is necessary to

consider the axisymmetrical deformation of a cylindrical shell subjected

both to an external radial load q and to contour forces X_ and moments X,.

This problem reduces to solving a fourth-order differential equation

identical in form with the differential equation of the bending of a beam on
an elastic Winkler foundation.

This problem is discussed in detail in many books * so that the coefficients

with superscript "c" can be found without difficulty.

The same procedure is adopted when the reservoir bottom is a circular

plate instead of a spherical shell. The coefficients with superscript "b"

are in this case obtained from the formulas of sections 3 and 6 of ChapterIV.

IlL
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Chapter VI

DYNAMICS AND STABILITY OF BEAMS AND PLATES

ON ELASTIC FOUNDATIONS

§ 1. DIFFERENTIAL EQUATION OF THE VIBRATIONS OF

A BEAM ON AN ELASTIC SINGLE-LAYER FOUNDATION

Consider a beam of width _ on an elastic foundation, subjected to an

external load p(x, t) varying with time (Figure 142). This is the case of

dynamic loading, where the inertia forces acting in the deformed system

become significant.

l I
Cs . Y'//////////////////////////////_///_/_////_/////////H_/z

FIGURE 142.

III

I l-1

The differential equation of motion of the beam is:

_V (x, 0
EJV nv (x, t) = p (x, t) -- mn _ _ q _x, t), (1.1)

where EJ = rigidity of beam, J = _h,
12 (i -- _') '

m, = mass of beam per unit length,

q (x, t)= distributed reaction of foundation, due to elasticity and inertia of
soil.

To determine the reactions q(x,t), we cut out an elementary column from

the elastic foundation (cf. sections 2 and 3 of Chapter I), and consider the

equilibrium conditions of this column, applying Lagrange's principle of

virtual displacements. Assuming that no horizontal displacements occur in

the single-layer foundation and that the vertical displacements are described

by the function _(y), the virtual work done by all external and internal forces

acting on this column becomes:

H H H

eo_ ¢'f Je_ (y) dv- e,_ V_ _ o,v*" + _*_ , : - ,----_oo_ _'*(y)ey - _81 P (y) .v _ + q O,,t)=o,
#

(1.2)

I11
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where q (x, 0 = load per unit length, applied to surface of elastic foundation

{foundation reaction); _= __0 = mass per unit volume of foundation
g

( To = specific weight of soil, g = gravitational acceleration); also,

2 , %= i--v , (1.3)
E° i -- vs s

where E s and v s = modulus of elasticity and Poisson's ratio of elastic

foundation respectively.

We introduce the symbols:

H

t--v_ ! _'' (y) dy,

H

Eo_

o

H

,no= _ ] q,'(y)ay,
o

(1.4)

Equation (1.2) then becomes:

2tV"-- kV -- m o _ + q (x, t) = O. (1.5)

This is the differential equation of the vibrations of a single-layer

foundation under the action of a load q(x,O. Eliminating q(x,t) between (i.i)

and (1.5), we obtain:

Osv p(x.t) (1.6)
V Iv- 2rW'+ s4V-t- m* bYr = Es '

where

H
k Eo_

s, = _ = _ _ ,',(y) ey,
H

rl I Eo'b

= -_-= _es-O-+,5_ _¢'(y)ay,
H

m*= --KT--

(I ,7)

( T and To = specific weights of materials of beam and elastic foundation

respectively).

The partial differential equation (1.6) thus shows that not only the beam,

but also the elastic foundation vibrates.

| | ,
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§ 2. FREE VIBRATIONS OF A BEAM

When p(x.t) = O, (1.6) reduces to:

, _v
VW-- 2r'V" + stV = -- m -dir . (2.1)

This equation describes the free vibrations of the beam when it is

disturbed from its state of equilibrium and then left to itself.

We assume a solution in the form of a product of two functions, one of

which depends only on x, the other only on t :

v = x (x) T (t). (2.2)

Substitution of (2.2) in (2.1) yields:

x1V _ 2fiX.q_ sSX m*T"
x _-- (2.3)

Since its left-hand side is a function of x only, and its right-hand side

of t only, {2.3) will hold in the general case only if each side is equal to

the same constant. Denoting this constant by m*_ 2 , we obtain:

T'+ ¢@T = 0, (2.4)

X zv -- 2r_X'+ (s' -- m*_ _)X = 0. (2.5)

The solution of {2.1) thus reduces to integrating two ordinary differential

equations.

Equation {2.4) has the same form as the equation of free vibrations of a

system with one degree of freedom: it describes a simple harmonic motion

with frequency to. The solution of this equation is:

T = Asintat + Bcosot, (2.6)

where A and B = constants determined from initial conditions.

The mode of the free vibrations of the beam is determined by (2.5), which

can also be written thus:

XJV __ 2r=X ._ ( ),4__ rt) X = O, (2.7)

where

),'= r'-- sS+ m*_ _. (2.8)

The general integral of (2.7) is:

X (x) = C1 sh ax + C=ch =x + C3 sin gx + Ct cos _x,

I!!
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where CI ..... C4 are constants, and:

a_= ).=+ r _, [_= x_ -- r_. (2.9)

Since _ is still unknown, the parameter X2, on which a and _ depend, will
also be unknown.

The general solution of (2.7) contains therefore the five unknowns

C1, Ca,Ca,C, o and Z, which can be determined from the statical, kinematic, or

mixed-type boundary conditions at the beam ends. Only two conditions can

be formulated for each end. When no external forces act, the boundary

conditions are homogeneous, containing only the values of the function X (x)

or of its derivatives at x--0 and x = !.

By expanding the boundary conditions at the beam ends x =0 and x = l
with the aid of the formulas:

X (x) = C_ sh ax + C, ch ax + C, sin I_x+ C, cos l_x.
X' (x) = Cl_ch au¢q- Cot sh ax q- Cs_ cos_x --Cd3 sin [3x,
X" (x) = C1=_sh _tx+ C#= ch atx-- Cs__ sin 13x-- Cd32cos13x,

X = (x) = Cl _'sch ax q- C_a s sh =x -- C3_s cos _x _- C,_ s sin _x,

(2.10)

we obtain, putting x = 0 and x =l, a system of four linear equations in the

four integration constants Cn ..... C4 . Since the boundary conditions are

homogeneous, the four equations formed will also be homogeneous. In the

general case we obtain:

a,, ix) C, + a,, (x) C, + a_, (x) Ca+ a,, (x) C, = O, 1
a2_ (X) C_+ a_2 (x) Cs + a,s (x) Cs + a2, (x) C, = O,
as_(_,)C_+ as_ (x) C, + as_0') C_ + as, (x) C. --- O,
",, (D C_+ a,, (x) C_ + a,a (X) Cs + a, (x) C4 = O,

(2.11)

where the coefficients ,ak(),) (i, k = 1,2,3, 4) are functions of k. By equating

to zero the determinant of system (2.11), we obtain an equation in x:

a,_ (x) al_ (x) a,s (x) a,, (x)
a,_ (x) a,, (x) a,, (x) a,, ix)

t, q,) = a_ ix) a_ (x) a. (_,) a,, ix)

a,l (_.) a,2 (X) a,, (_.) a, iX).

=0. (2.12)

This equation is called characteristic equation of the homogeneous

boundary-value problem, i.e., the problem described by the homogeneous

differential equation (2.7) and the homogeneous boundary conditions (2.1 1 ).

Since ), depends on the vibration frequency t0, equation (2.12) will also be

the equation of the natural frequencies of the system.

Since by virtue of (2.9) and (2.10) the parameter x' appears in the

arguments of the hyperbolic and trigonometric functions, the characteristic

equation (2.12) will be transcendental, yielding an infinite set of values

for Xs. It is easily seen that all these values are real, irrespective of the
type of boundary-value problem to which the equation corresponds.

The parameters X_ (n= 1, 2, 3,...) determined by (2.12) are called eigen-

values of the homogeneous boundary-value problem.

Applying the method described here to determine k-" thus yields an infinite

set of real eigenvalues kl, k_, k: ..... To each eigenvalue k_ there corresponds,

III
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in accordance with (2.8), a certain vibration frequency; hence, an infinite

set of natural frequencies will correspond to the infinite set of eigenvalues

_ (n= I,2,3,..).
From (2.8) we obtain:

_.4 + S4 __ r6
_' = (2.13)n his

Similarly, in accordance with (2.9), a pair of numbers _,, and _, • which

determine the function X, (x), will correspond to each eigenvalue _',. We thus

obtain an infinite set of functions X, (x) (n---- l, 2, 3,...) which satisfy all the

conditions of the given homogeneous boundary-value problem. These

functions are called eigenfunctions (cf. section 4 of Chapter IlI).

Since the constants C,,..., C4 are determined by (2.11) up to one common

constant factor, each eigenfunction X,,(x)will also be determined up to one

constant factor.

The eigenfunctions possess the property of orthogonality:

!

X,Xj,dx=O. [i_=k ] (2.14)

This can be proved as follows:

Since XL and Xk are solutions of (2.7), we have:

(_- r,)x,= x]"- 2r'x], }(x_-r')Xk= X_v--2r'X_, (2.15)

where x,_ and }._ = eigenvalues corresponding to eigenfunctions X,. andXk

We multiply the first equation (2.1 5) by Xk, the second by Xt, subtract

one from the other, and integrate the resulting equation between x = 0 and

x =I. This yields:

I 1 l l !

0 0 0 0

(2.16)

Integrating the right-hand side by parts, we obtain:

L

o

= [x;xk-x;x,-x;x'_+ x'_x)-2:(x;x_-x'_x,):o, (2.17)

where the symbol { I:denotes the difference between the values for x = l and

for x = 0 of the expression in brackets.

The right-hand side of (2.17) is proportional to the work done in state "i"

by the generalized boundary moments and forces M and Q over the boundary

displacements corresponding to another state k, and is zero in the case of

I!|
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homogeneous boundary conditions, irrespective of the type of support.
Hence:

I

(x,' -- x_) f XtX_ dx = O.
o

Since the eigenvalues ),_ and k_ are distinct when i=#k, it follows that:

and therefore:

I

X,X, dx = O,
o

which proves the orthogonality of the eigenfunctions.

Exactly as in the case of vibrations of a simple beam (cf. section 4 of

Chapter III) all even derivatives of the functions X, and X, also possess the

property of orthogonality:

I

.., .',_ ax: 0. (2.18)
o

Here, X (2m) denotes the derivative of order 2m (m = 1, 2, 3.... ). This can be

proved for any value of m in the same way as the orthogonality of the eigen-
functions themselves was demonstrated.

Some examples of the determination of the eigenfunctions and the natural

frequencies of a beam on an elastic single-layer foundation will now be

given.

a) Let the beam ends have simple supports. The boundary conditions
are then:

atX'=OandX= t X = X" = O. (2.19)

The following system of equations in Ct ..... C, are obtained from these

boundary conditions and from (2.10):

C2+C, =0,

_2C, -- [_'C, = O,

C, sh _l + C2ch _1 -I- C_ sin El + C, cos El = O,

C,a _sh _l Jr C_.' ch _l -- C313'sin 6l -- C4_' cos El = O.

The first two equations yield:

C, = C, = O.

II!
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The remaining two equations then reduce to:

sh_lCt + si_lC_ = O, [
a _sh alCt -- _" sin _lC3 = O. /

(2.20)

Equating to zero the determinant of this system, we obtain:

or

whose roots are:

(_ + _2) shalsin _1 = 0

sin _l = O, (2.2l)

"". [where n is an integer] (2.22)

Substitution of (2.22) in the second equation (2.9) yields all the eigenvalues

of the given problem:

=-- + r'. (2.23)

Substituting (2.23) in (2.13), we obtain finally:

2 S/n_ \$ /n_ \41_.:]z/'-_[s'+ r _7-)+_T)j. (2.24)

This is a general formula for the natural frequencies of the system. For

instance, putting s = r = 0, we obtain as a particular case the natural

frequency of a simple single-span beam. Putting only r = 0, we obtain the

frequencies of a beam on a Winkler foundation of modulus k.

Having determined the eigenvalues k_ and frequencies _n, we can find

the eigenfunctions X.. According to (2.21):

sin _1 = 0.

Substitution of this in (2.20) yields:

C_ = 0.

Hence, in the case considered three constants vanish:

C,=C,=C,=O. (2.25)

The constant C3 remains indeterminate.

Substitution of (2.25) in the first equation (2.10) yields the eigenfunctions

X,(x), determined up to a constant factor. Taking this factor as unity, we

obtain:

• nx 2_x . 3_x

X 1 = snn_-, X, = sin _--, Xa = sxn- T- .... (2.26)

II!
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b) If the beam end x = 0 is simply supported while the end x = l is built

in, the boundary conditions will be:

at x=O X=X'=O, I (2.27)
at x=l X X'=O, I

whenc e :

Thus:

C, + C, = 0,

_lC,-- _'C,= O,
sh '*lCl "q-ch "lCl + sin _lCs + cos _lCt = O,

a ch arC1 + _ sh _lCI + _ cos _lCa -- _ sin _lCd = O.

Cs = C_ = O, }
sh alC1 --5sin _lCs = O,

a ch a-/C1 + t3cos _lCs = O.

(2.28)

(2.29)

The corresponding characteristic equation is:

sh ¢tlcos I]l-- _ ch _l sin _l = O.

Substitution of:

- = 1/k-_ r', [I = l/'_

(2.30)

yields:

x't/'i'---- r' th [-fi q- r'l = VX'+ rttgX'F'-f<-_--r'l. (2.31)

If r"_is given, the transcendental equation (2.31) determines all the eigen-

values X_, X_, Xs_.... of the boundary-value problem considered, whence all the

natural frequencies fox, t_,, _3 .... of the beam are determined by (2.13).

The eigenfunctions X,(x) corresponding to the eigenvalues X_ and

boundary conditions (2.27) are:

X. (x)= sinI/'X_._ IshI/'X_q-r'x-- shV'iXq-r'lsinIfx_-__ r_x

(n=l, 2, 3....).
(2.32)

It is easily seen that these functions satisfy the boundary conditions
(2.27).

The functions X,(x) obtained depend also on the elastic characteristic r.

By successively assigning different values to this parameter we obtain

different families of eigenfunctions with corresponding eigenvalues,

determined for a given r' by (2.23); all the functions corresponding to this

value of r_ will be orthogonal. The family of functions obtained for ri= 0

corresponds to the vibrations of a simple beam with one end simply

supported and the other built-in (cf. section 4 of Chapter III).

I!!
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at
at

c) When both beam ends are built in, the boundary conditions are:

x=0 X=0, X'=0; )

x=l X=0, X'=0. ] (2.33)

The characteristic equation, obtained in the same way as in the preceding

examples, is:

cosV_--[--r' lch VX' + r'l--_sinV'_-_-;--rSlshV'_+r'l=l. (2.34)

The eigenfunctions are:

X. (x) -----(ch ¢t_l -- cos _l) (_. sh _tnx --*t. sin _.x) -- (2.35)
-- (_. sh _nl -- % sin _.l) (oh 0t.x -- cos _.x),

_. = V_'. ÷ _', _. = V_'_- _'.

where

Putting r = 0, we obtain the eigenfunctions and eigenvalues of a simple

built-in beam.

The above method can also be applied to other boundary conditions.

III

-_ -':"NIIB */ •

Proceeding from the properties of the general integral of a homogeneous

linear differential equation, the following general expression is obtained for

the free vibrations of a beam on an elastic single-layer foundation:

V(x, t) = _ X.T. = _ X.(A.sinco.t + B.coscod), (2.36)
n_t tl_]

where A. and B. = integration constants.

This expression can also be written in the following form:

V (x, t) = _, C.X.sinco.(t--t_.), (2.37)

where the integration constants are now Cn and +., the latter character-

izing the phase shift.

It follows from (2.36) that the elastic line of a freely vibrating beam

represents the geometrical sum of an infinite set of curves of the form:

X. (A. sin o_.t + B. costo.t),

which are called principal modes of the transverse vibrations of a beam.

Each curve is described by the corresponding function X. and oscillates at

the frequency co.. The beam axis therefore changes its shape continuously.
After the beam deflections have been determined in form (2.36), the

velocity at each point is obtained from:
oo'

_w
_- = _ X.co. (A.coso.t -- B. sinco_¢). (2.38)

i l-i
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The bending moments and shearing forces are:

_o

M (x. t) = -- EJ Y, X'. (A. sin _.t + B. cos o_.t).

Q (x, t) = -- EJ _, X'. (A. sin _.t + B. cos to.t).

(2.39)

(2.40)

The diagrams of these magnitudes also change their shape continuously.

The maximum bending moments and shearing forces are obtained at different

beam sections and times.

II

§ 3. ACTION OF A MOMENTARY IMPULSE

Let an impulse of intensity p(x) per unit length act for an infinitely short

time on an elastic beam of length 1 resting on a single-layer foundation,

At the instant at which the load disappears the displacements are still

infinitesimal, but the velocities are already finite.

After the load has been removed, the beam will vibrate freely, its

deflections being:

V (x, t) = _, X_ (A. sin _o.t -+- B. cos ¢_.t). (3.1)

Assume that the eigenfunctions X. of the bar and the corresponding

frequencies o. have already been determined from the boundary conditions.
We obtain the coefficients A. and B. from the initial conditions, which,

according to our assumptions, are:

V (x. o) = 0,
OV(x. O)

Ot _ U°_

(3.2)

where v 0 = initial velocity at section x .
The first condition (3.2) yields B.----0. To make use of the second

condition, we express the initial velocity of a beam element of length dx in

the form:

vo = p (x) (3.3)

where m = reduced mass per unit length of system, which, by the last

expression (1.7), is:

R

m= m_+ mo
o

Since for B. = 0:

_- = X.A.co. cos _.t,
n_l

! .U
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the second condition (3.2)becomes:

p (x__))=_ A,,o_.X,,. (3.4)
m

The determination of the coefficients z_. thus reduces to expanding the

function p (x_____in a series of the eigenfunctions X.
m

We multiply both sides of (3.4) by one of the eigenfunctions and integrate

the resulting expression over the entire beam length:

(3.5)

Because of theorthogonality of the eigenfunctions, all integrals on the

right-hand side vanish for n_=k. The only nonzero integral is:

III

.-I_ + m

I

u,A, f X*=dx. (3.6)
e

Equation (3.5) thus reduces to:

whe n c e :

I-I+I

I

f p (x) X, dx
0 •

A, _,. i Xl4x (3.7)
o Ill

The solution finally obtained is thus:

l

o_ IP(X) Xnd_
V(x, t) = !._,, o

o

-- Xn sino+_t. (3.8)
B mE n
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The bending moments and shearing forces are:

I

o_ fP(x)X,,_

hi (x, 0 = F.J o

!

oo !p(xJX._
Q (x, l) = --_-_,EJ 7 X: sin (ant.

.-1 =_.f X_ dx
o

(3.9)

We thus see that each component of the impulse

p. (x) = mA,,co,,X,,

causes a s imple harmonic motion of mode X., frequency to., and amplitude A.X..

Series (3.8) for the deflections converges relatively slowly; series (3.9)

for the bending moments and shearing forces converge even more slowly.

This may cause considerable difficulties in practice. However, in these

expressions no allowance has been made for the damping of the vibrations,

which is considerably more rapid for the high-frequency vibrations than

for the low-frequency vibrations; most high-frequency vibrations are

already completely damped at the instant when the deflection corresponding

to the fundamental mode attains its maximum.

As a result, it is sufficient to take the first terms of (3.8) and (3.9) in

order to obtain a satisfactory approximation.

Consider, for example, a single-span beam with simple supports resting

on an elastic foundation (Figure 143). Let a momentary impulse p, uniform-

ly distributed over the span, be applied to the beam. The eigenfunctions

are in this case given by (2.26), and the natural frequencies by (2.24). To

determine the coefficients A., we substitute (2.26) in (3.7) and obtain:

l

plsinTxdx

An o 4p
l = n,_m=,," (3.1 O)

I t/t/Im_ n sin Tx dx

0

!11
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Substituting these expressions in (3.8)yields:

co

4p _ 1 . nn .

V (x, t) = _-g _z _ sm T x sm =.t =
n--I n

4p ft • _x . t . 3nx . • , 3

J

(3.11)

I - m !
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_---: ....... 7"-
FIGURE 143.

Only odd values of n appear in (3.11), since a uniform impulse will cause

the beam to vibrate symmetrically with respect to its center section.

4. FORCED VIBRATIONS OF A BEAM

Consider an external load acting on a beam resting on an elastic
foundation:

p(x, t) = p(x) f (0. (4.1)

Assume that the variation of p is not accompanied by any noticeable variation

of the mass of the system, i.e., m remains constant during the motion.

This problem reduces to integrating the nonhomogeneous differential

equation (1.6). Its solution is the sum of the general solution of the corre-

sponding homogeneous equation and of a particular solution of the non-

homogeneous equation. The general solution of the homogeneous equation is:

V (x, t) = _ X. (A. sin cod + B. cos to.t), (4.2)
n=l

where A, and B, are found by expanding the given initial values of V and

0t_ in series of the eigenfunctions X,,, as shown in the preceding section for
0r

the case of a momentary impulse.

To determine a particular solution of 0.6), we expand p(x) in a series of

the eigenfunctions X, :

p(x) = _ C.X.. (4.3)
if=}.

The coefficients C_ can be determined by multiplying both sides of (4.3)

by Xk and integrating over the entire beam length. Because of the ortho-

gonality of the eigenfunctions, we obtain:

][ i[ l

TII

1

l p (x) X,

Ck =°

Sxl_
o

(4.4)
i ° R U
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If the external load also includes concentrated forces P, the integral in
the numerator of (4.4) is to be understood as a Stieltjes integral. We can

therefore rewrite (4.4) as follows:

I

0
Uk: t '

xI_

(4.5)

where X, = values of functions X, at points of application of forces P.

Each function Xn can be considered as an elastic line induced by a

distributed static load of intensity _mX, • The static load C,,X,, will
Cn

obviously induce an elastic line whose ordinates are w_-'-_Xn • A dynamic

load causes at time t the displacements*

t

V (x. t) = coI V_t(u) sin _ (t -- u)du, (4.6)
o

In the case considered the static load is ¢.X.f(t). Hence:

t

Cn
V.(x, t) =-_-m X. If(u)sinoJn(t--u)du.

o

(4.7)

Hence by (4.3):

V (x, t) = X. f (u) sin co. (t _ u) du.
1

(4.8)

The general solution of (1.6) is the sum of (4.2) and (4.8):

Cn t du].V (x, t) -- _ Xn [Ansin_n' "i- Bncos_n' + _-_waf,(u) sin_n(t--u)
n_l 0

(4.9)

The bending moments and shearing forces are calculated by the known

formulas of strength of materials:

_v _v. (4.10)M = -- EJ _-_, Q --- _ EJ Ox-i,

the velocity is found by differentiating (4.9) with respect to t:

t

OV_XnIAnoJncos_ont--BnoJns|n_nt !-_ t(.)_o_,o.(t-.)e.]. (4.11)

nun

-i l-I

Ill

! - 1

* See for instance, Rabinovich, I.M., Kurs strottcl'noL mekhaniki (A Course in Structural MechanLcs),

part II. 1954.
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§5. DYNAMICAL ANALYSIS OF BEAMS CONSIDERED

AS SYSTEMS WITH FINITE NUMBERS OF

DEGREES OF FREEDOM

From the viewpoint of structural dynamics, the beams considered by us

represent systems with infinitely large numbers of degrees of freedom.

The deformed axis of such a system can acquire an infinitely large number

of different shapes under the action of the various static and dynamic loads.

The exact dynamical analysis of elastic beams, which takes into account the

entire frequency spectrum, thus leads in general to an infinite series of

the eigenfunctions of the given boundary-value problem.

However, it can frequently be assumed that the beam considered has a

finite number of degrees of freedom. If a beam resting on an elastic

foundation is so rigid that it does not become bent, it can be considered as

a system with two degrees of freedom. Elastic beams can also be con-

sidered as systems with finite numbers of degrees of freedom. In this case

some basic forms are selected from the infinitely large number of forms

which the elastic line of the beam may assume, and only these forms are

considered in the calculations. Any function approximating the elastic line

of the beam and satisfying the geometrical boundary conditions can be taken

as vibrational mode. This considerably simplifies the solution of the

dynamical problem while being satisfactory for prachcal needs.

I!i

-_ ,'! _:" I

1

We consider first the vibrations of a rigid beam on an elastic single-

layer foundation (Figure 144). Let the deflections of the beam be:

v = cr (t). (5.1)

The equilibrium conditions of the beam are obtained by equating to zero

the work done by all the forces acting on the beam over the virtual displace-

ment V= 1. The inertia forces per unit beam length are:

_'v
m, = ._ = m,CT'. (5.2)

In addition to these forces, there act on the beam also the reactions q

and Q# of the elastic foundation.

l,.c_ °
Vo" Ce'crt_r'_; T

FIGURE 144.

J J I

I11

n nnum n
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In the general case,

tion, the distributed reactions q are by (1.5):

• O'V . O'V
q = --2t _ _ kV -t- mo -_.

Substitution of (5.1) yields:

q = kCT ur moCT%

when allowance is made for the inertia of the founda-

(5.3)

(5.4)

To determine the fictitious reactions Q,_, it is necessary to calculate the

work done by the normal and shearing stresses, and also by the inertia

forces in the elastic foundation beyond the beam ends. The virtual displace-

ments to the right of the beam are:

_'o : e--:(x--r).

We then obtain:

(5.5)

where:

H

H

O

o=/g.

(5.8)

III

i i-1

Equation (5.5) for the concentrated reactions, valid for the dynamical

problem, differs from (5.7) of Chapter II by the presence of a second term

representing the inertia forces in the elastic foundation.

Equating to zero the work done by all the forces acting on the beam, we

obtain:

(2/k + 4=t)T + (2/m o + 21rnz + 2m,-_) T" = 0, (5.7)

or

+(,÷_,)
T'-_ T:O.

mz [l + mo , mo t (5.8)

Thus, a rigid beam on an elastic foundation performs a simple harmonic

motion at a frequency of

l/ 'k 1+-_- (5.9)
{O----- m.o l

nq 1 + m_ + _.z _,.

228
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The vertical displacement of the beam at any instant is

V = C, sin _t + Cs cos _t,

where C_ and Cs = constants determined from initial conditions.

(5.10)

We consider as a second example the free vibrations of an elastic beam

of length 21 resting on a single-layer foundation (Figure 145). Let the

motion be symmetrical with respect to the section x.= 0. The elastic line

of the beam is then approximately defined as follows:

_jj L_xX(x)= Alcos-_- (i=0, 1, 3, 5,...,n). (5.11)
I.0

The first term of this series ( i = 0) corresponds to the displacements of a

rigid beam; the other terms correspond to a symmetrical bending. It can

be seen that the function X(x) satisfies the geometrical conditions of the

problem and one of the statical buunda_y conditions (M = 0 at x-_-i-I). The

second boundary conditions (Q = 0 at x =-{-I ) is not satisfied.

hlllIIllllliill!iIliil,,,,,,,,,,l_,
I ' I

1x,-c,,-_
i I

I

l=iGUP-_E14,5.

To find the natural frequencies u_ of the beam, corresponding to modes

(5.11), we obtain the equilibrium conditions for the beam by means of the

principle of virtual displacements. Taking (1.7) into account, (2.5) can be

written as follows:

EJX w -- 2iX ° + (k-- m_') X = O.

Substitution of (5.11 ) yields :

(5.12)

n

cos _ = 0.
(5.13)

I!!

Ill

Ill
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For each value of i, the first term corresponds to bending of the beam;

the second and third terms containing the coefficients k and t depend on

the reactions of the elastic foundation, distributed over the bottom of the

beam; the last term depends on the inertia forces.

In addition to these loads, concentrated reactions Q_ will also act on the

ends of the beam when the latter is forced into the soil like a rigid body.

These reactions are determined from (5.5)*:

Q® = (2=t--_m') A 0. (5.14)

The following system of algebraic equations is obtained by calculating the

work done by all these forces over each virtual displacement of the beam:

I n

Sy (,-m.,_A,cos_x+2Q.=0,
--I l--O

I .

S_0[ ' ]E_(_)'+2,(_) ÷,-.o, ×
_| .=

x Aicos ffcos _ dx = O,

i o .
--/i--O

i_x n_x

x A, cos -Z- cos "-Z- dx = 0

(i=O, l, 3, 5, 7,...,n),

(5.i5)

or, after the corresponding integrations are performed:

t t
[k(l +-_)--(ml + rno +mo .-z_=l)o)Z] Ao +

n i--1

+ :Z Ai_ (_-,.,_') (- I) r= o,
tm|

__ ! (p_,"'z (k-- mo_')Ao+ 2 \-- int. +

+ 2t _ + k_m_o _) AI = O,

!-(k _,_,1 (_ I)T Ao+

+ -'f \--]_-t{F_I n_," + 2t "4_ + k -- moo') A. ---- 0

(i = 1, 3, 5, 7..... n).

(5.16)

,+3
The --y- homogeneous algebraic equations (5.16) become identitites for

A0 = As = A, ..... A,---- 0 . This trivial solution corresponds to the case when

the beam does not vibrate. A nontrivial solution is obtained by equating to

zero the determinant of the coefficients of the constants A;. This yields an

III
\

\

i-l-i
\

\

Ill
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" It is assumed that the elastic foundation beyond the beam ends performs harmonic motion of frequency _.
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n+3
equation of order --2- in the unknown _2, whose solution gives all the

natural frequencies _ corresponding to the vibrational modes (5.11).

The vibration frequency _0 ofarigidbeam, givenby(5.9), is aparticular

case. This solution is also applicable to the natural vibrations of a beam

on simple supports. In this case, the first term (i----0)in (5.11) and the

corresponding terms in (5.16) are discarded. Since in practice only the

lowest frequencies are of interest, it is sufficient in the general case of a

beam lying freely on the foundation to take only the first two or three terms

in (5.11). The low frequencies are therefore obtained from a quadratic or

cubic equation.

It was assumed in the above examples that the beam vibrates symme-

trically with respect to the sectionx= 0. In the general case, due to the

orthogonality of the symmetrical and antisymmetrical modes of vibration,

the problem can be divided into two independent parts corresponding

respectively to the symmetrical and to the antisymmetrical modes. The

frequencies corresponding to the antisymmetrical modes can be determined

by the same method as described above.

i-ia-d,
\

II!

-_ v-so r ,7'_'

3

Let a beam with free ends be subjected to the action of a momentary

impulse of intensity p(x) per unit length.

The initial conditions are:

V (x, 0) = 0, I

av (x.0) _ p (x) I (5.17)at - - -_-"

From (5.11) and the first condition (5.17), the beam deflections are

approximately given by:

IZX .

V (x, t) -= 9, Aicos--_-smcod, (5.18)
i--O

where the vibration frequency oJt is determined from (5.16).

The second condition (5.17)yields:

P (_) _ A oJ i,tx
--_-= _ _ c°s-_T" (5.19)

I10

The coefficients At are determined by expanding the function p(x___)in a

i_x (i= 0, I, 3, 5,..). Multiplying in turn both sides of (5.19) byseries of cos -_-

cos i_x___(i = O, 1, 3, 5, ...) and integrating the resulting expressions from x -----0

-i

I11

l I i
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to , we obtain:

t--1 l

i

l_l 0

!

2 xx

• . • . . . . ......... , ........

2 n_x

¢

(i = I, 3, 5, 7 ..... n),

(5.20) Ill

from which all coefficients At in (5.18) can be found.

After the beam deflections have been determined in the form (5.18), the

bending moments and shearing forces corresponding to i T 1 can be calculated

by means of (4.10). The forces and moments corresponding to rigid-body

motion of the beam (the first term in (5.18)) are determined by the reactions

of the elastic foundation which can be found from (5.4) and (5.5) when A0 is

known. The bending moments and shearing forces of the beam can then be

calculated by the usual methods.

\

1E "_

§ 6. DIFFERENTIAL EQUATION OF VIBRATIONS OF A PLATE
RESTING ON AN ELASTIC SINGLE-LAYER FOUNDATION

During bending vibrations, a plate resting on an elastic foundation can

be considered as being in static equilibrium, the plate elements being acted

inertia forces (--m_-_e) in addition to a distributed load p" (x, g, t)upon by

The differential equation of plate vibrations can thus be obtained from (1.1)

of Chapter Ill in the form:

Dv_v'w (x, y, t) = p* (x, y, t) -- m, a'_ (x. y. 0Ot--w_ , (6.1)

where m_ = mass per unit plate area; p"(x, y, t) = distributed load, consisting
of given forces p(x, y, t) per unit area and of reactions q(x, g, t) of elastic
foundation:

p*(x, y, t)=p(x, y, t)--q(x, y, t). (6.2)

The inertia of the elastic foundation must be taken into account when

calculating the reactions q (x, y, t).
To determine the latter, we cut out from the elastic foundation an

elementary column of cross section dx = l, dy -- ! and consider its equilibrium

conditions, applying Lagrange's principle of virtual displacements (cf.

section 6 of Chapter I).

Assume that no horizontal displacements occur in the elastic foundation,

and that the z -distribution of the vertical displacements is given by a single

ii l

\
\

Ill

i i I
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function qb(z)"':

u (x, y, z, t)= O,

v(x, y, z, t)=O,

w (x, y, z, t) = w (x, y, t) +?(z).
(6.3)

Taking into account the inertia of the elastic foundation, the generalized

equilibrium conditions of the elementary column are.

II!

-E_az-_ ./:'az+ _ _az- Z.o_ee,az + q(x, y, 0 =0,
0 0 O 0

(6.4)

where q (x, y, t) : load applied to unit area of elastic-foundation surface,

_n = _ = mass per unit volume of elastic foundation, _0 = specific weight
g

of soil, g = gravitational acceleration, and H = thickness of compressible

layer.

By substituting in (6.4) the values of the normal and shearing stresses of

the elastic foundation a,,x,x,x,u (determined from (6.2) of Chapter I), we
obtain after some transformations:

-- 2tV'w (x, y, t) + kw (x, y, t) + m+ o',+ (x,Ot,y' 0 = q (x, y, t), (6,5)

where

bl

,
o

H

mo = -trioI _' (z) dz.
o

(6.6)

The partial differential equation (6.5) describes the vibrations of the

elastic foundation, due to a load q(x,y,t). This equation can be considered

together with (6.1), since the plate deflections are equal to the vertical

displacements of the surface of the elastic foundation beneath the plate, and

since the load q(x,y, t)on the foundation equals the reactions of the elastic

foundation on the plate.

Eliminating q(x, y. t) between (6.1) and (6.5), we obtain:

,0'_ (6.7)

i-i I

I11

! I !

* The function _ (z} is selected in such a way that d/(0)= t.
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where:

H

_=_ (i )D d/'(z)dz,

H

o

14

m* = -----_

(6.8) !!

Here, D = flexural rigidity of plate, 7 and To = specific weights of plate

material and of soil respectively, h = plate thickness, g = gravitational

acceleration, and:

Eo._ tEs v_= , "_o= _ • (6.9)
_Vs t v s

In the case of free vibrations, when no external load p(x, y, t) acts, (6.7)

reduces to:

-- m* @twV2Vzw _ 2rSV_ + s4w = Ors • (6.1 O)

§ 7. APPROXIMATIVE ANALYSIS OF AN INFINITE PLATE

IN THE CASE OF CONCENTRATED IMPACT"

Consider an infinite plate resting on an elastic single-layer foundation

(Figure 146). Let the concentrated force P(l), shown in Figure 147 as a

function of t, be applied suddenly at some point of the plate, inducing a

vibrational motion of the plate. The problem is to determine the stresses

and strains of the plate during impact (0<t._) and during the ensuing free

vibrations of the plate {_ _<_t < oo).

p. s_q

ylllllll//_l//////////////////Jl////////////////////////////_

FIGURE 146. FIGURE 147.

!
L

We introduce a system of polar coordinates. Let the origin be at the

point of application of the force. Obviously, the plate deflections will depend

* The calculation given in this section was performed by E.L Silkin at the Institute of Mechanics of the

USSR Academy' of Sciences.

--II I[-_I
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only on the space coordinate p and on the time l, i.e.:

w= w(p, t).

The fundamental equation describing the free vibrations of the plate

2 2 _ 2 4 0%_
VpV_w -- 2r Vow + s w = -- m* -_B-' (7. I )

where

is:

!!!

a' I a _ •v"_=_ + 7- 0-7'
2 2 a* 2 _s 1 _ t a

%% = _ + Tap-_ -- p-'-aT-+ p-_-_-"
(7.2)

i. Solution of the fundamental differential equation

We present the solution of the homogeneous equation corresponding to

(7.1) in the form:

w(p, t) = W (p)T(t), (7.3)

where W(p) = function of p only, and T(t) = function of t only.

Substitution of (7.3) in (7.1) yields:

VsVsW --2rSVSW m'T" + _T

W T
(7.4)

Since the two sides of (7.4) are functions of different variables, each of

them must be equal to the same constant in order that the equation be

satisfied in the general case:

";l,17'W--2e*r]'W m*T" + s'T =),*, (7.5)
w T

where x ' = parameter to be determined.

It follows from (7.5) that:

rn*T" +(s 4 +k')T =0, (7.6)

Putting

V2V'W -- 2r'V'W' -- "_lW = 0. (7.7)

s4 + A*
m* = _o', (7.8)

(7,6) then becomes:

T" + _'T = 0, (7.9)

_lir :-_ : u

i-i- I

I11
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whose solution is:

T = D, sin cot + D, cos wt, (7.10)

where D, and D, = integration constants.

Equation (7.7) determines the mode of the free vibrations of the plate.

We assume a solution of the form:

VsW = nW. (7.1 i)

Substitution of (7.1 1) in (7.7) yields:

whence:

n' -- 2rSn -- ),* = O.

n= rs-1-V-_+X -. (7.12)

It is seen from (7.11) and (7.1 2) that the fourth-order differential equation

(7.7) is equivalent to the two second-order differential equations:

v'w + (yiz + X'--r')W -- o,
(7.13)fv'w -- (Vr-v_ x*+ r') W = 0.

These two equations can be reduced to the same form:

dlW t dW
dx" _--/--_ + W = 0.

by putting in the first

and in the second

(7,14)

x=pV V_+'--r'

x=@]/V_ + x.+ r',

Equations (7.13) are thus reduced to two zero-order Bessel equations of

a real and an imaginary argument respectively.

Considering again the variable p, the solution of (7.7) can be represented

as Bessel functions of the first and second kinds of a real and an imaginery

arguments '_:

(p)=A,_o(_VV_-;-_-,') + A,Yo(pV_-,') +W

+A._.(oVv,-_ +,') +A._o(_V-v'_+- +,). (7._s)

where J0 and Y0 = Bessel functions of a real argument, of the first and

second kind respectively; I0 and Ko = Bessel functions, of an imaginary

argument, of the first and second kind respectively (modified Bessel functions) ;

Al, A,, A,, A, = integration constants.

By (7.3), (7.10), and (7.15), the general solution of (7.1) is:

w(p, t) = [Dlsin o)t + Ds cosoJtl [A./o + A,Yo + A,lo + A,Ko]. (7.16)

* In section 2 of Chapter IV the solution of a similar equation was presented in a different form. See also

section ? of Chapter [ and section 6 of Chapter V.
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2. Determining the integration constants from the initial

and boundary conditions

To determine the six integration constants in (7.16) it is necessary to

consider the initial and boundary conditions for the plate. Physical

considerations impose the following boundary conditions on the function

w(_, t):

at p-.0 : w#=_; _ (7.17)
at p--_o_ : w-*0. J

Since for p = 0 the functions Yo and Ko tend to infinity, while for p--* oo
the function 10 tends to infinity (Figures 28, 148, and 149), we must have:

A, ---A, = A, --0, (7.18)

Let no deflections occur before impact:

at t-_0: w=0. (7.19)

Hence,D,=O, and (7.16)reduces to:

,_,,,)=c._.,,,t,o(,,Vi"-_.-,') (7.207

where C is a constant. To determine its value, let the striking body of mass

M have a velocity V0 at the instant of impact It = 0) If the rigidity of the plate

is small, we can write:

at t=O and v=O : _-=Vo. (7.21)

III

¸'lib v-! = ,m_

i-i I

Y

_t5

0

-aS

-_0

FIGURE 148. FIGURE 149.

Ill

This equation states that the velocities of the striking body and the plate

are equal at the point and time of impact.
Since

_-_,=co,_o.=t.s.(PVV,, +_-,.)
and

do (0) -----1,

I ! m
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we can rewrite (7.21) as follows:

whence:

V$
C = --. (7.22)

I$

where

from the last expression (6.8):

Substitution of (7.22) in (7.20) yields:

In the case of a massive plate, the coefficient C can be found by equating

the momentums of the striking body and the plate at the time of impact:

pv.__g= _g C(_cos(_t. 1o (0) [,_o +

+I2,rococo,o,_o(_Vv_ _'-r']_,_1,.°÷ (_._,)
o

m = mass per unit area of plate and elastic foundation, determined

M

e

(7.25)

and F*,F,,.... F- = roots of the function:

+.(PV-V,---,).

plotted in Figure 149.

The absolute value of the integrals has to be taken in (7.24). The
summation in the last term is extended over all half-waves of the function:

which lie inside the zone of motion of the plate, i.e., that part of the plate

which acquires a velocity at the time of impact. The boundaries of this zone

can be determined experimentally. Assume as a first approximation that

the influence of the impact extends only over a distance corresponding to

the first half-wave of J0. We then obtain for l = 0:

Ill

", _,co+_.co,.!,,o(,V_w-_-,I, (7.26)

III

" lIB" :i '. i

--i- i-i

-I11

- mini i

'The integral is equal to:

!_'.<_V_-")_=(,.v-_._,.)!"o(,)',- "" I<_F'_--4--_-,,)Io
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or, since the first root of Jo(x) ispi= 2.4048 and J,(81) = 0.5191,

S,-'°(,V:v'-:-_"-,') ,,,= ,,_o
x* --r'

0

Substituting this value in (7.26), we obtain:

C = Pv= (y,* + x*-- r,)
IP ( r4l/-_'-+-_- r') 4- 2,Snmll

(7.27)

!11

Substitution of (7.27) in (7.20) then yields:

w(n, t)= PV°( r'VT"i-+'_--r') sinol.lo(pV _ + l,'--,').
[P (F7z + X* --,i)+ 2.5_miI

(7.28)

3. Obtaining the parameter k determining

the vibration frequency oJ of the plate

The parameter X appearing in (7.23) and (7.28) is related to the vibration

frequency co of the plate by (7.8), and is determined by considering the

equilibrium condition of a cylindrical element cut out of the plate near the

point of impact (Figure 150).

If ,._

FIGURE 150.

Neglecting the foundation reactions and inertia, the equilibrium condition

of this element is approximately given by:

2,_RQ = p _ (7.29)
g Ott ,

where R = radius of cut-out element and Q = shearing force acting along its

edge:

Q= -- D _(_+ (7.30)7_)-

Introducing the coordinate R, defined by:

R = py r.V'iT"-_'_--r,7" (7.31)

ii-ii- i
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we can rewrite (7.30) as follows:

%/0#w i Ow i 02w \

Substitution of (7.20) yields:

, , t (R)].Q = -- D (I/'_-t-),' -- r')v'Csin oJt[Jj' (R) - _ Jo (R)+ _-Jj

Since:

JI RJo--ll J,

Jo' = -- J,,Jo"= _"-- Jo, Jo"= R' R' F J,,

(7.33) can be rewritten as follows:

q = -- D (t/'_-_ X'-- r') v'C _inoJt._'_(R).

(7.32)

(7.33)

(7.34)

It is seen that (7.34)The function /x (R) has been plotted in Figure 1 51.

is not valid at p = 0. We therefore exclude the zone inside the radius R = 1.8

from our consideration. [For R = 1.8], we then obtain:

(7.35)

(7.36)

Q = -- 0.582 D (V r' + ).' -- r_)v, C sin cat.

Substituting (7.35) and (7.20) in (7.29), and taking (7.8) and (6.8) into

account, we obtain:

(V-_ + x, - r') '/' = p (s, + _,)
H

19.4 ['[h+ _o f 4' (z)dz]

0

After X' has been determined from (7.36). the frequency of the plate

vibrations during the impact can be calculated by (7.8).

4. Free plate vibrations

At the instant at which the impact ends (t ==_) the plate has already

acquired finite displacements and velocities, and it continues thereafter
to vibrate freely. The displacement and velocity at the beginning of the

free vibrations are, by (7,20):

w = C sin (u_Jo, I

C(ocos°_'Jo. / (7.37)0-/'=

Taking into account the boundary conditions at the origin of coordinates

and at infinity, the solution of (7.1) is:

w (p, t) = [D_ sin co"(t -- _) + D, cos _" (t -- _)] A, Jo" =
= [C, sin _o"(t -- _) + C, cos _0"(t -- _)] Jo" (7.38 )

I!!
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where to" is the frequency of the free vibrations, and k" determines the

argument of the function J0". The constants C_ and C, are found from the

initial conditions. Putting t = • in (7.38), we obtain:

w = C/o,

o-Ta== =. C,J'o. _ (7.39)

FIGURE 151,

Solving (7.37) and (7.39) for Ci and C, yields:

CI C_ J l= COS _ -- t
=" Jo

IC= = C sin _ .'/.*,
"/o

(7.40)

where C is given by (7.22) in the case of a flexible plate, and by (7.27) in

the case of a massive plate.

Substitution of (7.40) in (7.38) yields:

w(p, t) = [_-. cos _-_sinco'(t--,) -t-sino_xcosoJ'(t--x)]CJ o. (7.41)

We obtain the parameter ¢o" from (7.1), assuming its solution to be of the

for m :

V_ = =¢_, (7.42)

where = has to be determined.

Substitution of (7.42) in (7.1) yields:

.8,w
==w-- 2r'ccw-t- s=w =--m _7_ . (7.43)

Inserting into this (7.41), we obtain:

=# -- 2rS= -k s4 = m'(o", (7.44)

where _o" is to be considered as a function of _, whose extremum is _venby:

d=__"= O, (7.45)
d¢z

I!!
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or

da 1/_= _ 2r=a +
hi* V

This condition is fulfilled for:

gL=t "s,

Substitution of this value of = in (7.44) yields:

0,

I!!

where, as before:

(_'= V/s'm'-r'' (7.46)

H

rn"= "--5--- = (z) dz .

§ 8. PLATE WITH SIMPLE SUPPORTS ALONG THE EDGES

2

Let the deflections of a freely vibrating plate with simple supports,
resting on an elastic foundation (Figure 152) be given by:

=,(x, y, t) = w (x, y) r (t), (8.1)

i -i I

/_. ° -7

FIGURE 152.

Ill

The differential equation describing the shape of the deformed plate
surface is, as before:

V=V=w-- 2r=v=w+ (s4- m" (os) _v= O, (8.2)

whose solution can be represented as follows:

w (x, y) = A_ cos _- cos -y-. (8.3)

242
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Each term of this series satisfies the boundary conditions at the plate

edges [when iand n are odd]:

at0v

at x=+_ : w=O, -_-=0;

Oiw

atv=_+_--: _=0, _=0. !

We determine the natural frequencies o by substituting (8.3) in (8.2),

j,_x h.x
multiplying the result by cos-_cos--_- (j and h are arbitrary integers), and

integrating over the plate surface:

I!

b l

A,,LL-Ki-+--_-/ + + --ii--) -I- s" -- ra'o_'] ×
b l l=l n=l

s

inx nn _7_ dx dy = O.X COS--b-COS-_ COSj_x--_-COS

(8.4)

Equation (8.4) defines the work done by all generalized forces acting on

plate and elastic foundation over the virtual displacements of the plate.

Because of the orthogonality of the trigonometric functions, all integrals

for which i # j and n 4: h are equal to zero, and (8.4) reduces to:

_' --_-) +_," L_--+ ,, : + _ - x,,,_SS[(_÷_''' _,'" °"'_ m'o']
X cos --_cosl_dxdy = O.

(8.5)

In order that the solution be nontrivial, we must have:

/qh/tl ,*]2_[2 S S i_7t2 nS_S-_+,T) +2,(_+_+,'--m'_'=o,

H -i

whence:

1/ t _(it= 2 n'n2 .ffi _ t_t'tx_ ntx, _ 41
_"_= -- _"L__ ÷ --_-) +2, F-_- + ---a-)+ , 1. (8.6)

The entire frequency spectrum is obtained by assigning in turn different

integral values to i and n. The principal vibration modes corresponding to

these frequencies are:
{_X n_y

w_. = A., cos T cos T " (8.7)

Ill

The coefficients A_. are determined from the initial conditions of the

problem. Let a momentary impulse of intensity p(x, y) per unit area act on

the plate. Since there are no displacements at t = 0, the deflection function

I - ! l
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can be written:

whence:

l'nX /I_¢ .

_) (Xl Yt _) _ _J _II AIn cos--_-cos _S|rl(Din t,

l_l n--I

at

The initial velocity at t = 0 is:

(8.8)

(8.9)

= i=x nny p (x, y)

t=l

We multiply (8.10) by cos "'Z_-cos ? and integrate the result over the

plate surface. Because of the orthogonality of the trigonometric functions

this yields:

III
\

\

\

b/I lla hal I,,I

A_n O)ln I f , in), , nny __. | inx _ dx dy,cos-T_os7-_ _y= _ S Sp(_,y):o__ cos
--bl_ --112 --ha --1/2

whence:

Ain =

tA_

4 I I P(x'Y)c°sinXc°snnYdx ay

-bn-t/= b z (8.iI)

m _)in lb

Thus, finally:

w (x, y, t) =

bl_ t/I

Jb e i_x CO_ nny dx

-'_t_'tp (x, y) cos --_ "T" d:v
Pi

¢_t'n

i=x "=Y " t (8.12)
)< cosTcos 7- Sill co,..

Substituting (8.12) in (1.8) of Chapter III, we obtain the values of the

bending moments and shearing forces appearing in the plate due to the

momentary impulse p(x, y).

l-i !

\

I11

9. VIBRATIONS OF A PLATE WITH FREE EDGES

1

The natural frequencies of a plate resting freely on an elastic foundation

B " R m
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(Figure 153) are determined by separating the variables in (6.10):

T" + oPT = O, (9.1)

DVIViw- 2tVlw ÷ (k-- mco=)w = O. (9.2)

The shape of the deformed surface of the plate can be represented in
the following form:

n

w(x,y)= _,_¢m_.(x,y), (9.3)
l 1

where _. (x,y)= linearly independent functions, selected in advance accord-

ing to the geometrical boundary conditions, and C_. = constant coefficients.

For the functions _._.we shall choose trigonometric functions together with

linear terms corresponding to rigid-body displacements of the plate:

FIGURE 153.

II!

__ T i

ii ii-ii

The frequencies corresponding to the vibrational modes (9.3) are

determined from the equilibrium conditions, applying Lagrange's principle

of virtual displacements. For this we calculate the work done by all

external and internal forces acting on the plate over any virtual displace-

ment, in the same way as in section 12 of Chapter Ill. Substitution of (9.3)

in (9.2) then yields the following system of algebraic equations:

m n

y_:_c=.{If I°v=v'_- - 2tv,_...+ (k- ,_,)_.1_,,,_dy÷
z 1

+ _ [Q,= (,) + e* (s)l_,,_)} = o

(i= 1,2,3 ..... m; k=1,2,3 ..... n),

(9.4)

The terms under the double integral sign in (9.4) represent the work

done by the internal forces acting in the plate, the reactions of the elastic

foundation, andthe inertia forces arising in the plate and the elastic founda-

tion. The contour integral represents the work done by the shearing forces

acting on the plate edges. The first term determines the work done by

KirchhoffWs reduced additional shearing forces (cf. (1.9) of Chapter HI),

which appear at the plate edges as a result of the approximate fulfilment

Ill
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of the static-equilibrium conditions by the functions _(x,y). The second

term represents the work done by the reactions, distributed over the

plate edges, determined by the deformations of the elastic foundation

beyond the plate edges. Using (i0.8) and (i0.9) of Chapter III, and taking

into account the work done by the inertia forces acting on the elastic

foundation beyond the plate edges (cf. for instance (5.5) and (5.14)), we obtain:

Qe _ 2t[(a _ ,o._ /_ i ,'o'w\ 1 }<_' f_ l
(9.5)

where the subscripts l and b correspond to the longitudinal (x =--4-b) and

lateral (g = -i-l)edges respectively.

Equations (9.4) holds true even when the postulation of a foundation

modulus is acceptable; in this case the terms containing Q¢ and t should be

discarded, the characteristic k being taken as foundation modulus.

Equations (9.4) can be represented in the following form:

8oo. oo Coo -{- 8oo ,o C,o "{- • • • _- 8o0 _ C_. = O,

8i°' °° C°° + _';i i° Ci° ÷ "" + S'°i _" C_" = O I

_lk. _ Coo + 8_k. ,o Clo -i- • • • + _k. ,.,. Cm. = O,

_;o_Do_;L;,_&;;..+L;;,c;o-o,[
(9.6)

where:

8,k. ,.. ---- If [Dviv2 ?'_" -- 2tv'_" -}- (k -- into 2) _m. "l _,k dxdy +

+ _ [Q,_.(s)+ Q*(s)l_,k(s)as.
(9.7)

Integration in (9.7) is extended over the entire surface and the entire

contour of the plate respectively. These integrals represent the virtual

work done by the forces corresponding to one state of the system over the

displacements corresponding to another state. Hence, by the reciprocity

theorem :

(Sik, ,,,,, = 8,,_. _k)

and the matrix of (9.6) will be symmetrical.

System (9.6) will have a nontrivial solution if its determinant vanishes:

III

l .-I _R

-ill I

I11

_, co i_o_io • • • 300,m.

Ilio. oo _llli, lo • . • _lo,ran

8,nn. oD _,nn. 1o • • • $,m,. m n.

---- 0. (9.8)
a l R
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Expansion of (9.8) leads to an equation of(m +n)-th degree in _', whose

solution will give all the m + n frequencies corresponding to the vibrational

modes (9.3). The natural vibrations of the plate are thus:

m n

w (x, y, t) = __j __j Cm. _m_ (X, y) sin com. (l -- _mn),
1 1

(9.9)

where _,_, = constant determining the phase shift.

If the shape of the deformed surface of the plate is described by trigono-

metric functions, their orthogonality enables the general problem of the

motion of a plate on an elastic foundation to be divided into four independent

problems corresponding to the symmetrical and antisymmetrical vibrations

relative to the x and y axes respectively. Each of these problems will now

be treated separately.

In the case of symmetrical vibrations, (9.3) becnmes:

m n

mnx _ Concosn_yw (x, y) = Coo+ _, C.0 cos -_- + "7- +
1 1

+ Y,c_cos m'_-r-cos_-
1 1

(m n = 1,3, 5 ..... (2k -- l)).

This means that:

(9.10)

°'* }
%0 = l, cp_no= cos --_,

n_y rn_x nzy
_Po,----cos --T- ' _,,_ --- cos T cos -7-'

(9.11)

where m and n = odd integers.

Substitution of (9.11) in (9.7) yields all the coefficients in (9.6). For

example, when four terms(m = l, n---- l), corresponding to the four possible

modes of plate vibration shown, are taken in (9.10), the matrix of the

algebraic equations is given in Table 18. This matrix is symmetrical. It

is formed by calculating 10 dimensionless coefficients, using the following

symbols :

_-= , _=F'

Eh _

D = 12 (i --_) '

k -- Eoi ,o-----c14" (z)az,
o (9.12)

H
E°

o

H

mo= moi _ (z)dz,
o

!!!

':mE :'_ 7 '_"

l l l
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Here l and b = length and width of the plate respectively, D = flexural

rigidity of plate, m o = reduced mass of elastic foundation, k and t =

generalized characteristics of elastic foundation, _ = _(t) = function

representing distribution of displacements over thickness of elastic
foundation.

By equating to zero the determinant of this matrix we obtain an algebraic

equation of the fourth degree in ,.,I, from which the natural frequencies of

the plate, corresponding to the four assumed modes, can be obtained.

If the plate is considered to be perfectly rigid, all terms except the first
in (9.10) vanish. From Table 18, we obtain for this case:

or

,,,,÷_)_,1 0

V _+ (I +_)W°o= t_ t + m__!+t+ p (9.13)

I!1

In the case of antisymmetrical vibrations, (9.3) becomes:

a) for vibrations symmetrical with respect to the x axis and antisym
metrical with respect to the y axis:

w(x,y)=Cco_.÷ _ Cmo sm-_-÷-E_"m.x 2x Co. cos._ +
• 1

m n

| I

(m=2,4,6 .... ;n=1,3,5 .... );

(9.14)

b) for vibrations symmetrical with respect to the y axis and antisym-
metrical with respect to the x axis:

z |

n

+:_yc..co,_,,..__
x 11

(m= 1,3,5,...; n----- 2,4,6 .... );

(9.15)

c) for vibrations antisymmetrical with respect to both axes:

m

|

n m n

(n,m = 2, 4,6,8 .... ).

(9.16)

l-i l
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The coefficients in (9.6) are again obtained from (9.7).

Considering only the first four terms in (9.14), (9.15), and (9.16), we

can represent (9.6) for the cases a, b, and c, by the matrices given in

Tables 19, 20, and 21 respectively, where _, p. k, D, and m0, are given,

as before, by (9.12). Equating to zero the determinants of these matrices,

we obtain equations of the fourth degree in w' which yield four natural

frequencies for each case considered.

Taking only the first (linear) terms in (9.14) and (9.15), we find from

Tables 19 and 20 the frequencies of a rigid plate:

in the case of vibrations antisymmetrical with respect to the y axis

V_. ,2
'+5('÷_)÷_

n% ,',b

(9.l't)

in the case of vibrations antisymmetrical with respect to the x axis

_+_-_ / _,-_b "
WOO _

+_ + t.+313
m o _b

(9.18)

The first approximation in the case of vibrations antisymmetrical with

respect to both axes (Table 21) is:

D , 12 (! + _I)
_%a = k 288(I-- _)_-_p +I+50 + p)+&-/._-bt (9.19)

m, _+_-!+ 3+3j_
izb

II!

-ii ii-II

§ 10. BUCKLING OF A RECTANGULAR PLATE RESTING

ON AN ELASTIC SINGLE-LAYER FOUNDATION AND

COMPRESSED IN ONE DIRECTION

Consider a rectangular plate resting on an elastic single-layer foundation

and loaded by axial compressive forces N (x) per unit width (Figure 1 54).

The differential equation of the deflections of this plate is:

d_
Dv_vzw -- _£Vsw + kw = -- N (x)_--_, (I0.1 )

where D = flexural rigidity of the plate, and k and t = generalized character-

istics of the elastic foundation. The compressive forces are considered

positive in (10.l).

We represent the plate deflections by the finite series

w (x, y) = _ w, tu)r,(x) (10. 2)
i.|
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and assume as before (cf. section 2 of Chapter III) that the functions X*(x)

are known; the functions Wk(y) are considered as unknowns. We can then

write (10.1) as follows: [cf. (2.25) of Chapter III]:

12(b,k+ p_,)-- ,V,klVe_+ y, (c,k+ s,'k)W. = 0
• --1 IrE1 AE1

(10.3)
(i= 1,2,3 ..... n).

D

FIGURE 154.

I!

The coefficients a,_, b:k, c_k, P_k,

of functions X,(x) and on the values of the elastic constants of plate and

foundation: [cf. (2.26) of Chapter III]:

a_ = rD IXk X_dx,

l

pPk= t I XkZ+dx + 2a I[Z+ X+II,

2t , 2at

s_k in (10.3) depend on the selected system

(10.4)

The magnitudes N_, which depend on the compressive load N (x), are:

Nik = IN (x) "_lXkdx. (1 0.5)

If the external load is uniformly distributed, i.e., if N (x) = const, equation
(10.3) can be written in the form:

y. _,. te.,_-- 2 (_,.+ p,'.)- a,. te_ + _ (_,__- ,,o) te_ = 0, (10.6)

i i-1

I11
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where P = total compressive load and b = plate width.

By assigning to i successively all values from 1 to n we obtain from

(10.6) or (10.3) a complete system of ordinary homogeneous differential

equations in the unknown functions W,(y)(k = 1,2 ..... n). With the functions

Z_(x)(k= I, 2 ..... n) known, these equations can be solved up to a parameterp

(Nin the general case), representing the unknown critical force. By adding

to (10.6) the homogeneous boundary conditions at y = :£_/2for the functions

tV_(y), we obtain, from the conditions of the existence of nontrivial solutions,

an infinite set of values for P. Since the system (I0.6) has a symmetrical

structure, the eigenvalues will always be real in the homogeneous boundary-

value problem considered.

The best way to solve ordinary differential equations with constant

coefficients is Krylov's method, which was developed for the case of small

vibrations of systems with many degrees of freedom.

If l>>b, the solution of (i0.6) can be represented in the form:

W,(y)=Cksin 7 (k= 1.2,3 ..... n), (10.7)

where the Ca -- constants, and k = length of the sine half-wave corresponding

to buckling in the y direction.

Substituting (i0.7) in (I0.6) and equating to zero the determinant of the

equations obtained (the C, being considered as unknowns), we obtain a

characteristic equation of order n in P, whose roots will be real. Since

two unknowns, the force P and the half-wave length k, are interrelated by

the characteristic equation for finite values of n, these unknowns have to be
found from condition:

a__P=O.
dk

In practice it is sufficient to take onlythe first terms of (10.3). ]Buckling

in the direction of the plate width is in this case characterized by the

function Z(x), and the differential equation becomes:

AW 'v+(Nn-2B) W'+CW=0, (10.8)

where W = W (y) = unknown generalized deflection; and:

A = D 1z'dx,

IV,,= f N (x)Z'dx.

(10.9)

For (l,:_bjwe can represent the solution of (10.8) in the form (10.7). We
obtain :

A_:-_'-_,,- _)_:-_'+_: 0 (1010)

It can be seen from (10.10) that the generalized compressive force Nu

is a function of X. To determine the minimum (critical) value of nn, we

III
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differentiate (10.10) with respect to k and equate the result to zero.
obtain:

4

The critical value of NI, is then:

N. = 2(B + VA-C).

If N(x)=const , we can rewrite (I0.12) as follows:

p 2Db ,n

= 'x- {_ _ 1IX-d),

We

(10.11)

(10.12)

(I0.13)

III

where P = total compressive load.

Introducing the generalized geometrical characteristics:

Bl' CI*
A '

we can represent (10.1 1) and (10.13) in the following form:

(10.14)

X = "-l p = _F h'
s ' e(i--_'} I'(r'+s')' (10.15)

where .F = area of plate cross section, h = plate thickness, and I = plate

length. If the plate length 1 is of the order of the width b, but less than the

wave length }, obtained from (10.11), then l has to be taken as wave length,

and the critical compressive force is then determined from (10.10). If

I I I 1

> x > h"_i, we put _ ffi ;and _ in (lO.lO); the lower value obtained for

N,L is the critical one.

| i-|

§ 11. BUCKLING OF A NARROW PLATE RESTING ON

AN ELASTIC SINGLE-LAYER FOUNDATION

Equations (10.3)are easiest to solve when the plate cross section can be

considered as undeformable. This assumption is justified for sufficiently

long plates with free edges (Figure 154), or with one edge simply supported

(Figure 156), and also in many other cases when an elementary transverse

strip of width dg, cut out from the plate, can be deformed (Figure 155). In

this case we choose as functions _(x) the displacements of the strip

considered as a combination of rigid links.

We shall now consider some examples.

1. Rectangular plate simply supported along a longitudinal edge

Consider a rectangular plate of uniform thickness h, loaded by a centrally

applied compressive force P ----/Vb (Figure 156). Rigid-body rotation of the

ill

i i !
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plate about the supported edge is taken as the virtual displacement depending

on the x coordinate:

X_X.

This problem is described by (10.8), where

b8

A=D_,

B=Db(,-_)+'_(,+Z).

pbz

Nn = -_-,

(11.1)

so that (10.8) becomes:

P 6 (11.2)

/

/$-A¢,

FIGURE 155. FIGURE 156.

Let the lateral plate edges y = 0 and y = l be simply supported. The

solution of (1 1.1) can then be represented in the form:

W ==Csm- T. (11.3)

Plate,_ having undeformable cross sections can only buckle in the form

of one half-wave, so that _, in (10.7) is always equal to the plate length !.

_u which is differentSubstituting (1 1.3) in (1 1.2) and dividing by Csin 3- '

from zero, we obtain:

_ . ,,' !,1-_' +5(,+_)] o,--[_-_(,-,1-,(, +.,,j,.+_[,
whence :

"" °" ('+_:+-_L'+_0('+_)]. _11.,)

Ii l I

i i •
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where J = _2' -- moment of inertia of the plate cross section.

For _ = O, the first term of (1 1.4) is identical with the expression for the

critical Euler load. The second term is due to the increase in the critical

force, caused by the fastening of the longitudinal edge of the plate. The

last terms of (11.4) takes into account the supporting effect of the elastic
foundation.

If the plate lies on a foundation for which a foundation modulus can be

postulated, the terms containing t and e in (11.4) (determined by the shear-

ing strains of the elastic foundation) should be discarded. We then obtain:

_nEJ 6EJ kbl t

Pct---_-P b,(l+_)+ ,, , (11.5)

where k = foundation modulus.

2, Rectangular plate with free longitudinal edges

Consider a rectangular plate loaded by axial forces whose transverse

distribution is linear (Figure 1 57). These forces can be reduced to a

centrally applied compressive force P (considered positive) and a bending

moment M acting in the plane of the plate. We assumed that the plate

consists of longitudinal strips of different thickness and that in the general

case it has no longitudinal axis of symmetry.

FIGURE157.

° L

IIIIIIi_lliIII

_L
FIGURE 158.

X,-/

Z2"X

X_°I

Ill

-| -1-I

Ill

The virtual displacements of a transverse strip, cut out from the plate,

are taken as the translatory displacement Z, = ] and the rotation Y2= x about

an axis passing through the centroid of the plate cross section (Figure 1 58).

The plate deflections are then:

w(x, y)----W,X,+W,_,-- W, +W,x, (ii.6)

where l_, and W, = generalized deflections. The functions W,, which has the

dimension of length, corresponds to the cylindrical bending of the plate in

\
m ! R

258

I • I

l-..l I I I I 1 1 1 1 1 1 I [.[ [:[ [ l



II-A-A-I

the longitudinal direction; the dimensionless function W, defines the angle

of rotation about the axis through the centroid of the cross section. It is

thus assumed that both flexural and torsional buckling of the plate is possible.

In the case considered (10.3) takes the form:

L

a,, WI v + a,,W_ v + IN,,--2(b,,-I-p_,)l W] + IN,,- [

- 2(b,, + p_,)lW_+ (c,,+ s°,,)',V,+ Ic,, + s,_,)'_, = 0,[ (1 I. 7 )
,,,,_/I' +a,,_ v +rE,,--2@., + Pl,)lw;+lN.-- [

--2(b22 + p_)l W;'+ (c,, -_ s_,) W, + (c,, + s_,) W, = 0, ]

where by (10.4),

t

2

a,, = _ D,,, _ (x.+, -- x,,,)(x_ + x.+,x,. + x'_+,).

b,, = b,. ----O, b,, =- _. Drab,,.

¢11 = C|2 _ Ci_, _ 0,

o ,(,:_,;_(,+_)

k 2

(11.8)

The summation in these expressions is extended over all the longitudinal

strips.

Ehs - flexural rigidity; b = overall width of the plate;Here D = "_21i -¢-)

k and t= compression and shear characteristics of elastic foundation

respectively.

According to (I0.5) we have:

N,,= ]N(,)X',,_. |
N,_ = ] N (X)l,X,&_. }
N,, = I N (_)x;d_

(11.9)

I1!

" II .. Wl ; |

\

| i i

I11

We can write:

N(x) =n(x)h,

where the normal stresses N (x) are given by:

(11.10)

nil - l i

p M
n (x) = -F+ Ti x.

(11.11)

259
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Here F = the area, andJ,=fx2dF, the moment of inertia of the plate cross

section; 114= Pc,,, where e. = eccentricity of applied force P.

Substituting (I1.10) and (11.11) in (11.9), with Z,= I and X2=x, we obtain:

Nit = I nhdx= P,

N. = f nxh dx= M,

N. = i nx2h dx = "F" @ "-f_s 'PJ'MJs

(11.12)

where

Js -- I xa dF' dF = h dx. (11.13)

Substitution of (I 1 .B) and (I 1 .I2) in (i 1.7) yields finally:

attWIv+ (P -- 2p_,)W; + s,_Wl + a,sW_ v -I- (M -- 2p_,) W; + I

+ _,w, = 0,

,,,,wlV+ (m- 2g,)w; + _,w, + _,,wY + (
PJI MJ, o " o

+ [-r +-a-, - 2(_,,+ P-)] _, +_w, = 0./

(Ii.14)

Several examples will be given to illustrate the procedure adopted.

3. Rectangular plate of uniform section

If a rectangular plate of uniform thickness h has free longitudinal edges

and is loaded by a centrally applied compressive force p (Figure 159),

(Ii.8) and (Ii.12) reduce to:

EJ
all = Db = I---'_-_,, al, = b,x= bl, = cxl = cl_ = c,2= O,

b• Elbs El

a.=D]_=_, bs,=Db= t-i_"

p:,:,b(t+_-), _,=_:,=0,g '_'
_ _(, 6 ,z

, P J= Pb'
N. = P, Nil =0, iv,,= -$- = q_-.

(11.15)

System (11.14) can in this case be separated into two independent

equations :

_,,w__+ (P- 2p,_,)w; + _,w, = o, (11.16)

corresponding to flexural buckling,

bs
and _,,WIv + [P_-- 2(b. + p_)]W; + _W, = 0, (if.17)

corresponding to torsional buckling.

Ill

-I l-I

I11
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Let the lateral plate edges be simply supported,

Substituting Wl == Cx sin_, W. = C, sin_ (11.18)

in (II .16) and (II .17), we obtain the following expressions for the critical
forces:

P,=_+ _,b(,+A)+__"0_+A). (ll.1,)
EJ_' 24E.,' " 2tb /I k _{I 12'>':_ +_, + c +b + .,_+_+_). (11._o)

III

,//'/Zig I//

A I
WlIIIIIIlllIII

!

a_/
//
%

/

_'s" t

ixrz

FIGURE 159.

-z

I °

FIGURE 160.

• -f n

I-I I

It can be seen that in the case considered, the smaller critical force is

given by (I 1.19), which corresponds to flexural buckling; in other words,
torsional buckling is impossible in the symmetrical case. Let a moment
M act on the same plate (Figure 160). The coefficients will have the values

given by (11.15), except for Nt,. Here:

Ni, =0, Ni, = M, Nii=M_. (11.21)

For a symmetrical plate:

J, = It' dF =. 0

so that N,, = 0. Hence, the system of equations (11.14) reduces to:

iv o • MW;= O, }a,xWl -- 2p,,_/i+ s°xWi +

Mw;+a,,w'"-2 @,,+,¢)w;+ _', -- o. / (11.22)

When the lateral edges are simply supported, the solution of (11.22) can

again be presented in the form (11.18).

I11

I m m
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Substitution of (11.18) in (11,22) yields the following expression for the

critical moment:

o _2 o 1' ii I z ,

(11.23)

In this case, mixed flexural-torsional buckling takes places.
I!!

§ 12. BUCKLING OF A PRESTRESSED PLATE

RESTING ON AN ELASTIC FOUNDATION

Consider a prestressed rectangular plate, compressed by a reinforce-

ment rod lying in the longitudinal section x=e_ (Figure 161}. The rod is

extended by a force R = n,AF, where AF = cross-sectional area of bar.

The normal-stress diagram for the plate cross section y = const is shown

in Figure 161. With the exception of the vicinity of the rod, the normal-

stress distribution is given by:

R Rex

hi= -p+--l-x, (12.1)

where R = tensile force acting on the reinforcement rod.

/,_,/:,.+,_//-"
,vI " h.tZiI

__:A.J:"
/ -,;, l/

,.,.,,._ f/_",-A IIIIIIlll_lllllllllJ,;,

FIGURE 161,

The state of stress thus corresponds to a balanced (in static equilibrium)

system of forces, i.e.:

_ l

In(x)dF = P = O, In(x)xdF=M--- O. (12.2)
0 0
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If we assume that the plate cross section is not deformed, the solution
will be given as before by (i1.14}. Those coefficients which do not depend

on the compressive load are for a plate of uniform thickness determined

by (11.15).

The coefficients which depend on the external load are obtained from

(11.9), where the integrals are to be understood as Stieltjes integrals. The

integration yields :

N'= ln(")dr= S'dr--"'_'P=O' I
N22 = In(x)xdF= fntxdF--n, AFex = O,

|

N_ = I n (x) x* dF RJ, Re_..1, -- l= --F-+--T_--R4,

(12.3)

where

J,=fx'dF, Js-_IxSdF, dF=hdx.

Substitution of (11.15) and (12.3) in (11.7) yields:

,,.te_"- 2p?,w;+ 4,_e,=o,
a,,wl" + i,v,,- 2(b,, + _,)1 w; + 4,w, = o, } (12.4)

where for a plate of uniform thickness:

bl

N,,=R(_--_). (12.5)

The first equation (12.4) is independent of the load and therefore:

Buckling of the plate is thus determined by the second equation (12.4),

in which W2 appears. Since the generalized displacement W_ represents a

rotation, torsional buckling will take place. It follows that no flexural

buckling occurs in a prestressed plate.

Assuming that the lateral edges of the plate are simply supported, the

solution of the second equation (12.4) has the form:

W,=Csin?. (12.6)

Substitution of (12.6) in the second equation (12.4) gives the following
value for the critical force:

i r ,_' +°,1'1Rc_= _ [a,,tv+ 2(b,,+ _,) ,,,,_j,
--ez

I II-II-II

where a_2, b,z, _, s_ are given by (11.15).

\

IlL

i-i i

I11

(12.7) u - _ m,
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Consider a prestressed plate of uniform thickness, subjected to a

compressive load applied at an eccentricity e# (Figure 162).

The differential equations of buckling in this general case, which is a

combination of the two previous ones, are:

a.Wl" + (P- 2p_*,)w: + _*,w,+ p_.w, = o, |

p_,w;+ ,..._:_+ [(p+ R)_- Re.- 2(b.+ _.)]w;+ /
+ s_W, = o.

(12.8)

In the particular case when the external load is applied centrally (ep ----0),

the system of equations (12.8) can be separated into two independent equa-
tions, corresponding to flexural and to torsional buckling respectively.

z

FIGURE16"2.

In all the above examples it was assumed that the plate is simply
supported at the lateral edges y = 0 and y = I. With other methods of support

(built-in edges, free edges, etc, ), the critical force is determined from

the general integral of the corresponding homogeneous differential equation

satisfying the boundary conditions. This yields a system of homogeneous

algebraic equations in the integration constants, since the boundary condi-
tions are also homogeneous in buckling problems. Equating to zero the
determinant of this system (considering only the nontrivial solution) we

obtain a transcendental equation in the parameter characterizing the
compressive load. This equation has an infinite number of roots, the
smallest of which determines the critical value of the compressive forces.

II!
\

i l-i

\

I11
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Chapter VII

METHOD OF INITIAL FUNCTIONS. APPLICATION OF THE

METHOD TO THE THEORY OF THICK PLATES AND

TO THE THEORY OF ELASTIC FOUNDATIONS

§ 1. GENERAL SOLUTION OF THE THREE-DIMENSIONAL

PROBLEM OF THE THEORY OF ELASTICITY

The general problem of the equilibrium of a solid isotropic elastic body

undergoing small deformations is described in cartesian coordinates by the
differential equations :

aaz a-rxu O'r.z
E + --_ -F -E + a = O,

ao u a+':vz axl/x

av t--_-+-_-x +b=O,

0% o_zx o_.rzu

-E+ ]_F+-_- +c = o,

(1.1)

2G ro .a,,, /av. a._o.,,=_---:WL-")_+ '+t,_+ _)J,
2G

% _[(l -O+ /o_

•+,,=,,+=+(+_++_).
,,.=,,.=+C+_++).

<+(++,'+

(t .2)

III

ml" .I .:l

i-l l

where o.,%,...,xu.' x..= components of the stress tensor; u. v,t_ = components

of displacement vector of point considered; a, b,c = components of vector

E

of the body force per unit volume at this point; G = 2(I +W - modulus of

elasticity in shear; _ = Poisson's ratio*.

i i m

" Equations (1.2) were akeady given in section 6 of Chapter I. The magnitudes introduced there were

different, being the elastic constants E0 and ,_ of a three-dimensional body (the elastic foundation), defined

by (6.3) of Chapter [.
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As already mentioned earlier, two methods of solving the general

problem are used in the theory of elasticity, namely the method of displace-

ments and the method of stresses. The first method, in which the basic

functions are the displacements u = u(x, y, z), v= v(x, y, z), w= w(x, y, z) , was

used in the preceding chapters when considering the strains in the elastic

foundation in the two-dimensional and three-dimensional cases. In the

second method the basic functions are the stresses:a, = a,(x, y, z) .....
•x_ = _xz (x, y, z),

In addition, it is also possible to apply a mixed method, as will be done

by us in the solution of the general three-dimensional problem of the theory
of elasticity.

Let the basic unknown functions be the displacements u = u(x, y, z),

v=v(x,y,z), w=w(x,y, zj and the stresses_x,,_w_, a,. The components u, v,w

of the displacement vector will be considered positive if they coincide with

the positive directions of the coordinate axes x, y, z.

Similarly, the components %,, %z, a, of the stress vector acting on an
elementary surface, whose outer normal is directed along the z axis,

will be considered positive if they coincide with the positive directions of

the x, y, z axes respectively. To simplify the notation, the displacements

u, v, w will be replaced henceforth by the magnitudes:

U = G,, V = Gv, W = 6w, (1.3)

also called displacements.
The unknown stresses will be denoted:

•t,,,= X. '_,= Y, a,= Z. (I.4)

Eliminating between (1.1) and (1.2) the stresses ax, o_, _xv = _vx we obtain

the system of six fundamental equations of the mixed method. Substituting
(1.3) and (1.4), these equations can be presented in the form:

au o@r'
az - --_f- + X,

OV aW
a_- = -- _-y + Y,

OW v ( OU OV • l--2v

_-- = - ___ CE + -_-_) + _z,
OZ OX OY
Oz Ox Oy - c,

OY I + v OsU IOsV 2 0IV _ v OZ
o--i-= -- t - _oxoy __-Zet i--_ Yff) t - , ou b,

OX t+ v OsV (OsU . 2 8sU \ v 8Za, - I- ;0";_ --_ + _- _T_-,,)--i--:-, ox a.

(1.5)

The remaining stresses are:

2 ou /av . OIl'\l
o, = 1_---:-2_[(1--v)-E- + _-E +_-)],

_ "E + "I-E + _).1'
OU OV

"¢.v= "cyx= _-_ Ox "

(1.6)

II!

i l--I

I11
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From (1.5) and the boundary conditions, the six unknown geometrical and

statical magnitudes characterizing the states of strain and stress can be

obtained.

The mixed method of representing the general equations of equilibrium

of an isotropic elastic body can also be applied to dynamical problems of

the theory of elasticity. The unknown functions U, V, iV, X, Y, Z depend in this

case on the variables z, y, z, t; in {i .5), the expressions for the inertia forces

,. a,u m a'V ,. a:W
G at'' 0 at,' (7 at," (1.7)

have to be added.

§ 2. SOLVING THE EQUATIONS OF THE THEORY OF

ELASTICITY BY THE METHOD OF INITIAL FUNCTIONS

II!

"1I _'!

Consider two planes in the body: the plane z = 0 and a plane z = const,

parallel to it. The part of the body included between these planes represents

a layer of thickness z = const. When z is fixed the unknowns in (1.5) depend

only on x and y. Thus, the magnitudes U, V, iv, X0 Y, Z determine the dis-

placement and stress vectors at any point (x,y) of the fixed plane z = const.

The magnitudes U0, V0, iv0, X0, Y0, Z0 corresponding to z=0, will henceforth

be called geometrical and statical initial functions,

The positive directions of displacements and stresses for points of the

lower plane z = const and of the upper plane z = 0 are shown in Figure 163

(the z axis is directed downward).

i i-I

I11
_'_!I!!__...... 1--;-• _.;_-• _/

tz
FIGURE 163.

For any plane z = const, the vector components are positive if they act

along the positive directions of the coordinate axes. The same rule is also

applied to the components Uo, V0,iv0. The components X0, Y0, Z0 are positive

when their directions are opposed to those of the positive coordinates

axes.

I - I n
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We assume a general solution of (1.5) in the form of Maclaurin series

inz:

z { 0u _ z, wvU=Uo+ \-_-)0+-_._ (-_)0 + .,.

z { 0v ] "' ca,v
V =Vo + \_-/o+-_Tk_/o+..

. .... , . . ° • .... • . ,

/ 8Z \ z_ / OnZ
z= zo+ z[-_)o+ _-)o +

(2.11

The following symbols will be used for the partial derivatives of any function

F= F(x,y,z):

8F OF 8F
0---i= _F, _ = _F, --_ = rF;

_SF =_sF, 0_F DIF
Ox--_ -_i-ys=_F, "_ =rIF;

_F _F _F

(2.2)

in general:

o_+l+m F

Ox*OyZOz r_
= ,,*[_lr,,,F.

These symbols are those used in the so-called symbolic method, which
makes possible the application of the methods of linear algebra to differen-

tiation and transformation of equations.

We can then rewrite (1.5) as follows:

rU = --¢W + X,

rV= --pW + Y,

rw = - _ (_v + _v) + _ z,

rZ = -- _X -- [_Y-- c,

rX =--il+___v_JV--([J'U -I" I--_'*'U)--_cLZ--a.

(2.3)

The body forces a, b, c will henceforth be assumed to vanish.
Multiplying (2.3) by r, and eliminatingthe terms containing rU, rV ..... rX ,

we obtain the second derivatives with respect to z of the unknown functions:

--V S,,u -_-_,, +t,,)u '= -- I--, _pV --_) _Z,

t ^ _2 --v. n _s) V !rW=--_-_-_-_v_Pu--_-_-_,P + 2 (l_ ;__Z, (2.4)

! !

I!!

--I .'! ; !

i-i I
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I--V" p 7 J

(2.4)

The third derivatives with respect to z are obtained by multiplying (2.4)

by r and eliminating the terms containing rU, rV ..... rX with the aid of (2.3).

Higher derivatives are obtained in the same way.

\

Ill

Equations (2.3) and (2.4) are true for any values of the independent

variables x, y. z. Putting z = 0, we obtain the partial derivatives in the

right-hand sides of (2.1). Grouping together the differential operations

performed on the same functions ( Uo, V0 ..... Xo) we obtain the unknown

functions U, V ..... X, expressed through the initial functions Us, V0,. •., X0 and

their partial derivatives.
These formulas can be written in the form

R! i U

U = LuuUo + LuvVo + ... + LuxXo, I
V = LvuUo + LvvVo + ... + LvxXo, I• o , o , , , , , , .......

X = LxuUo + LxvVo + • •. + LxxXo,

(2.5) i-i i

where Luu, Lvv ..... Lxx = linear differential operators with respect to the

initial functions Uo (x, y), Vo (x, y) ..... Xo (x, IlL depending on z and containing

partial derivatives with respect to x and y for z =0. These operators can

be represented as follows:

Lvu = Lxx = I _ _ - v) _ _=2 +

.__ ZI =t=t _1(4-v) lt=t ?2_,_t_ .__ . . .
"_-'1 P 720 (1-- v)

Luv

z_

-- _ "t'=_ + ...

-t- z*(2--v) _ Pt3--v) +

P (4-- v) (2.6)
+ 504o(1--_) _= +""

Z| Zt

Luz = Lwx = ,4(t--_)=+ _==--
z I za

480(t --'_) T4a-J- 20 160(1 --v) 1.= -_- " " "

zt z_

Luy = Lvx = -- t2 (t -- v) otp -- _ _'==p --

z?

-- 336,0 (I -- v) Tt_ -_- ' " '

Ill
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z* (3 -- 2.,0 _, zB z5 (2 -- v)
,Eux----- z-- 12(t--v) --6-_÷t:'O(t--v) r e;2-F

t0 0--_ (I--"--'_)i' _ -- 504"--6'/_P+ " "

Lvu = LxY -_ z_ z4
_(I --v) =_ ± =

24o0__'/'=IB4 ...

za z*(4--v) ,_2 z*

z_ (2 -- ..,) 2- zi (3 -- v)

z 7(4 -- v)
+ 5o_o(i-v_ y6_ ...

z 2 Za

Lvz Lwy ---_ 4(I-- v)_-_-24(J _v)'/ _--

z6 zs

48o(_---_-_-'/'P + __--_) '/'P --.. •

Lw,=z-- _(3-2v) z z_ ~_. _(2--v) --.
12(I--v) _ --_"" T _'/'_;_-'F

...___ z_ z_(5-2v) z'

z_ __z'(i+v) o z_(2+v) ,
L_u = Lxz = --___ _ "I"_ _-- 12o_-_)_ _+

z'(3+v) ~o_

z,*(2 + v)
12o(I _ I'P + _ "('P....

Lww=Lzz=l-+-_. 24(I_ v)a

F z'_(2+'O ,

Lwz z (! -- 2v) _ z_, = z_(1 + 2',) ,

z'(f+v) '/,__
__ • .o

Lzu = Lx_/= -- ' z*
t_ vT _ 6(t_v) _o_-'F _'/_=--. . .

z_ z_ z_
Lzv=Lv_,, ___'/_ 6 (i _ v) _ -k i20(i__> ,_ p__"

-- -- Zs ,v_, .-I- z" _ zV ,{8Lz_ - a(i--_)_ --_'/ _o(i --_) +"

z' (3 + v) 2

z_ (5 + v) . z' (7 + _)
12-o(i----_WT'=P+ _6if--;,) T%_--.

Lyv= __ _..__v _2__ z=_ + 2z_ _ _ z'

20(1 --v) Jr- _'/"_' -'F 5040'/ _' --

=--__-_-_ --Zp'+ ( _ )

za '/%,s z'20(t--v) -- _'/_ z'+ _'/_=' + _o4o'r_ _ _-- • - •

(2.6)

I!
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k A-A-m

The symbols ,f2, ,f,,..., _ denote two-dimensional harmonic,

and n -harmonic differential operators in the x, y plane.

These operators are related to the single-term operators:

0' _2 0'
='=_-_-, =-_

as follows:

biharmonic,

III

Considering the differential operators

in the right-hand sides of (2.6) as algebraic magnitudes, i.e. performing

on them the operations of addition, subtraction, multiplication, and division,

we can represent the operators Luu, Lw, Lvw,...,Lxy, Lxx in (2.5) in closed

_/ 0 j 0sform as trigonometric functions of the argument "_z----z _ + _.

Using the series developments of the trigonometric functions:

cpm cpL _ _P_sinv----eP--_T+ 5"-F--''" cosq_= I --__'{- 4_

i (sin _p-- (pcos(p) = _' 2_ 3_'_- 3t 51 7[ " "

-T (sin_P+(Pc°s_P)= cP---_ -+ st ....

i . cp+ 2_ 3<p'
T (?snn¢p+2c°scp)=l-XT+ 6, 8, + ....

2¢p_
T(3s'n(P--gc°s(P)=CP---_ -+ _I 9t _-""

where we write _= Tz,

1 aSz sin Tz,Lxx=Luu=c°s'tz 2(J --v) T

Lvx = Luv = --2 (! --v) sin Tz,

Lzx = Lu_ = 2(t --v) _- [(1 -- 2v)sin,rz + -_zcos-_z],

i az sin Tz,Lwx = Luz = -- 4 (l _ v} "¢

Lvx = Luy = 4(t-- v) (sinTz--Tzc°s Tz)'
t 1 a'

Lux=-_ "sinTz 4(i--,*)7' (sinTz--Tzc°s TZ)'
1 a_z .

Lxy = Lvu = -- 2(-R_----_)_ sm _'z,

I B'z sin Tz,Lvv=Lw=cos',[z 2(l--v) T

i _ [(l--2@sin'rz+,,[zcos,fzl,Lzv = L w=--2(i_v)._

we can represent the series (2.6) in the form:

(2.7)

mm

i-i i
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It A-A -st

i _z sin "['z,
L_y = Lvz = 4(i--v) _,

Lxz = L_,v = _ -_- [(l -- 2_) sin _z -- "fzcos "Cz].

Lyz = Lz, v = _ _ I(1 -- 2,) sin Zz -- _z cos-tzl.
t

Lzz = Lwu, = -- _ "t (sin "fz -- "fz cos lz),t v
t t

Lwz = _ _- 1(3 -- 4v) sm "tz-- "tzcos _zl,

t
Lxw = Lzv = _ a,fz sin ,fz.

!
Ly_ = Lzv = _ _'tz sm "tz.

1
Lzv = -- i-_-_'t (sin-tz --'tz cos "tz),

t =_ (* sin*fz + _z cos _z),
Lxv = Lyu = 1- v

a= l p
Lvv = -- -- sin _z (sin _z + Tz cos _z)."r 1 -- v "i'

Lxu = -- _--_-*sin "fz-- _ a---_l(sinTz + "fzcos'fz).
T I-- v "I'

(2.7)

We have thus two forms of representing the differential operators

Luu,Luv .... Lxx: a purely differential form given by the infinite series (2.6),

and an integral-differential form, given by the transcendental equations

(2.7), which contaill operators of the form:

,_, "fl, I (=, + p,)-v,,_=1='÷_')'=(_ + a.,J T =
t
_ = (=, + p,)-v,,

where, as before:

a I at

_*+ p==-_+ _.

Using(2.5) and (2.6) to express U(x,y,z), V(x,y,z) ..... X(x,y.z) through

Uo(x,y), Vo(x,y) ..... Xo(x, y) and their partial derivatives, as well as through z ,

we obtain by means of (1.6) the remaining stresses a,. _.,, and _,_ = ,,, , acting

on surfaces parallel to the z axis:

a, = AuU o + AvVo + • • • + AxXo. ]

% = BuUo + BvVo + • • • + BxXo, J_y = _, = CuUo + CvVo + •. • + CxXo,

(2.8)

II1
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k MA_

where
2 ZS Z4

A_,= _ a -- _ (2=' + p),, + _ (3='+ p)Z,=-
P

-- _ (4,,' + _,) .1,4,-,+ ....

Zv Z2 Z4

_'1_=1'/'13-- _ [(3+v)='+ ,,,i3_lldl_+ ....

-- ZII.4. = - _ (,: + ,@,)+ _ (2=,+ ,@,),ff_
2"_ Z7

(3_' + v_') "r'+ _) (4=' -t--v_') 7' -- ...,

_ v p
Az t--_ _>l(l+',,)_'2+v_ I+_x

x 1(2+ '_},'," + ,_1_2},r2_ 7_ [ca + v)=g + _I,T4+ ....

,4 v _ zv z= ._

g?

x l(2 + "d''= + _,[3'17=_-- _ [(3+v)==+v_,l.f_+ ....

J-_ [(4--,,)= + (2_ v)Pl.r==-
Z7

- _ 1(5- 9 =' + (2-- ,,)8'1":=-- ,
2v p z_

Bu = t___ or-- ___--_--;[.,,,a_'..t..(I -I- v)_i"=' + _ X

x I':" + (2..,) t_'l':=-- _ I,,=_+(3+91_,1.:,,,+ ....
2 _ zt , z_

&" = __-:-;p-- _ (,, + 2,s,)O+ _ (=' + 3p').:p--

2, + f_')+ _ (,_' + 2,_,).: --B_ = __ _(._=

Z_ 2?

Bz-= _- : z=

z* =
+ _ l',= + (2 + _)0=1_.=--_x

x Iv=' + (3 + ,,)_'] i" + ....

z (2 -- v) _ z sB,.= _ _ _ [(2- _),,, + (3-- _)_'l _+

+ _ [(2-- ,) _,,+ (4-- ,) _,] .:_ _

--_--_-]i-_--_)l(2--9 ='+ (s--_)PI":_+ ....

_-, -- (-) +_x
Z't

× [_= + (2 + ,) _'1_= _ _ i_=-t- (3+,)_=h,,,, + ....

z= (3--.,,=_ z' /5--v ,
c-=_-z-____ +_')_+_t__--_= +_,)_,p_

z_ .,'7-- v ,
-__h-_" + t_')T't_+ ....

(2.9)
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h -A-A-I

(2.9)

Using (2.7) we can represent these operators in the following closed form:

2 z "l'

Au = _ = cosl"z -- x(-TZ_-v)sin ,rz,
Zn|

(a' + 2vp') sin Xz -- _ cos"_z,Aw = (t -- v)v

2v z_'_, .

Av = i-_-;1_ cos'_z-- _(--W-_--__,)stn l"z,

Az = _ cosl'z _ z , .2 (t -- v).f •stn _z,

Ar = _) (,--_)sin,'[z + _cos,_z,

-C_-f]sm"rz,

2v z=_S sin _z,Be= 1--Z-_cos_z (I--v)7

2_as+ B= --_ cos,i'z,B_,=-- (I--v)T sinTz

2p zp, .
By = ___cos l"z-- (--0-_-___) sml"z,

Bz=_cos'fz z _ .z (t -- _)-(iBs,n l"z,

= f_' • z=B'

Cu = _3cosl'z za'l_ sin Tz,
(t -- _)I"

C_, = -- (t -- _)-----_[(! -- 2_) sin l"z + l"z cos "_z],

Cv = a cosl"z -- _ sin Tz,

Cy = _- sin Tz -- _ a_ (sin,_z-- ,_zcos ,_z),

Cz= 2(:__--_Zv)T sin*fz

P • a,p .
Cx = -_-sm _z --_ (sin"_z-- _zcosTz).

(2.1o)

These expressions could also have been obtained directly from (1.5),
(2.5), and (2.7).

---_ _-'m _ •
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h A.m

3. BASIC PROPERTIES OF THE LINEAR TRANSFORMATION

MATRICES IN THE METHOD OF INITIAL FUNCTIONS

Equations (2.5) represent a general solution of the three-dimensional

problem of the theory of elasticity. When the operators Luu, Luv ..... Lxx are

defined either by the infinite series (2.6) or by the transcendental equations

(2.7), we obtain a one-to-one correspondence between the six initial functions

U0 (x, y), V 0(x, y) ..... X0(x, y), corresponding to points of the plane z=O , and the

six unknown functions U (x, y), V (x, y) .... , X (x, y) corresponding to points of any

fixed plane z = consi.

Equations (2.5) thus represent the general law of transformation of the

initial into the unknown functions. An identical transformation corresponds

to a unit matrix whose principal diagonal consists of unit elements, all other

elements being zero. This property follows also from (2.7).

TABLE 22

Y

Luv

W Z

Luw LUz

Lvw tvz

U

V Lvu Lvv

if' I Lwu Lwv Lwv twz

Z I Lzu tzv tz_/ tzz

Y 1 Lyu LYV LYW LY2

x Lxg Lxv

AV

Lxz

Az

Y X

LUy Lux

Lw Lvx

Lwy Lwx

Lzy Lzx

Lyv Lyx

Lxv Lxx

Av Ax

By B x

Cy Cx

II!

" I "-!

i I-1

Ill

The transformation of the initial into the unknown functions is called

direct transformation. The set of 36 operators Luu, Lvv .....Lxx forms the

matrix of this direct linear transformation, given in Tables 22 and 23. If

U, V .....X are considered as given and U0, V0....,X0 as unknown in (2.5), we

obtain the inverse transformation. In this case the problem reduces to

integrating a system of six compatible partial differential equations of an

infinitely high order in the limit.

This seemingly complex problem is solved very simply by taking into

consideration the physical meaning of the method of initial functions. Taking

any plane z = const as initial, the functions U, V ..... X as given (transformable),

m R m
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Ii -A-A-f1

and the functions Uo, Vo..... Xo as unknown (transformed), we assign a

negative value to the coordinate z in (2.5). Taking into account that the

operators Luu, Luv ..... Lxx are even functions of z and thus retain their sign,

while the remaining operators Luw, Luv ..... Lxr. are odd functions of z and

change sign, we obtain:

Uo = LuuU + LuvV-- LvwW + LuzZ -- LuYY-- LuxX,

Vo = LvuU + LvvV -- LvwlV + LvzZ -- LvvY -- LvxX.

lVo = -- LwuU-- LwvV + LwwtV -- L_zZ + LwrY + L_ x X,

Zo = LzuU + LzvV --Lzz, F + LzzZ -- LzvY-- LzxX, (3.1)

Yo = -- LyvU -- 1.rvV + Ly=W -- LvzZ + LrvY+ LyxX,

Xo = -- LxuU -- LxvV + Lx,, -- LxzZ -- LxvY +LxxX.

II!

Substitution in (2.5) of the functions Un, V0 .... , Xo defined by (3.1),
transforms the former into identities. It follows that transformations (2.5}

and (3.1) are orthogonal. This property, observed in problems concerning

thin-walled bars and shells, and known from Krylov's method of initial

parameters in the analysis of beams on elastic foundations, is expressed

mathematically as follows: the sum of the products of the corresponding

elements in a line of the direct transformation (2.5) and in a column of the

inverse transformation (3.1) equals unity, provided line and column have

the same ordinal number.

The determinant formed by the operators in transformations (2.5) or

(3.1) is equal to unity. This property, just as the property of orthogonality

of transformations (2.5) and (3.1), is strictly fulfilled in the limit, when the

operators Luu, Lvv ..... Lxx are defined by (2.7}.

TABLE 23

lY Z Y X

xl- x

_s • pz .

x 1(t--2",)sin 72 -- x HI--2'o) X

-- Tz cos Tz] X sinTz -- 7z cos'_z]

i_-_Zv sin .i,zt -- v sin 7z

--_X ---_ -sIn Tz-
P

× (vsinTz+ -- (T'_"_ X
+ TZCOSTZ: x(sin.fz+TzCOSTZ )

P
-- sin 7 z --

"r ¢Kt

- _1---_-_× l
X (sin TZ + + z cos*i'Z) l

¢1

-_x
x I(t --2_) x

X sin 7z + T,f c_l_z I

x I(1 --2v) x
x slnTZ+TZO_Tz]

!

I'rz sl_z-
-2(t --,) cos Tz]

-_x
X sin -i,z

_z

X sin y:

t

x i(3 -- _)stn_z -
--TzcoaT,]

-_x
x(slnTz--Tzcosya)

X _'_ (sin 7z --
/

-- "fzcos 7z)

( I

-_sin Tz --

t <zs

-_-r-__,_ x
x (sin 7z -- _'zoos'Tt)
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In addition to the properties listed, the operators in transformation (2.5)

obey the following law:

LVU = LXy, Luv ----Lrx,etc. (3.2)

Hence, the matrices (2.5) and (3.1) are symmetrical with respect to the

secondary diagonal.

The equality of the operators Lvu and Luv, and of the operators Lxy and

Lrx symmetrical to them, is due to the isotropy of the elastic body with

respect to the z axis. Thus:

Lvu = Lxv, Lzu = Lxw, L_v = Lxz, Lvu = Lxv, [
Luu = Lxx, Luv = LYx, Luw = Lzx, Luz = Lwx, LUy = Lvx. J (3.3)

II!

§ 4. GENERAL METHOD OF REDUCING THE THREE-

DIMENSIONAL PROBLEM OF THE THEORY OF

ELASTICITY TO A TWO-DIMENSIONAL PROBLEM

The six initial two-dimensional functions Uo(x, y), Vo(x, y) ..... Xo(x, y) are

obtained by integrating (1.5) by the method of expanding the unknown func-

tions in powers of z. The initial functions are determined by the boundary

conditions for z=0 and z=h----const or, in the general case, for z=h(x, y).

These functions are determined at each of these planes. The boundary

conditions may be purely statical, purely geometrical, or mixed

In the case of static al boundary conditions, three components of the stress

vector are given at the boundary surface. The unknown functions are in this

case the components Uo(x, y), Yo(x, y), Wo(z, y) of the displacement vector of

the plane z = 0. A system of three differential equations for these functions

is obtained from the statical buund._i'y conditions at z---h(x, y).

In the case of purely geometrical conditions, the displacement components

are given, the stress components Xo(x, y), Yo(x, y). Zo(x, y) being unknown.

A system of three linear differential equations for these three unknown

functions is obtained from the geometrical boundary conditions at z = h(x, y).

In the mixed problem, the boundary conditions at z = 0 are given partly

in displacements and partly in stresses. Three conditions altogether are

given for each point of the plane z----0. Three differential equations for the

remaining three unknown functions are obtained from the three conditions

at z=h(x, y).

Expanding, according to the general method of initial functions, the
boundary conditions for z ---=0 and z = h (x, y), we car= always reduce the three-
dimensional problem of the theory of elasticity to a two-dimensional problem

described by a system of three linear differential equations in three unknown

initial functions of x and y *.
These equations will have variable coefficients in the case of an elastic

layer of variable thickness h = h(x, y). If the thickness is constant, the
coefficients will also be constant.

The order of the differential equations depends on the number of terms
retained in (2.6).

• A similar method, though formulated differently, was proposed by A.N. Lur'e/56/.

111[ :_
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The boundary conditions for z--0 and z = h (x, y) are satisfied exactly

during the reduction of the three-dimensional to a two-dimensional problem.

The boundary conditions at the lateral cylindrical surface are satisfied when

integrating the differential equations of the two-dimensional problem. These

conditions are satisfied up to the terms of (2.6) which have been discarded.

If in (2.6) we use only terms linear in z for the displacements, up to z'

for the shearing stresses X and Y, and the first terms in z s for the normal

stress Z, we obtain a solution which satisfies the boundary conditions on

the lateral surface only in Saint-Venant's sense.

We arrive in this case at the general moment theory of thick plates,

independent of Kirchhoff and Love's hypothesis. If terms of higher order

are retained in (2.6), a more accurate theory of thick plates is obtained.

In this case there appears on the lateral surface, in addition to the axial

forces and moments considered in problems of plane stress and bending of

a plate, also an equilibrium system of stresses, which can be reduced to

generalized forces of the same nature as bimoments.

It is thus possible to develop by the method of initial functions a general

bimoment theory of thick plates and shells, independent of Kirchoff and

Love's hypothesis, by means of which the boundary-value problem can be

solved with the required accuracy.

§ 5. THICK PLATE SUBJECTED TO A LOAD SYMMETRICAL

WITH RESPECT TO ITS MIDDLE PLANE

II1

Let a plate of uniform thickness 2h be subjected to surface loads (normal

and shearing forces in the general case) acting at the planes z = =hh, sym-

metrically with respect to the middle plane of the plate (Figure 164}.

o/;,T- _

FIGURE164.

We use the middle plane of the plate as reference plane. The z axis is

directed downward, the x axis to the right, and the y axis in such way that the

coordinate system xyz is right-handed. Due to symmetry, there will be no

vertical displacements and shearing stresses in the middle plane of the plate; the
three functions W0. X0, Y0 will therefore vanish. The unknown functions will

- _' iH
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be the horizontal displacements U0 (x,y) and Vo (x,Y)L

Zo (x, !/) .

Inserting tVo= Xo = Yo = 0 into (2.5) yields:

and the normal stress

U = Luu Uo + Luv Vo + LuzZo,

V = Lvu Uo + Lvv Vo + Lvz Zo,

W = Lwu Uo + Lwv Vo + Lwz Zo,

Z = Lzu Uo + Lzv Vo + Lzz Zo,

Y = Lru Uo + Lvv Vo + Lvz ,7.o,

X = Lxv Uo + Lxv Vo + "l.,xzZo.

(5.1)

The unknown functions Uo(x, y), Vo(X, y). Zo(x, y) are found by solving the

system of three differential equations, obtained from (5.1) by equating the

stress components X, Y, Z for z = h to the given functions Zh(x, g), Yh(x, g),

X_ (x, g) :

Lzu (h) Uo + Lzv (h) Vo + Lzz (h) Zo = Zh. I

Lvu (h) Uo + Lrv (h) Vo + Lvz (h) Zo = Yh,

Lxu (h) Uo + Lxv (h) Vo + Lxz (It) Zo = Xh,
(5.2)

ill

where Lzu(h), Lzv (h) ..... Lxz(h) = differential operators determined from (2.6)

for z=h . When X^, Yh, Zh are known, (5.2) forms a system of compatible

partial differential equations in x and g.

The equilibrium of a plate subjected only to a normal load Zh(x, y),

symmetrical with respect to the middle plane, will now be considered in

more detail. The last two equations (5.2) are in this case homogeneous

( Xh = Yh = 0 ) and will be satisfied if we introduce the function F = F(x, y)

satisfying the equations:

Uo = (Lxv Lrz -- Lyv Lxzh F,
Vo = -- (L xu Lvz -- Lvv L xz)h F,

Zo = (Lxu Lrv -- Lvu Lxv)h F,

(5.3)

where the differential operators in parentheses are formed by the rules of

symbolic differentiation for z = h. Substituting (5.3) in the first equation
(5.2) we obtain:

lLzu (Lxv Lvz -- Lvv Lxz) -- Lzv (Lxu Lvz -- Lru Lxz) +

+ Lzz (Lxv L rv -- Lvv Lxv)h F = Z,.,
(5.4)

where the differential operator in brackets is determined approximately by
(2.6) and exactly by (2.7), when z=his substituted.

The order of this equation depends on the number of terms taken in (2.6),

which in turn depends on the relative thickness of the plate and the required

i-l-I
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accuracy of the solution. If for a plate of medium thickness only the first

terms are taken in (2.6), we obtain the approximate theory of the equilibrium

of a symmetrically loaded plate.

To obtain the exact theory, the exact values of the differential operators

determined from (2.7) for z= h should be substituted in (5.4). In this case,

we obtain for F a transcendental equation in which the arguments of the

trigonometric functions contain partial derivatives of f with respect to x

and y. This equation can be written in the form:

i _-_ysin.,lh[sin1'hcos1'h --b1'h] = Zh.F (5.5)

Furthermor e:

a sin 7h .,.
Uo = 2(-'_-_'--v) I(! -- 2v) sin1'h _ 1'hcos _h] F.

V _ sin -_hI/I
e = _ ,,- -- 2v) sin 1'h -- "fhcos"fh] F,

.it sin Th.. .
Zo = "l-'-_ (sln1'n ÷ 1'h cos l'h) F.

(5.6)

The order of (5.5) can be reduced by writing:

I"sin 7h F
• =_ .

Equations (5.5) and (5.6) then become:

(5.7)

(5.8)

Ze = 1"[sin 1'h ÷ 1'h cos 1'h] _.

(5.9)

If the trigonometric functions in (5.8) and (5.9) are expanded in powers
of their argument, the transcendental equation (5.8) becomes an ordinary

differential equation; Writing again 1" = .s + [3' = Y' , we obtain:

[2,,.-_,.v.,.÷_,.v.,.,.-..]®-z. (51o)
Expressions (5.9) can then be written as follows:

Uo=ogz[--_ s+, , 2+, . , , .]®,+--_--h'V ---i_-hV _ +..

t+vLt,_ I 2+vj.4_tw I....]_,Vo = _h I--v+ --g--. v -- 1-_-'_-.... -r

Zo=h [2-- 2 f.sw,± i I.,_s_s_,,- -r_,,----...]V_.

(5.ll)

Equations (5.8) or (5.10) describe exactly the states of strain and stress

of a symmetrically loaded thick plate. After the function _)has been

II!
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determined from these equations and the boundary conditions on the lateral

surface of the plate, the initial functions Uo, Vo, Z0 can be obtained from

(5,11), while the displacements U, V, W and the stresses Z, Y, X are found

from (5.1). The remaining stresses az, %, _w are then determined from
(2.8).

An approximate solution is obtained by taking a finite number of terms

in (5.10) and (5.11) or, which is the same, in (2.6). Thus, retaining only
the first two terms in (5.10), we obtain:

V_VS_ __ 3 Vt_) 3=-- _Zh. (5.12)

The unknown initial functions are in this case:

Uo =--,h_, Vo=--_,hO_. Zo = 2hVt(I). (5.13)

If the load acting on the plate is axisymmetrical, an ordinary differential

equation in polar coordinates is obtained in both the exact and the approxi-
mate solution.

! ,'lIB '_ II

§ 6. THICK PLATE SUBJECTED TO A LOAD ANTISYMMETRICAL
WITH RESPECT TO THE MIDDLE PLANE

If a plate of thickness 2h is subjected to a load consisting of normal and

shearing stresses (Figure 165), applied antisymmetrically with respect to
the middle plane z----0 at the boundary planes z----.-_h, the horizontal dis-

placements and the normal stress at the middle plane will be equal to zero.

Taking z=0 as reference plane, and putting in (2.5) U0=Vo=Z0=0 , we
obtain:

U=Luw Wo+LuyYo+LuxXo, Z =LzvWo-+-LzyYo-I-LzxXo,

V=Lv.,Wo+LvyYo+LvxX_, Y=LywWo+LYvYo+LvxXo,

W=Lw_Wo÷LwFYo'F L_rxXo, X=Lx_Wo+LxrYo+LxxXo.

(6.1)

i _ i I
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The unknown initial functions are in this case the displacement

Wo=Wo(x,y) and the stresses Xo=X0(x,y) and Y0=Yo(x, y).

The following system of three differential equations is obtained for these

three unknown functions from the statical boundary conditions:

Lxw Wo + Lxx Xo + Lxv Yo = Xh,]

L_Wo + LyxXo + Lr_ Yo = Yh,

Lzw V/o + Lzx Xo + LzrYo ---- Zh,

(6.2)

where z = h has to be substituted in the operators Lx_, Lxx ..... Lzr .

If only a vertical load Z^ = Zh(x, y) acts on the plate, the first two equations

(6.2) will be homogeneous. These equations can be satisfied by introducing

a function F= F(x, y) which satisfies the equations:

Wo = (Lx,_ Lee -- Lrx Lxrh F,

Xo = --(LxwLrv -- Lr_'Lxv)h F, _

Yo = (Lxw Lvx -- Lr_, Lxx)h F, I

(6.3)

(The subscript h indicates that the differential operators in parentheses are

determined for z = h ).

Substitution of (6.3) in the third equation (6.2) yields:

{Lz_ (Lxx Lvr-- Lrx Lxv) -- Lzx (Lx_r Lvr -- Lrw Lxr) +

+ Lz,/(Lxw Lrx -- Lrw Lxw)lh F = Z_.
(6.4)

The order of (6.3) and (6.4) depends on the required degree of accuracy.

Expanding the differential operators in (6.3) according to (2.6) and

substituting z = h yields:

_/'o_---[I-- hs{2-v) Vs . h4(3-v) --$--s2(i-_)- +_vv--...]F.

X0=[--_ _' . .]_F,V' + _ V'V'--.

Yo [-- I--_ V' h'= + _ V2V 2 --. ] _F,6_._-- ) ""

(6.5)

where, in accordance with the symbolic notation used:

V:= 01 O, OF _F OF
-_-_ + _, aF = _-, =_.

The following differential equation is obtained for the function F :

(6.6)

2h' 2h I VI 4h' VsV, -
t5(t--v) "_ 3t5(t-- v)

2h° VIVIVI ]2835(1--,) + ... VSVSF = Zh.

(6.7)

III
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The fundamental equation of the problem considered is (6.7), which

determines the function F=F(x, y). The order of this equation depends on

the required degree of accuracy.

To obtain an approximate solution, we retainonly the first terms in (6.5)

and (6.7), obtaining:

h, _aF v h' -2_F ]• ,,=F, Xo=--___ - _-;x' -°=--T-_ v _'_'

I_2v72r 3 (i--_)7
(6.B)

Writing, in accordance with (1.3):

E

where u:= w(x, y) = actual vertical displacement of the points of the middle

plane, and eliminating F(x, y) from (6.8), we obtain:

X 0 Ehi V2 _-_- Y o = Eht _7' {)ItJ 1

3 (i -- v') ?
(6.9)

Equations (6.9) and (6.8) correspond to the moment theory of the bending

of plates which is a particular case of the general bimoment theory which is

independent of K.irchhoff and Love's hypothesis. The moment theory holds

true for sufficiently thin plates and distributed antisymmetrical loads. If

the thickness of the plate is not small in relation to its other dimensions,

and if the plate is subjected to local (concentrated) loads, the more general

bimoment theory corresponding to (6.7) has to be applied. When the plate

is of medium thickness, the first two or three terms (depending on the

problem and the required accuracy) in (6.7) will be sufficient. The funda-

mental function F = F(x, y) is invariant with respect to coordinate trans-

mations.

The exact transcendental form of (6.4) and (6.7) is:

i--_v [T/I -- Sin *fh Cos'f hi f = Zh, (6.10)

while (6.5) takes the form:

Yo= --__vsm'_hF, Xo=--__vsin'fhF.

(6.1i)

II!
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§ 7. DEFORMATION OF AN ELASTIC FOUNDATION, DUE

TO A LOAD APPLIED TO ITS SURFACE

Consider an elastic layer of finite thickness H, lying on an incompressible

base and subjected to normal and shearing surface forces ZH. XH, Ys

(Figure 166). It will be assumed that at the plane of contact of this layer

with the subsoil, the shearing stresses X and Y, and the vertical displace-

ments W vanish. This means that the elastic layer can slide freely along

the contact surface, as shown schematically in Figure 166.

Taking the plane of contact as reference plane, we again obtain expres-

sions (5.1) for the displacements and stresses of the elastic layer. The

problem considered is thus identical with the problem of a thick plate

subjected to a symmetrical load.

In the general case, when surface forces Zn. XM, Y_ are present, the

system of differential equations determining the solution is written in form

(5.2). In the absence of shearing loads (X. = Y.---0), we obtain again:

II

[Lzv (Lxv L_'z-- L_vLxz) -- Lzv (Lxu Lyz -- L ru Lxz) Jr"

+ Lzz(Lxu L_'v -- L_,uLxv)]n F = -- ZH
(7.z)

or

[2.v,- _-.,v,_,+,_..v,_,v,.... ]®=-z.. (7.2)
ii-ii il

Retaining only the first terms in (7.2), we obtain the differential equation

of the approximate theory of an elastic foundation of finite thickness H :

V'V'_-- _. V'(D -t- 3 0, a'2--_-Z. = 0, V' = -_r + _y, • (7.3)

The foundation model described by (7.3) corresponds in its behavior

better to the elastic layer than the single-layer model considered before,

since both vertical and horizontal displacements are taken into account.
I !
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Let the elastic layer, subjected to surface loads Zm Xn, Yn . be fixed

rigidly alongthe reference plane z = 0 (Figure 167). Inthis case, the three ini-

tial functions /_. Vo, _', will be equal to zero, The unknown functions will be

the normal and shearing stresses Z0, Yo, X_.

We obtain from (2.5):

U = LvzZo + Luy Yo + LvxX,,

V = LvzZo + Lvr Yo -}- Lvz Xo,

W= LwzZo "1-LwyYo "Jr LwxX,,

Z = Lzz ZoJr Lzr Yo Jr Lzx Xo,

Y = Lvz Zo + Lrv Y, + Lvx X,,

X = Lxz Zo .+ Lxr Y, + Lxx X.

(7.4)

The functions Zo(x, y), Yo(x, y), Xo(x, y) are determined from the boundary
conditions at z = h :

! 1 ,., !

Lzz (H) Z, + Lzv (H) Y, + Lzx (H) Xo ------ Zm
LyZ (H)Z o + Lyy (H) Yo Jr Lrx (H) X o= YH,

Lxz (H)Za+ Lxv (H)Y_+ Lxx (H)Xo ----X..
(7.5)

FIGURE167.

This system of three partial differential equations in x and S/ represents

the solving system of the problem considered.

In the particular case when only normal surface forces ZH act on the

elastic layer (X. = YH = b), we introduce the function F = F (x, y) satisfying the

equations :

Z° = (Lx). Lyx -- LI'r Lxx)H F,
Y o = -- (Lxz Lvx -- Lrz Lx_)n F, t
XQ = (Lxz Lrr -- Lrz Lxv)n F.

(7.6)

Substitution of (7.6) in (7.5) transforms the last two equations (7.5) into

identities, and the first one into:

{Lzz (Lx_ L_,x -- LYy Lxx) _ Lzy (Lxz Lrx -- Lvz Lxx) +
"J¢-Lzx (Lxz Lyv -- Lyz LXv)IH F ------ Zn. (7.7)

i -i I
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This equation describes the states of stress and strain of a foundation

rigidly fixed along the plane z = 0. The order of this equation depends on
the number of terms taken in (2.6). Substitution in (7,7) of the exact values

of the differential operators, given by formulas (2.7) for z = H, yields:

H s (7.8)

while (7.6) becomes:

Zo = cos'fH[ _ sin'fH--cos "fH] F,

_ cos 7H

Yo = _ [7/-/cos 1'H -- (I -- 2',,,)sin'THI F,
,, cos 7H

Xo = 2_(_'_-- v) [( I -- 2",,)sin "tH -- 1'H cos 'T.HI F.

(7.9)

III

• l

§ 8. CONTACT BETWEEN A PLATE AND
AN ELASTIC FOUNDATION

Consider a plate subjected to a distributed load p(x, y) and resting on

an elastic foundation representing a compressible layer of finite thickness

H (Figure 168).

The plane along which the elastic foundation rests on the underlying

subsoil is taken as reference plane. We assume that the displacements at

z = 0 vanish: Uo = V0 = W0-----0 . The states of stress and strain of the elastic

foundation are then given by (7.4).

_* libi';h , J'l: /J '

I_' ! _ir!7 _i i
FIGURE 168. FIGLq_E 169.

The functions Z0, Y0, X0 are determined from the boundary conditions at

z---- H. Assuming that there is no friction or adhesion between plate and

elastic foundation, we obtain:

X. = Y. = 0. (8.1)

The differential equation of bending of the plate on the elastic foundation

is:

DV'_'w(x, y)=p(x, y)--q(x, g), (8.2)

ii -ii- ii
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where p(x, y) = given distributed load, q(x, y) = reactions of elastic foundation.

According to our assumptions, the plate deflections w(x, y) equal the

tllrH (x, y)vertical displacements of the elastic-foundation surface wx (x, y) =--y
It follows that Wn = Ow (the positive directions of the deflections and dis-

placements are shown in Figure 169). Furthermore, the reactions q(x, y)

represent a surface load ZH (X, y) with respect to the elastic foundation. In

accordance with the convention adopted for the signs, the normal stresses
at the surface of the elastic foundation are:

D

Zn(x, y)=--_-_Z2_Z_Wn(x, y)--p(x, y). (8.3)

Substitution of (7.4) in (8.1) and (8.3) yields:

Lzz (H) Z,, + Lzr (H) Yo + Lzx (N) Xo =

= -- V _7 2ILwz (H) Zo+ L_'r (H)Yo+Lwx (H)Xo]--p.

Lyz (H) Zo + L_" (H) Yo + Lr× (H) Xo = 0,

Lxz (H) Zo + Lxr (H) Yo + Lxx (H) Xo = O.

(8.4)

or

[,,,(,,)+__,,..,(,,_]Zo÷[,,_(,,)+_,,_ (,,)],,o+
D

+ [Lzx(n) + _ _.L.,_,(,)] xo= -_,
Lrz (H) Zo + Lrr (/'/) Yo + Lrx (Y) Xo = O,

Lxz (H) Zo + LxY(H) Yo + Lxx (H) Xo = 0.

(8.5) -II I-I

The differential operators Lzz(H), L_.z.(H) ..... Lxx(H) are defined by

(2.6) or (2.7) for z=H.

Introducing the function F (x. y) satisfying (7.6), system (8.5) is reduced

to the single equation:

[(Lzz + DT'SL_,z) (LxrLrx-- LrrLxx) -

--( Lzy "F D'f4L_'r)(LxzLrx-- LrzLxx) -F
D

+ (Lzx + "_ T+L_'x) (LxzLrr-- LvzLxY)I.F = -- P.

(8.6)

This is the exact equation of bending of a plate resting on an elastic

foundation considered as an isotropic layer of finite thickness H. Appro-

ximate solutions are obtained by taking a finite number of terms in (2.6),

the order of (8.6) depending on this number, i.e., on the accuracy required
of the solution.

Ill

II - II !1

§ 9. THEORY OF PLATES AND SHELLS OF VARIABLE

THICKNESS, SUBJECTED TO ARBITRARY SURFACE LOADS

Consider the general equilibrium problem of a plate of variable thickness

h = h (x, yJ . This problem has considerable practical importance in the

287 !i • •
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design of shallow shell-type roofings of variable thickness, having plane

upper surfaces (Figure 170).

FIGURE 170.

Choosing such a surface as reference plane (z == 0) and considering the

surface load acting on it to be given, we obtain the stress components

X0, Y0, Z0 in (2.5) as known functions of x and y. The unknown initial

functions in this region are the three displacements

Uo = Uo (x, y), Yo = Vo (x, y), Wo = W (x, y).

Hence, the displacements

U= U (x, y, z), V = V (x, y, z), W = W (x, y, z)

and the stresses

X = X (x, y, z), Y = Y (x, y, z), Z = Z (x, y, z),

o, = _ (x, y, z), a. = or (x, y, z), _.J, = '_v(x. y, z)

II!

i I i

at any point x, y, z are determined except for the three unknown initial
functions Uo(x, y), Vo(x. y), Wo(x, y). Substituting z = h(x, y) in the general

solution, we obtain the three components of the displacement vector and

the six different components of the stress tensor for the points of the

surface _ = h(x, y) forming the lower surface of the plate or shell. At

z=h(x, y) , the stresses X. Y, Z, (a_, %, _xu) must bein equilibrium with the

given surface load applied to the lower surface h = h (x, y).

Denoting by X,, Y,, Z, the components of this given surface load in

the fixed cartesian reference frame x, !t, z, the equilibrium conditions of

an elementary tetrahedron, whose inclined surface forms part of the

boundary surface h = h (x, y), can be represented in the following form:

X,=a,,cos(v, x) + x,v cos 0, g)+Xcos0, z) (x, y, z), (9.1)

where
cos(v, x)= 8h t

_; ]/Cah_' (_' '\ax/ +kay/ +1

#It t

t

cos(,,,z)=

(9.2)

= cosines of angles between outer normal to element of surface h = h(xy),

and coordinate axes x, y, z respectively.
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Ill

I m

I I !

l?l I X 1 I 1 1 1 1 1 1 I I I I [ I 1



k  A-AI

For h = h(x, y) the statical boundary conditions are given by (9.1), which

after insertion of (9.2) become:

Xv _

Yv =
1

t
Zv =

/

+ t_) +8x)

ax 8h , Oh X)

Oh, o, _y)• _. _ -b % _

Oh Oh __ Z).

(9.3)

When the initial functions Xo, Y0, Zo are known we obtain, by substituting

in (9.3) the stress values given by (2.5) and (2.8), a system of three linear

partial differential equations with variable coefficients, for the unknown

functions Uo(x, y), Vo(x, y), W0(x, y) . The order of these equations depends

on the number of terms retained in (2.6).

We shall consider in detail the moment theory of plates and shells of

_tariable thickness h = h(x, y), assuming that the displacement IV is constant

over the shell thickness (i. e., does not depend on z ), and that the displace-

ments U and V vary linearly. Furthermore, the law of variation of the

shearing stresses X and Y is given by a parabola of the second degree in Z,

and of the normal stress Z, by a cubic parabola [the stresses ox, ol, and _xu

vary linearly]. The following approximations then obtained from (2.5) and

(2.8):

aVi I, OW=
U = U, -- z--_-+zY,, V=v,--z.-_-+zYo, W=W,,

("T_ a'O, a'O,'_ i +,_ a'V,X=--z , ox" +'T_-_ /--V'_-,=_

2--v i_d=X, zI _Xo ! t O=Yo
2¢-_-,9z -_ 2 o_ ztt--'-_)z o-7_-u+

I + v OsUo , _Vo
y = __ I.i...Z_ z..._._ __2 (_ OiV.

2--v Zt[dlYo ZI OIYo t It _Xo *
2(l--v) @= 2 Ox_ 2(l--v) _ +

t t--t 011% . .. v OZo
"-i_T_,z v -_-_ro--l_--_-;z-_- _ ,

!
Z _ Zi_71 (._ . OVo \ 1 i_l--l'"= +'_-_)--_ z v v Wo-- (9.4)

-- z t--_- + -_-) + Zo+ _v Zo+

2--v z,_Ti(aXo + aF_+ _ _-_. _-/,

2-- ,_ OXo "_ OYo v
+ __ z 3;- + -f_-_-__z--_- + t _-m--_Zo,

2 v aVl _ 2 z [v al_° alw'°'_% = _( OU=-_-+-_-/--t-_ ',, _-+ a_,/+

v _o 2-- v OYo v

aOo aVo __ 2z a*_o /axo #Yo "_•..= _7+-ff _-_ + zt_ + _- )

289
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It is easily seen that the stresses given by (9.4) satisfy (I.I). Substitution

of these values in (9.3) yields a system of differential equations for

determining the unknown functions U0(x, y). Vo(x, y), W.(x, y).

Equations (9.3) and (9.4) describe the general moment theory of a plate

or shell of variable thickness h = h(x, y). This theory, based on more

general assumptions than Kirchhoff and Love's hypothesis that linear

elements remain normal to the middle surface, makes it possible to

determine the stresses and strains of a plate or shell for an arbitrary

law of variation of its thickness, i.e., for any shape of the lower surface

h = h(x, y) of the shell. Equations (9.3) must be supplemented by the

corresponding boundary conditions, given for the unknown functions U,, V,,,

W U in accordance with the model adopted.

The exact solution of this boundary-value problem for plates of variable

thickness h = h (x, y) is very difficult and can hardly be carried out by the

methods available at present. Bubnov and Galerkin's variational method is

the best existing method for the approximate integration of equations with

variable coefficients.

III

§ 10. GENERAL SOLUTION OF THE TWO-DIMENSIONAL

PROBLEM OF THE THEORY OF ELASTICITY

It was shown above that the solution by the method of initial functions of

the general three-dimensional problem of the theory of elasticity reduces

to determining the six initial functions Uo, Vo, Wv, X., Yo, Zo • Since the two-

dimensional problem is a particular case of the general three-dimensional

problem, four initial functions will be sufficient to determine the states of

stress and strain of the body, these being the displacements %(x), % (x) and

the stresses _(x), a_(x) at y=O (Figure 171). This can be proved by taking

the displacements u(x. y), v(x, y) and the stresses _xv(X, y), %(x, y) as

unknowns, and representing them as infinite series in powers of y.

01 if,

FIGURE 171.

i-I I

Ill

In the two-dimensional case the equilibrium equations (1.1) of an elastic

isotropic body become, when no volume forces act:

0ax d':x_ 0a# a'_ux
ax +-_--y =0, ay _-_=0. (I0.i)

m l
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The relationships between stresses and displacements for the case of

plane strain are:

2a [(n-_)°v

= 6f_ o,.,
=.,y = %x toy -t _),

(10.2)

where

E
G = 2(I +v) '

II!
,\

Introducing the symbols:

U=Gu, V=Gv, |

X = _:xy, Y _ ae_

o o
(10.3)

we can rewrite (I0.i) and (10.2) in the form:

_U= --aV+ X,

_V _ i - zv= ---C:-__v"U+_Y,

_Y = -- aX,

2 _U -- v _V,

(10.4)

whence

Z

¢_x : J--2V [(1 --_)_U + v_VI. (10.5)

Expanding, as in (2.1). the unknown magnitudes in Maclaurin series of

powers of Y, we obtain the following solution of system (10.4):

U = LvoU o + LuvVo + LurYo + LuxXo, j

V = LvuU o + LvvV. + tvvYo + tvxXo, tY = L yt_U o 2: L_'vVo + L_'yYo + LvxXo,

X = Lxc,U o q- LxvVo "_- Lx)'Yo 4- LxxXo,

(10.6)

where Lvu, Luv, . .., Lxv, Lxx are, as before, the linear differential

operators on the initial functions Uo (x), V0 (x), Y0 (x), X0 (x) ; these operators,

which are functions of y and contain derivatives with respect to x , can be

represented either by infinite series (Table 24) or in transcendental form

(Table 25). The bottom lines of Tables 24 and 25 give the operators obtained

from (10.5) entering in the expression for o, :

o,: = AvUo + AvVo + AYYo + AxXo. (ion)

| -ii i
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TABLE 25

U, Vo Yv Xo

Luu _os _y --

ay

Lt[- 2(1 --,4 sinay-

_y
211 --v) c°say

L¸

V

y at_

L XU =-- _--,_ Xx

X (sin_y i _tycosay)

2a

_x

| --2v

LUV -- _sinay--

ay
-- _ cos _t{/

ay
ILvv -2(1 --,,,) X

× sin ay + cosay

a

/ (sin ay -- 0rE cos ay)

y
Lur = --4(_ sin ay

-- 4v

L v r -- 4 (_, -- '0 a si. ay --

Y
-- _ cosay

t
Lux = _ sin ay--

t $

4(t-,1 _ x

x (sin ay -- ay cos "9)

Lvx = Lu},

Lvx =; Luv

Au = -(-'_,_,; cosay

y_t':

"I -- _ sio ay

LXv _ L VU

Lry - Lvv

× (sin _t_ .F ya cos _y)

LXX = LuuLxr = Lvu
t

Ax
v ycl

A r = _ cos ,,y -- = 2 (_ -- _--'--'_cos r,y -_

ya 3 -- 2_

--- _ sin "*Y !1 - 2 (t -- sin _tyM)

Equations (10.2) through (10.5) and Tables 24, 25 correspond to the case

of plane strain. The corresponding expressions for plane stress are

obtained from them by replacing the modulus of elasticity E and Poisson's

v

ratio , by E(_ 4-2,,) and T-_, respectively. Performing this substitution in
(t + _)2 ,

Table 25 yields the matrix of linear transformation of the functions Uo(x)

V.(x). V,,(x), Xo(x) into the functions U(x, y),V(x, y), Y(x, y), X(x. y) for the

case of plane stress, given in Table 26.

Equations (10.6) represent the law of transformation of the initial into

the unknown functions and give the general solution of the two-dimensional

problem of the theory of elasticity. These equations are symmetrical with

respect to the secondary diagonal:

Lvv = Lvx, Luv = Lvx, Lvv = Lvv, Luu = Lxx,

Lvu = Lx,,', Lru = Lxv.

The initial functions Uo. V,, Yo, Xo, which in (10.6) constitute four

arbitrary functions obtained by integrating (10.4), are determined by the

boundary conditions at y = 0 and y = h = const. Two functions can be pre-

scribed for every plane y = const,

Since two initial functions are always known fromthe beginning, the

solution of the two-dimensional problem reduces to the determination of

two initial functions from the boundary conditions for y = h. These boundary

conditions yield a system of two ordinary differential equations, which, in

III
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the general case, are of infinitely high order. When the problem is solved

by approximation, the order of these equations depends on the number of

terms retained in Table 24.

U

v

Y

X

U@

LUU _ COS rty __

t+,,,
-- _ ,_ysin e,y

t
LVV = _- [(t -- v) sin ay --

-- (t + v) ,,y cos "Yi

Lyu = (t + v) <zigsin _y

Lxu = -- (t + v),, X

× (sin ly + aycos ay)

Au=(t +,_)a ×

× (2 cosay -- ay sin ay)

TABLE 26

Vo I Yn

!
Luv = -- -_- [(! -- t) sin 0_y+

+ (i + v) ,,y cos,,y]

!Lvv = _ aysin ay +

+ cos ill

Lrv=(l+v) ax

y (aycosay _ sinay)

L xv_ LyU

Av =-- (! +v) a ×

× (sinay + "I/cosay)

L t+v
ur = -- --_--- y sin _l/

Lv}, = Lux

L yy _ LVV

LXy= LVU

Xo

3--v

LUx :_sin_y+

t+v
+ _--- y cos ay

LVX = Luy

Lyx = LUV

LXX = LUU

Ay= 1iCos roy

Ax = 7 l(i+ v)/ycos ly 4

-- _ ay sinay + (3 4-,_)sinny}

III
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11. BENDING OF A THICK PLATE IN THE CASE OF

PLANE STRAIN. APPROXIMATE SOLUTION

Consider the bending of a thick plate in the case of plane strain

(Figure 172). Let the external load consist only of normal forces p(x)

disposed antisymmetrically with respect to the middle surface y = 0 .

DbT)

FIGURE 1'72.

i11
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Taking y=0 as reference plane, we obtain:

Uo = Yo = 0,

so that (10.6) reduces to:

U = LuvVo 4- LvxXo,

V = LvvVo + LvxXo,

Y = LvvVo + LvxXo,

X = LxvVo + LxxXo.

(11.1)

(11.2)

I|

From the boundary conditions for y = h, namely: Y_ = p(x), Xn = O,
we obtain:

Lrv (h) Vo + Lvx (h) Xo = p, I

Lxv (h) Vo + Lxx (h) Xo = O.
(11.3)

We introduce the function F satisfying the equation:

Lxx(h) F = Vo, Lxv (h) F = -- X o (11.4)

Substitution of these expressions transforms the second equation (I1.3) into
an identity, while the first becomes:

(Lyv Lxx -- LvxLxv)hF = p. (11.5)

The solution is obtained by rewriting (I1.5) either as ordinary differential

equation, in which case the operators are given in Table 24, or as trans-

cendental equation, Table 25 being used instead. The second method is

more convenient, since transition from the transcendental integral-
differential to the ordinary form is easy.

Substitution in (ii .5) of the value given in Table 25 yields:

a [,',h -- sin,',hcosahl F = p, (1 1.6)l--v

while (1 1.4) becomes:

I j}V,, = cosxh-- 2(l__ahsinah F,

1 x_hsin(xh.F.
X,, - I --

(11.7)

Expanding the trigonometric functions in (11.6) and (11.7) in power series,
we obtain:

zh, ,,,[1___,_2a2 2h, , _ ,:*_1--_-----5 _- T6g" -- .q-_t + ... ]F = p (11.8)

Vo = I----.2-v h:a" _- h4_4 4--_ h6an_, . F,
.(1 -vj 720 (l -- v) "

h_ h4 _ta h' ]Xo = I -- v t20 5040 _t ,

(11.9)

I .'I

i-i i
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Equation (11.6) or (ll.8) represents the exact solution of the problem

considered. To obtain approximate solutions, we retain in (11.8) only a

finite number of terms. Thus, if only the first term is used, (11.8) and

(11.9) reduce to:

2h_ Fir=p, (Ii.I0)
,_(1--v)

Vo= F, I

X,,- l-vh"F"'. I

(ll.ll)

Thus, in a first approximation, F equals Vo, i.e., the vertical displace-

ments of the middle surface of the plate, while (11.10) becomes the ordinary

equation of the bending of a beam in the case of plane strain. The first

approximation thus yields the elementary solution corresponding to the

hypothesis of plane sections. The matrix of the initial functions or, which

is the same, of (11.2), is in this case given by Table 27.

TABLE 27

! Vo Xo

ys
Y -- _ a' --Va

X l--v "*

ax 2y

t

It is seen that the horizontal displacements vary linearly with y; the

vertical displacements are constant; the laws of variation of the normal

stresses % = Y and the shearing stresses _xw = X , are respectively parabolas

of the third and second degree.

Substitution of (11.11 ) in Table 27 yields:

U = --yV_, V = Vo, I
(l-- v)Y = 3v-- (3h'-- y')Vlov, [

(i--_)x = (y'--h')Vo i

(l -- _)o, = -- 2yV'o.

(ll.12)

\
\

II!
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The function V 0 is determined from (11.10) and the boundary conditions

at the plate edges x = -5 I. Two conditions canbe formulated at each edge, in

agreement with (11.12) and (11.10). For a free edge, not under load, this

solution makes it possible to eliminate the stresses only in the sense of

Saint-Venant. i.e.. by equating to zero the moment and the shearing force

(v_= o, Vo"= o).
In a second approximation we obtain from (11.8) and (11.9):

FVX__ 5 FW - 15- -- _-_ p (I --% (11.13)

2 -- _v hS,C'-Vo= F 2(t --,)- - '
(11.14)

We assume that the vertical displacements are constant:

V = V o. (11.15)

Substituting (11.14) and (i I.I) in Table 24, and retaining (in accordance
with the order of (11.13)) in the expression obtained for U, the terms

containing F' and F', in the expression for Y, the terms containing F w and

FvL, in the expression for X, the terms containing F _ and Fv , and in the

expression for _, the terms containing F" and F _v, we can represent the
unknown displacements and stresses of the plate in the form:

2--v F s 3v ht]F, 'u =-yr'+ e_--T-_7_,)u [y - 2_--cv

(I - _)Y = _- Oh' - p) F,V-- _ (5h' -- u') r _'_,

y' -- h' Fv"(l -- _)X = (_ -- h') F" e

( I -- v) _, = -- 2y F" + 2 ySFW.

(Ii.16)

The first terms in (11.16) are identical with (11.12}. The additional

terms take into account the deviation from the hypothesis of plane sections.

The general integral of (11.13) is:

F = C, -{- Clx + C,xi + C,xs + C, sh Y_Shx + Cich V-_-5_x + a. (11.17)

where O = particular integral of (II.13), depending on external load, and

C_,....C6 = constants.

To determine the six integration constants we require three boundary

conditions at each lateral edge of the plate. For built-in edges (V = 0, U-- 0),

we obtain from (11.14), (11.15), and (11,16):

2, }F 2 (t -- v)hSF° _- O,

F'=0, F'=0.
(11.18)

I!1

i i i
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If a membrane, rigid in its plane but flexible in bending, is placed at the

edge (V= 0, az = 0), the boundary conditions will be:

F=O, F"=O, FtV = O. (11.19)

Finally, for a free edge not under load (_x = 0, _xv = 0), the boundary
conditions will be:

F'=0, F nv=0,

(11.20)

The plate can therefore be analyzed in a second approximation for any

boundary conditions at the lateral edges x = __+l. After determining the

integration constants from these conditions, and then the function F from

(11.17), we can find the displacements and stresses in the plate from (11.16).

This procedure is applicable to thick plates, for which the deviation from

the hypothesis of plane sections is considerable. If in (11.16) Poisson's

v

ratio v is replaced by _ , we obtain the equation of bending of a high beam

(beam-wall) for the case of plane stress.

Higher-order approximations for greater accuracy can be obtained by

increasing the number of terms retained in the expansions. This, however,

increases the order of the differential equations and makes their solution

more laborious. The second approximation is quite satisfactory in practice.

In this section we have considered only the bending of a thick plate for

arbitrary boundary conditions at its lateral edges x = _ 1, showing how this

problem can be solved by approximations. The same procedure is possible

in many other problems of plane stress or strain involving massive struc-

tures (see sections 5, 6, 7, and 8). In all these cases the fundamental

solution is obtained from the boundary conditions at the longitudinal edges

of the plate; an approximate solution is then obtained by retaining a number

of terms depending on the accuracy required.

§ 12. USE OF TRIGONOMETRIC SERIES IN THE SOLUTION

OF THE TWO-DIMENSIONAL PROBLEM*

III

"li ":-"i" 7: If'"

i i- il

Ill

We shall now consider problems of the theory of rectangular plates whose
boundary conditions can be expressed with the aid of trigonometric series.
Let the plate edges x = 0 and x = l (Figure 1 73) be rigidly connected to thin

i °

* This and the following sections are based in part on V.V. Vlasov's Candidate's Thesis, Metod naehal'nykh

funktsii v ploskoi zadaehe teorii uprugosti (The Method of Initial Functions in the Two-dimensional Problem

of the Theory of Elasticity), 1958. and on his papers/13, 14/.
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membranes perfectly rigid with respect to displacements in their plane, but

freely displaceable out of their plane. These boundary conditions are
formulated as follows:

at x _ and x : / : t :-Y= c,=0. (12.1)

It follows from (12.1) and (10.1), (10.2) that

U (x, y) = _ ft. (y)cos_.x,

V (x, y) = _ f_. (y) sin "nX,
n=l

_x (x, y) = _ /_,_(y) sin _,_x,
n= 1

Y (x, y) = _/.- (u)sin ...x,

x (x, y) = _] h. (y)cos_.x, (12.2)

tt_

where _ =T' I = plate length in x direction.

Equations (12.2) represent Filon's solution. If, on the other hand, U and

X are expressed by sine series, and V, Y, and ax by cosine series, we

obtain Ribi6re's solution satisfying the boundary conditions :

at x=0and x=l : U=X=O. (12.3)

We shall use (12.2), assuming all the initial functions U.., V.. X,,, and Y,

to be known for y = 0, being represented by trigonometric series with

constant coefficients :

U°=_'n=z u. cos_nx, Yo.-= n=z_]y.sin_.x, ]
Vo = _ v. sin,_.x, Xo= _ x.cos_.x.

n=l n=l

(12.4)

The states of stress and strain of the plate can be expressed through the

initial functions which satisfy (12.1), by substituting (12.4) in the general

integrals of displacements and stresses, written in the form of Table 25.

For example, the first term in the expression for U becomes:

III

ii-il i

I11

_o _ F(%y)=_ . i (a.Y)2m+2]

,T = I m =0

_11 ' "n_ Sh _n Y / _OS "nX.= u. (ch _,,y+

m m m
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The same procedure is applied to the other terms in Table 25.

obtain:

i ,._y sh,,.y] --t] = i--_

t_n i

2 [ (I -- 2.) sh a.y + any ch an y] -- T y"y sh am y +

co

+ "n [(1 ¥) Ch any -- -_ "ln. SheYn.] + yn [_-'v Sh ,- _-L-W-,, .u-
t

-- ych ¢tny] + T x,,ysh any} sin a.x,

co

' tY =_ una_ysh"ny+vnan(shany--acnychany) +

t Xn+ _.[¢t-,)_h a._- _-_.y_h_.y]+ r [(l--2,_han_+

+a.,o,a._]}s,°a._.
co

X = l--'-'--J Unan(shany +_nychany)--vna_y shany
1

+ _ [(1 -- 2v) sh a.y _ "nY chanYi+

+ Xn [(I- .) ch _ny + ._a,,yshat,ly]lcos,,,.x,

oo

a 1
.= _ _ {-- u,_.. (2thorny + anyshany) +

+ v_n (sh any q- any ch any) + yn (vch ".Y "+"

+ "T1a,,y sha,,y)--TI(3--2v)sh_t,,y+a.ycha.yl}sina.x.Xn

We

(12.5)

These general expressions are valid for any boundary conditions at the

longitudihal plate edges y = 0 and y = h •

¥

Replacing Poisson's ratio _ by +t-_-q' we obtain the general solution for

plane stress under boundary conditions (12.1).

_//////// // ///..////. _L h

.,_ .<'v'/..,;,?..,>71 I '

ol _. /1

FIGURE 173.

III
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Similar expressions can be obtained when the boundary conditions are

given by (12.3).

Several examples will now be considered:

Let a plane punch be pressed into a rectangular plate (Figure 1 73) at the

boundary plane y = h. It will be assumed that the normal plate displacements

under the punch are known functions of x, being zero at the other boundary

plane of the plate (y = 0), and that the shearing stresses X vanish at y = 0

andy=h. Hence, by (12.2):

at y =h : V (x) = _, 8. sin...x.

The following boundary conditions are therefore obtained:

at y =0 Vo=X,=O;

oo

at y = h V = _, 8. sin _tnX,
tt--i

X_Oo

(12.6)

The initial functions U0 and Y0 are determined from the boundary condi-

tions at y = h. Putting in (12.5) v. = x.= 0 in accordance with (12.6), and

substituting the expressions for V and X at y = h in these boundary conditions,
we obtain for each term of the series the following two equations with two

unknowns u. and y.:

2tl_.Chp_-o-_hl_,,. + h(3-__"_ht_.--¢hl3.)w =
ffi40- v)a.,

2_.($h_. + _.ch_.)Un + h[(l--2v)sh_n--_.ch _.]y.= O,

tmh

where _. -----7-"

After the unknowns u., y. have been determined from these equations,

we can rewrite (12.5) as follows:

U = _] t.e_._ ...
--., _ {IU -- 2*)sh_t,,--_nch_n|ch_n'q + fJnsh_.('qshf_nVt ,

_-_ I_.sinI_._ f
V = 2.i 2--IX:---_ _12(I--v)sh_. +l_ehfl.lsh_'_l-- 13.shfl.Oleh_._)},

'_--t hA.

a. = ._ ha. (shfJ.--[J.chFJ.)ch_.'q+ [J.sh_.('qsh[J. _)},

IlL

Ii-ii i

I11
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where _]=_-, _=T = dimensionless coordinates, and A_=(l--v)sh2_,,.

The magnitude (l--_), which depends on Poisson's ratio, enters in the

expressions for the stresses Y, X, ox only as a factor which can be written

before the summation sign. If we assume that at y=0 andy=hthe displace-

ments U and not the stresses X vanish, more complex expressions will be

obtained for the stresses and displacements, and Poisson's ratio will not

appear before the summation sign. In the case of boundary conditions of the

mixed type (12.6) we thus obtain a peculiar generalization of M. L_vy's

theorem for rectangular plates.

Ill

Consider as second example a double-layer plate subjected to a vertical load

P= _ pnsin'%x.
n 1

We denote the elastic characteristics and thicknesses of the upper and lower

layers by G,,_l, hl and G, v, h respectively. The directions of the coordinate

axes are shown in Figure 173. It will be assumed that the upper layer

behaves like a thin plate. The following boundary conditions willbe assumed
for the lower layer:

at y=O : V0-----Xo=0;

Dd'V ,. / (12.8)
at y = h : X = 0, _"_'Z- .-prf--p, J

where D = flexural rigidity of plate.

The last condition (12.8} expresses the fact that since the upper layer

behaves like a thin plate, the load transmitted tothe lower layer is de-

termined from the equations of cylindrical bending of a plate. The coeffi-

cients u, and yn in (12.4) are found from (12.8).

We then obtain:

U=-- _, hp. cos_n_r
.-, _ _[_3nch f3.-- (1 -- 2_) sh 13.]ch 13.-q--

-- _. shIs.(_sh_._)},
"_ hp a sin _a_

V= --.__ {[2 (l -- ._)sh !8. + _ chl_.]sh_,,_--

oo Pn sin_3n_
Y = -- _ _ {(sh 13.+ _3,,ch _,,)ch _3._--

n iI An n

'_ Pnsin_._ ro. -- - _ _<_h13.--13.chp.)ch13._+

+ 13.shp.(_sh13.-¢},

(12.9)

! . !
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where

(12.10)

A solution in trigonometric series can also be obtained by proceeding

from the fundamental differential equation of the problem instead of from

(12.2) and (12.4). This will be illustrated by the above example of the

bending of a thick plate.

The fundamental equation for F is in this case [cf. (11.6)]:

a [=h -- sinah cosahl F = p(x).! Zv (12.11)

For simplicity, only the case of a load symmetrical with respect to the

y axis will be considered.

The origin of coordinates is placed at the center oftheplate. We assume

a solution of (12.1 I) for the boundary conditions (12.1) in the form:

n_XF = A.cos -_- (n= 1,3,5,...,(2m-- 1)). (12.12)
1

We expand p(x) in a cosine series:

_,, n,,x (n= 1,3,5 ..... (2m--1)), (12.13)p (x) = p, cos _-

where:

4 f n_xP" = T p (x) cos _ _L_.
o

Substitution of (12.12) and (12.13) in (12.11) yields:

t_

l (1-- v) _ p (x) cos X.x <Ix
/#in _ 0

where

n_
(n = l, 3, 5, . . ., (2m-- l)).

From (I1.7) and (12.12) we now obtain:

_'nh sh )_,,h ] COS ),nX,

Xo = --_ _----_A"^.n'='sh),,hsin ),,x.
n=l

(12.14)

(12.15)

II" , II' "1

i -1I-1
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Substitution of (12.5) in Table 25 yields:

co

U--_ An[(l--2v) ch )-.hsh ).,y--
-- 2(1 --v) nml

-- X.h sh _nh sh ),nY + )'.Y ch ),nh ch ),,y] sin ),nx,

0o

V = _ .._-,A,d2(l --v)ch X,,h ch )..y--X.y ch ),.hsh),.y+

+ )..h sh ),nh ch )'..V] cos )..x,

An). nY= -f-_.___v l ),nh sh kny sh ),,th -I- ch knh sh ),ny --
,-t

-- knych }-.h eh ),nYl cos ),nx,

X = i--_-_,lysh),,ych),.h--hch),.ysh),.hlsin),.x.
nml

ax = _ [sh ),ny ch ),nh + )'nY ch X,y ch ),. h --
nml

-- ),.h sh Xny sh X, h] cos ),.x.

(12.16) z

We shall now give the exact solution in trigonometric series for a plate

subjected to a load symmetrical with respect to both x and y axes (Figure 174).

The solving equation is in this case:

(12.17)

where

d

We assume a solution in the form:

_jj n_XF= A,, cos --_- (n= !,3, 5,..., (2m-- 1)). (12.18)

Expanding p (x) in a series of cos--_-n"x, we obtain:

I/I

4 (t -- v) _ p (x) cos _,,,x ax
0

An -- nn [ sin2Anh l ' (12.19)

!!i

! . ! W

| -11 i

I11

where _ _

(n = 1.3.5 ..... (2m -- 1 )).

* [The hyperbolic funetiom used in this section should apparently be trigonometric furctions. ]

3O4

Ii I •

li:-liXII I I I I I IIIIII I I



It -A-A-II

Furthermore:

where

_o

Uo = -- _ Bn sin )..x,
)

t _ C. COS ),nX,Yo t --.

(12.20)

II

B. = A. 1(1 -- 2",) sh )`,,h -- )..h ch )..hi,

C. = A.).. Ish ),.h + k.h ch ),.hi.

(12.21)

FIGURE 174.

The stresses and displacements of the plate are:

• U . ! I

ii z1I-il

U= 2(t-v) ,(B.chX.y+

+ A.)..y sh )..h sh ),.y) sin ),.x,

V = _, An[--shX.hshX.y-- 2(1--.) eh)`.hshX,,y+
m,.-1

(1 -- "dY = _ [ A.),'.,y sh )`.h sh )..y -- C. ch )`.yl cos )`.x,
n--1

(I--v)X = _ A.X=.(hch )`.hsh k.y--y sh )`.hch X.y)sin).,,x,

co

(I--v) ax = _ An)..(--sh)-,,hch )`rigq- )..hch )`.hch )-.y--

-- ),.ysh ).,,hsh )..g)cos )`.x.

(12.22) I11
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§ 13, EXACT SOLUTION FOR A RECTANGULAR STRIP WITH

ARBITRARY BOUNDARY CONDITIONS AT THE LONGITUDINAL

EDGES AND HOMOGENEOUS BOUNDARY CONDITIONS

AT THE LATERAL EDGES

In the preceding section, exact solutions for rectangular plates under-

going plane strain were given for the case where the boundary conditions

at the lateral edges can be expressed with the aid of trigonometric series.

This section will deal with the problem of finding exact solutions for a

rectangular strip with arbitrary boundary conditions at x = 0 and x = l

(Figure 175), and homogeneous boundary conditions at y = 0 and y = h.

We first assume homogeneous boundary conditions of the mixed type,

i.e., for y=0 and y---h :

u=%=O. (13.1)

This means that at the lateral edges y=0 and y=h the strip is held

by membranes rigid in their plane and flexible out of it. The initial functions

Uo and Y0 vanish in this case.

t l
FIGURE175.

Ill

il -II -II

Inserting into (13.1) the values of the operators given in Table 26, we

obtain a system of two differential equations of infinitely high order in the

two unknown initial functions V0 and Xo:

-- I(I -- _) sin ah -t- (1 q- _) _thcos ahl Vo +

t 3--v IX. = 0,y[?sirlah + (I + _) h cosath+

2(I + v)" (ahcosah-- sinoth) V_--

-- [(1 -- v) sin _th + (I + v) ahcos ah] X_ = 0,

(13.2)

We introduce a function F(x) satisfying the equations:

Vo=--_(_sinah + ahcos

X0 = -- 2_t (ah cosah -- sin ah) F.
(13.3)

The second equation (13.2) is then transformed into an identity, while the

first becomes:

(sinS_th) F = 0. (I3.4)

I11
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We assume a solution in the form:

F = Cek'. (13.5)

Substitution of (13.5) in (13.4) leads to a transcendental equation in k :

sin1 kh = 0, (13.6)

whose roots are:

where n = positive integer.

The general solution of (13.4) is thus:

F = _] A. ch k.x -F B. sh k.x -1- C.x ch k,_x-I- D.x sh knx,

n_0

(13.7)

where An, B., Cn.D. = arbitrary constants.

Substituting (13.7) in (13.3), we find the initial functions V 0 and X0.

Introducing these values into Table 26, we obtain the stresses and displace-

ments of the plate when the boundary conditions are given by (13.1). For

practical calculations it is more convenient to substitute first (13.3) in

Table 26, simplify the results, and then use (13.7). We obtain:

o_

U = _ (-- l)"h{k.A, chk.x+ k.B. shk.x+

t -- v k.x] Ca+ [-- _ sh k.x -F k.x ch +

i--v knx]Dn}sinkny,-_- [-- _ ch k.x + k.x sh

oo

V = _-a (--l)_h{ k"Anshk'x -t-k.B_chknx-']-
,,=t

2 k.x sh k.x ) Cn+ (_ ch k.x -+. +

2 k.x)Dn}coskny,"F (_ sh k.x -k- k.x ch

co

Y = -- 2 _ (-- 1)" k.hk.A.{ sh knx + knB. ch k.x +
n_t

-z (2 ch k.x + k.x sh k.x) C. +

-F (2 sh knx -7 knX ch kn x) Dn} sin kny,

oo

X =2_ (-- I)"k.h{k.A. chk.x ff k.B. shk.x--
n=l

÷ (sh k.x + k.xchxnk)C. "1-

+ (eh k.x + k.x sh k.x) D.} cos k.y,

oo

_. = 2 Yj (-- l)"k.h{k.A.shk.x + k.B. chk.x -F
tl=l

+ knxCn sh k. x + knxD. ch k.x } sin kay.

(13.8)

!!1
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The elementary solution in polynomials, corresponding to the zero roots

of (13.6), no longer appears in the general solution (13.8) which thus re-

presents incomplete expressions for the displacements and stresses. This

elementary solution cannot be obtained in a general form by introducing the

function F, since V0 and X 0 are expressed through P by differentiations in

which part of the solution in polynomials drops out.

In order to find the elementary solution, we replace the trigonometric

functions in (13.2) by their expansions in infinite series. Taking only the

first terms, we obtain a system of two first-order differential equations in

the unknown functions V0 and X0:

-- =V0 + Xo -- 0, =X0 = 0. (13.9)

It follows from (13.9) that:

Xo=AÜ, Vo=Aox+Bo. (13.10)

Substitution of (13.10) in (10.6) [using Table 26 and taking account of

(13.1)], yields:

U=Y==.=O, V=Aox+Bo, X=Ao. (13.11)

This result corresponds to pure shear of the plate. The constant B0

determines the rigid-body displacement of the plate in the y direction.

Adding together (13.8) and (13.11), we obtain a general solution for the

displacements and stresses of the strip, To each value of n there corre-

spond distinct states of stress and strain. The infinite set of these states

forms the exact solution of the problem for boundary conditions (13.1). All

individual solutions are orthogonal.

The solution obtained contains 4n ÷ 2 constants which have to be deter-

mined from the boundary conditions at x----0 and x---l. Two boundary

conditions can be formulated for each edge. Expanding the statical or

geometrical magnitudes given at these edges into Fourier sine or cosine

series in the interval (0, h) in accordance with (13.8) and (13.11), and

equating the resulting expressions to the known corresponding displacements

and stresses at x=0 and x=i, we obtain for any n_0 a system of four

algebraic equations in the unknown constants A., B., C. and D., When these

constants are determined the problem is completely solved.

It is often advisable to introduce other constants having a clearer physical

meaning. Taking x = 0 as base plane of the strip, and assuming as before

that boundary conditions (13.1) are fulfilled at y--O and y---h, we obtain as
initial functions :

U" = U (0, #), V" = V (o, y), X" = X (o, y), 0; = 0. (o, y),

which, as follows from (13.8) and (13.11), must satisfy the following

relationships :

U" ----_ u_,sin k.y, V" ---- t,_,COS/¢.g,

•-t _-o (13.2)

r =_ <eos*_.,°:= ,_o:.in*_,,

!11
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Here u_, v_, x_, _ are the Fourier coefficients of the trigonometric series

for the initial functions. In order to express A. B., C. and /9. throught them

we set x=O in {13.8) and (13.11). and equate the results obtained to the

corresponding expressions {13.12). We obtain"

t' k . t --v D.) I

2

x_,= (-- I). 2k.h (k.A. + D.),

<J'.= (-- l)"2k_hB,..

(13.13)

B0= v; A0= x;.

It follows from (13.13) that:

(13.14)

A ' I'" t+v/2 *- t-vx_\

"=_- J _..t"-t_--4T_)'

B.=(-- 1). 2T_"h. (13.15)

c.={ ,,o-_-_'(o__-_-)
D =t__l_. i+v(x,, o *k

" _ '-" 4h t k. --'_u,.)

Substitution of (13.14) and (13.15) in (13.8) and (13.11) yields the following

general expressions for the stresses and displacements:

n_l

',,i-,-,, It+'T-t + v x'.xshk.x-t- 4[ k. shk.x--(I + v)xchk.x sink.y,

, i+vv=v:÷,ox÷_ {o:(<,k.x÷Tk°--_)
n=l

i

__ xn[ 3 v

× sh k,,x "+ ( l "-t- '0 x eh knx ] -- 1 + v-'T- a'nx sh k,tx} cos k.y,
co

y= _.] {--(I +'Ov'.k.(2chk,.x+k,.xshk.x)+ (1 +,)u'..k,,(shk.x+k.xchk.x)-- (13.16)
n=l

x_ * t +v
z 1{3+ ,),hk., + {I +,)k.,_,_.,i÷ =.(,_hk._+ -_--k.,_hk._)},_,k.y

X = x0 + _ {(1 + ,e)v'k,.(skk,.x+ k_chk.x)- (I + _,)u'klxshk.x +

+ < (_hk.x-' +'- *:-v -T-- R.x shk.x ) + --f [(I -- _)shk,,x-- (I +_) k.x ch k.xl }cosk.y,

o. = _ {(1 + ,)v_k_xshk,.x+ (1 + ,)u'.k,.(shk.x -- knxehk,.x)+

"-",, _),,k..= +{,+__.x<,,oxi+ °:(-'T+__."'"_."+c"k_)t""_._

!11
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We can thus determine the stresses and strains of a strip in the case of

plane stress with arbitrary statical, geometrical, or mixed boundary

conditions at x=0 and x=l. The solution by trigonometric series (13.16)

is a generalization of Filon's solution.

We could also have obtained {13.16) in a simpler way by direct substitution

of {13.12) in Table 26, rewritten in terms of the variable x.

The method used to obtain (13.16) from (13.8) is a generalization of

Cauchy and Krylov's method of initial parameters.
!11

§ 14. OTHER HOMOGENEOUS BOUNDARY CONDITIONS OF

THE MIXED TYPE AT THE LATERAL STRIP EDGES

Consider now a different kind of homogeneous boundary conditions of the

mixed type {Figure 176). It will be assumed that at y =0 and y=h ;

V =_x_ = 0. {14.1)

We obtain in this case:

V0 = Xo --0.

By satisfying the boundary conditions at y = h we obtain, [using Table 26 ],

a system of two differential equations of infinitely high order in the unknown

initial functions U0 and Y0:

I(1 -- v)sinah--(l + ',) :h cos ahl Uo %

_t [ s,nah_.g__ (l+_)h cos_hj Yo = 0, 1+_L (3-- ",,) --

--2(1 +_)a(sin_h-; ahcosath)Uo+ [
i

-1- I{1 -- ,,) sin ah -- ( 1 4- v) ah cos ahl Yo = 0. I

(14.2)

We introduce a function F (x) satisfying the equations

| --V

Uo = (_ sin_th-- ahcos ah )F,

Y, = 2_ (sin ah -+-ah cos _h) F,
(14.3)

This transforms the second equation {14.2) into an identity. The first

equation is again reduced to {13.4}.

Since {13.1) and (14.1) have the same solving equations, the considerations

of the preceding section apply also to this problem. As a result, we again

obtain {13.7} for the solving function F.

;L

FIGURE1"/6
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To determine the general integrals for the displacements and stresses,

we have, as before, to find an elementary solution in polynomials, proceeding

from the system:

-- 2vaUo + (1 -- _,)Yo = 0,

2 (I + _)_,2U o + "aYo = O, / (14.4)

obtained from (14.2) by retaining only the first terms.

We obtain from (14.4):

Uo=_-_-ZBOX+ Ao, Yo=vBo. (14.5)

Substitution of this in (I0.6)[using Table 26, and taking account of (14.1)]

yields:

I --v

U= _Box + Ao. Y='_B,, a,=Bo. (14.6)

Expressions (14.6) represent an elementary solution corresponding to

a uniformly distributed load =_ = B0. The constant A, does not affect the

states of stress and strain of the plate but determines rigid-body displace-

ment of the strip in the x direction.

Expressions (14.5), (14.3), (13.7), and (10.6) yield:

U= Ao+-_ Box-- _, (--1)nh[knshknxAn +

, • 2_ k.xshk.x)Cn-j-+ k. ch k,,xB,, "v IT-4--_ ch k,,x +

+ (_sh k.x + k.xchknx )D.]cosk,,y,

l'= _, (--l)"h{k. chk,_xA,,+k, shk.xB,_+
tt=l

3+, ]C,_- [t_ sh k.x + k.x ch k.x 7-

[3 +. k.xshk.x] D"} sink.y,+Li+v ch k.x +

Y _ _Bo + 2_ (-- l)"k.hlknchknxA,, + knshk.xB. +

+ (3 sh k.x + knx ch knx) Cn "+"

+ (3 eh k.x + k.x sh k.x) D.] cos k.y,
co

X _ 2 _, (-- I )"k,,h [k., sh k,,xA,, + k,, ch knxBn -t"

+ (2 ch k.x -4- knx sh k.x) C. -t-

-+- (2 sh k.x + k.x eh k.x) D ] sin k.y,

_x = Bo-- 2_.] (-- l)"knh[k, chk.xA. -¢. k. shk.xB. +

n=l

+ (sh k x + k.xeh k.x) C. +

+ (eh knx + k.x sh k.x) D.] cos k.y.

(14.7)

Ill
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As in the preceding section, the general solution (14.7) represents an

infinite set of distinct orthogonal states. Any boundary conditions for x = 0

and x = I can be satisfied by a suitable choice of the constants A0, B,, A., B.,

C_, D. (n = 1, 2..... oo) We can also in this case introduce constants

having a clearer physical meaning by taking x = 0 as base plane, and the

magnitudes U(O,y)=U*, V(O,y)=V', X(O,y)=X', =_ (0, 9) ----_: as initial
functions.

It follows from (14.7) that when the boundary conditions are given by

(14.1), we can write:

U*= ,,=o_]u:cosk.y, X*= ,,=x_]x:sink.g, /

n--i n--o

(14.8)

Inserting x = 0 into (14.7) and equating the results to the corresponding

equations (14.8)_ we obtain:

1+yr. 3+_ 0_]

t+v [u:+ _ x:],B_ = --(-- O_k--'C_- z(1+-v)k_

I +v /xn

D,, --- (-- Jj _ _v,, ÷ 2 k./'

Ao=";, BO=Oo.

(14.9)

Substitution of (14.9)in (14.7)then yields expressions similar to (13.16)

for the displacements and stresses expressed through the initial functions
(14.8):

-- , 1+v

o:
+ _- l( I -- *) sh k.x _ (I + v) k.x ch k_x] --

x,, x sh k,,x +

kn

{Mn

V = 2_ ]-_ [(I --v) shknx + (l + v)k.xchk,x] +

+_:(o.,,o,,+' ÷'___x_h_.x)+
*

• x. F3_v +_)xchknx]+ X-L *. shk.x + (I _+

t+v , }sink.y,--_ 0. x sh k.x

(14.10)

!11
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_z

Y = _%± _ (l +_,)u'_k,,(shk_x+k_xchk_x) +

+ ( 1 5- _) v: k. (2 ch k.x -_ k.x sh k.x) +

+ T 1(3 -1-v) sh k.x + ( 1 + v) k,,x ch k.xl _-

+ n" (vchk.x+_

_,= _ {o + ,).; k_x_hk._+ 0 + ",)o;.k.(_.k x +
n=l

+ k_,xchk x) + x_,(ch" --_+_R_xt-=2-- k,,x sh k.x ) --

_n

-- '-2- [(l--v) shknx--(l +v) knxchk.xJ}sinkny,

oa

_. = o;+ Y_{It+ _).:k° _hk.,_--k,,xch k,,x)-

X n

-- (1 + v) v_,k] x sh k.x-- "T I(1 -- v)sh k.x +

4 (1 -_ v)k.xchk.xl +

t +_. - _,,,;)!co_+ o_ ( chknx -- _ R,,sn .. k_y.

(14.10)

Equations (13.16) and (14.10) represent general solutions in trigonometric

series of the two-dimensional problem of the theory of elasticity. They are

generalizations of Filonts and Ribi6rets solutions, since the latter do not

actually contain general integrals for the displacements, while (13.16) and

(14.10) determine both the states of stress and strain in the strip. It is thus

possible to obtain a solution for problems (13.1) and (14.1) not only when the

boundary conditions for x = 0 and x = 1 are statical, but also if they are

geometrical or of the mixed type.

These examples do not exhaust the problems of the theory of rectangular

thin plates which can be solved by the exact methods of mathematical analysis.

Similar exact solutions can be obtained for homogeneous statical boundary

conditions at the longitudinal edges of the strip (see /15/) or other types of

boundary conditions. From these homogeneous solutions it is easy to obtain

relatively simple approximations for rectangular thin plates undergoing

plane strain, with arbitrary boundary conditions on all four sides of the

plate. The same procedure can be applied in the presence of body forces

and temperature stresses.

!11
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§ 15. THREE- AND TWO-DIMENSIONAL PROBLEMS OF
THE THEORY OF THICK MULTILAYER PLATES

Consider a thick plate consisting of several horizontal layers having

different elastic characteristics (Figure 177). Let h be the total thickness

of the plate, and h.,, _,., G.,, be respectively the thickness and elastic

i i i
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constants of the m -th layer. The coordinate axes are directed as shown in

Figure 177. It will be assumed that the displacement and stress vectors

vary continuously at the contact plane of two layers.

Gm, v_ p,,

FIGURE 177,

The unknown magnitudes:

U, U,

will be denoted as follows:

u(x,y,z)=U1, v(x,y,z)=Us, wO:,y,z) =Us,
o.(x,y,z)=U. _xdx, y,z)=U_, "_uz(x,y,z) U,. } (15.1)

The initial functions uo, vo, wo, Zo, Xo, Yo then become:

Uo(x,y) = uo, vo(x,y) = u._ wo(x,y) = u_, I
zo(x,y) = vo, :Co(x,y) = u,_ vo(x,y) = uo. I (15.2)

When no body forces are present, we can rewrite (2.5) as follows:

Ul=_ Lil,(z)U_ (i= 1,2 ..... 6). (15.3)

Substituting , = h, O = Ol, z < hi we determine the displacements and

stresses in the first layer. These expressions contain only three of the

six initial functions (15.2), since three of the latter are already known from

the boundary conditions at z = 0. To determine the unknown magnitudes of
the second layer we first obtain the displacements and stresses at the

contact plane of the first and second layers at z = h,, which form the initial

functions for the second layer. Then, substituting in (15.3) _ = v,, O = O,, and

the expressions for the initial functions of the second layer, we determine

the displacements and stresses in the second layer:

u, =_ L_,(z)V?, (i= 1,2..... 6), (15.4)

I-1 I
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\vher e ,"

L;_ (z) = _ L[_)(z)LJ_)(tz,) (h,_z_h2). (15o5)

We denote by L_l(h,) and L_(z) respectively, the operators Lik in (15.3)

corresponding to the first layer at z=h, and to the second layer at any

arbitrary value of z :

L_,;@3= Lj_(.,, 0,, h,), }L_>(z)= L.(,..,O_,z) O,<z<h,), 05.6)

The matrix ilL.,(z)'] is thus the product of the matrix IIL_]'(z)rl and the matrix

rFLJ_' (h.)tl, and is therefore a function of the three initial functions corre-

sponding to z=O. Similarly, the matrixilLxk(z)llfor the displacements and
stresses in the rn -th layer of the plate is the product of the matrices:

L Ol'h" I = 2,..., --,J, t _. (J 1, m I) and IIL_l"(z)ll(_,.-,< z<h,.).

Determining in this way the displacements and stresses at the bottom

z = h of the plate, and inserting the boundary conditions for this plane, we

obtain the system of differential equations of the three-dimensional problem

considered, from which the three unknown initial functions can be obtained,

and thus the states of strain and stress of the multilayer plate determined.

I!!

!1$ , ll ill

Ii-Ii il

Consider the case of plane strain of a multilayer plate (Figure 178).

We introduce the following symbols:

u(x,g)=U,, v(x,y)=U2, I (15.7)

a_(x, yi=U_, "_.u(x,y)=U., o.(x,g)--U6, ' I l 1
uo(x)=VT, Vo(x)=U_, } (1 5.8)v,, (x)= _, X° (x) _.

We can then rewrite (10.6) as follows:

i

U, = _ L,k(!t) U,_ (i = I, 2, 3, 4). (1 5.9)

The displacements and stresses in the rn -th layer of the plate are:

4

U,= _L;,,(y)U_ (i = 1, 2, 3, 4), (15.10)

U II !
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where the matrix I',L._:(!')i' is the product of the matrices:

I!LT (hj)][ (l = l, 2..... m -- 1) and , L',_': (9)11 (h .... _ !/.% h,_).

and contains only two of the four initial functions. The other two initial

functions are determined directly from the boundary conditions at 9 = 0.

Inserting (15.9) into the boundary conditions at y = h yields a system of

two ordinary differential equations of infinitely high order with constant

coefficients whose solution determines the two remaining initial functions.

We shall consider now in more detail problems with boundary conditions

for the longitudinal plate edges x=0 and x=l, Let the initial functions be

represented by the following series with constant coefficients:

¢_ co

Z ° u°-S °U,° = uL. sin _.x, 3 - u._. cos _.x,

n= 1 n=0

c_ eo
0

U °_= v .,", cos _,,x U_ = _ u,,, sin :,,,x
n=o rill

(]5.11)

III

where
tit,

The boundary conditions at the plate edges x=0 and x=l are:

b'l=U,=O (u=_y=O). (15.12) I-i-i

i *'_ _'iI'_:
i

F L: 1, , ,

t
L G. ,,2 , j_

FIGURE178

_,,_xl 0

"i_,_,i
.9"

_ ..l',l_

-[ £tx)

FIGURE 179.

These conditions are satisfied for each span of a multispan plate resting

on an infinite number of identical and equidistant supports and subjected to

a load symmetrical with respect to the ends of each span (Figure 1 79),

As already mentioned (see section 12), the representation of the initial

functions in the form (15.11) corresponds to Ribidre's solution. Inter-

changing the sines and cosines yields Filon's solution which corresponds to

the following boundary conditions:

U,=U6=O. (15.13)

I11
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Substituting (1 5.11) in (1 5.9) and inserting the values of the operators L_,

given in Table 25, we obtain:

li o

× [(I--2v) shany + anyehiny ] + _yshany-t-

u_n F3--4v . ychct.y31 si nJ_/-"_-. sn _V + _.,,x,

u_ (i - 2,)
U_ = u_ - _ y +

+ ,_ uL{_ I(1 -- 2v) sh -- ch "nY] +et ny et ay

tlIl

U o

u o3-- 4v
× (--_ sh a.y--y ch ..yJ-- _ y sh _.y} cos ajx,

Ul= u_ + _ < u°"O Ii-- _ any sn" a.y --"t-
tlIl

u_.O
-4- _an (sh a.y- a.ych aM/) "4-

- _ [,- __.>,_<<_+=..<_=..]}°o,,,.x,

_. " u,°.a "°_0 IUj i--_ a. (sh a_y + _ c h a.//) + _ a.y sh a.g --i
nmi

u__ v) l (l --2v) sh a.# -- a.y ch _tny] +20

t tt_ sh any]} sin a.x,+ u_ [ch a.y +

U_ = _ + -- ti'x-_ a,_(2ch a,,,q + any sha,,y)+
#t_l

uL_
+ _ a. (sh a_y + any ch a,,y) +

ll_n f t %

+ _ _v ch a.y + _ a.y sh a,,y) +

u o

+ _ I(3 -- 2_) sh a.y + a.y ch _.y]} cos _.x.

Putting _ = vl, O = Op we obtain from these expressions the stresses and

strains in the first layer of the plate. The coefficients u_. (i = 1, 2, 3. 4)

represent unknown magnitudes determined from the boundary conditions at

y=0and yah.

Substituting (l 5.11)in (15.10), we obtain the displacements and stresses

in the m-th layer. These can also be determined by a different and simpler

I!i

-l -.-II I
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procedure. Each term of any series (I5.11) is orthogonal in the interval

(0.I) to all other terms of the same series. Expressions (15.14) can

therefore be considered as an infinite set of independent and orthogonal

states of stress and strain. The displacements and stresses in the m -th

layer are therefore, in accordance with (15.14):

4

u,_= y, a__"(y)uL (i = 1, 2..... 5), (15.15)

where the matrix |a_'(y)Jlis the product of the matrices:

lia_)(.1,_,,hj)_(j--I,2.....m- l)and fFa_7(..,6.,Y)1-

Consider as example the equilibrium of a double-layer plate subjected

to a vertical uniformly distributed load p, acting on the upper surface of the

plate (Figure 179). We denote by 2c the width of the plate supports, and by

I the distance between the support centers; the coordinates are directed

as shown.

It will be assumed that due to the external load only normal stresses Us,

distributed uniformly over the plate width, arise in the supports. Thus,

for y=h , the stresses U.areconstant = \ 2 ¢ /at the supports and zero

between them.

The boundary conditions at the upper plane y=0 are:

_=u_=-p, u:=0.

The normal load acting on the lower plane of the plate can be represented

as a Fourier series in the interval (0, 1) :

_I. 4, 6

The first term of this series corresponds to the load U3o(h) = --p • The

combined action of this load and the load L_ =--p causes a uniform com-

pression of the plate. The loads represented by the remaining terms of the

series are statically equivalent to zero in the interval (0, I).

Substituting (1 5.1 5) and (l 5.16) in the boundary conditions for 9 = h, we

obtain:

a_n_'uo -4-a_'u o =- 2p sin_nc, /
s, -in -- ca. (I5.17)

Ja) ° o ad_ l/Ira=0,_t gin + n)" 0

where:

4

a_7"=_ d7 (*1,G,.h,)o_7(_,,G,, h,). (; 5.18)
Jil
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Diagram of _s Diagram of _,

0.257p tO_

2.8_5_ _.aJ*p _tT,Ya t_5*p

FIGURE180.

All the unknown coefficients u0m and uo (n = 2, 4, 6.... ) can be obtained

from (15,17). It is then possible to determine the stresses and strains in

the plate, mt , m
1

The normal stresses Us=% and U6=a, in the middle section x=-_/of

the span are given in Figure 180. The plate considered has the following
dimensions and elastic characteristics:

3
hl=h2=_l, Gs= lOG1, va = vs ----0.3.

Two curves have been plotted in each graph; the full line represents the

sum of three terms of series (1 5.16), while the broken line represents two

terms of the series. It is seen from the diagrams that the normal stress
_, has a discontinuity at the contact plane of the layers.

It was assumed that there are no relative displacements between the

points of the lower and the upper layer at the contact plane. We shall now

assume that the contact plane is perfectly smooth, so that the shearing

stresses U, = _v vanish there. The displacements Ut = u are discontinuous,

while the displacements U2 = v and normal stresses Us = % are continuous

across this plane.

Representing the initial function of the lower layer by the series:

I-I !

we obtain from the boundary conditions:

">" at, hO u_. <"_' at, hj.)ug O, ]all ['_1, "_-a,llt _VI,

/,,o" o a_>.u_, 2uam uv. + + a_ > (*_. G,. h,) u% = -- -- sin +t..c.
¢n n

a°'_'uO,x 1.. -t---at'ra uv_°+ .+_]l(vt. Gs. h2) u°.. = O.

(15.20)

where the coefficients a_" are determined by (15.18).

The first and third equations (15.20) state that Ud vanishes at the contact
plane of the layers and at the bottom of the plate. The second equation

expresses the equilibrium condition with respect to Us at the plate bottom.
These equations are sufficient for determining the stresses and strains in

the plate.

l m i

319
II • I

l-_l+l I 1 I 1 1 1 I 1 1 I I [ I [ 1



_ m-A-A

The stresses Us = % and Us = _x in the middle section of the plate have

been plotted in Figure 181. The dimensions and elastic characteristics are

the same as in the preceding example. The diagrams represent the sums

of two terms of (15.16). The distributions of the normal stresses over the

middle section are practically linear. The stresses _x have a discontinuity

at the contact plane of the layers.

3,

A solution by trigonometric series is also possible in the three-dimen-

sional problem, provided one of the following conditions is fulfilled at the

longitudinal edges of the plate: 1) the shearing stresses in, and the displace-

ments normal to, the boundary plane vanish or, 2) the normal stresses in,

and the tangential displacements of, the boundary plane vanish in the two-

dimensional problem. The boundary conditions of the first kind correspond

to (15.12), and those of the second kind, to (15.13).

Diagram of _'z Diagram of dv

aJ20p LOp

4.Zffp 0. aSO

FIGURE181.

!!!

! '. ! R

l-l_ l

When boundary conditions of the first type obtain on all sides of the plate

(x = 0, x = a, y = 0, y = b), the initial functions can be represented in the form:

U_I=_ _u°nmsinGtnxcos_.Y, U_4=_ _ u_mcos_,,xcos_,.y,
_I taRO rt_0 ran0

n_O m_l nmO mR1

rt_O ram0 .sl m_0

(15.21)

where

If boundary conditions of the second type are fulfilled on all sides, it is

necessary to interchange sines and cosines in (15.21). If conditions of the

first type are fulfilled on two opposite sides, and conditions of the second

Ill
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type on the remaining sides, the trigonometric functions of one argument
are unchanged, while in those of the other sines and cosines have to be
interchanged.

In the three-dimensional case, the stresses and strains in a multilayer

plate are determined in the same way as in the two-dimensional case. The

unknown coefficients in (15.21) are found from the boundary conditions at
z=O and z=h.

The stresses and strains in a plate, corresponding to (15.21) can be

represented as follows. Consider an [infinite] multilayer plate supported

by a large number of rows of columns (Figure 182) arranged in two ortho°

gonal directions. The distances between the centers of adjacent columns

are uniform, being a in one direction and b in the other.

N.tI"

FIGt,'R.E 182.

"Re" -, i I

I-i i

The planes passing through the centers of the columns in the direction

of the rows form two families of orthogonal planes of symmetry. If an

external load, symmetrical with respect to all these planes, acts on the

plate, all plate elements which form rectangular plates supported on four

adjacent columns, will be under the same conditions. Boundary conditions

of the first type will be fulfilled on all sides of each plate; the initial

functions determining the stresses and strains in the plate are then given

by (15.21). If the load acting on the plate is antisymmetrical with respect

to all planes of both families, boundary conditions of the second type will

be fulfilled on all sides of each plate element; the initial functions are then

obtained from (1 5.21) by interchanging the sines and cosines. If, finally,

the load acting on the plate is symmetrical with respect to all planes of one

family and antisymmetrical with respect to the other, the problem will be

of the mixed type: the functions of one argument in (15.21) remain unchanged

while sines and cosines are interchanged in the functions of the other

argument. The general case of a continuous plate subjected to an arbitrary
external load can be considered as a combination of the above-mentioned

symmetrical and antisymmetrical loads.

i i •
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§ 16. ELASTIC MULTILAYER FOUNDATION

The above theory of thick multilayer plates can also be applied to

determine the stresses and strains appearing in an elastic multilayer

foundation when an external load is applied to its surface (Figure 183).

+ c.,. +_.f--r-.................-_-:_!
?ol , ¢', T h' I

FIGURE 183.

!1!

The displacements and stresses in the first layer, which is in a state of

plane strain, can be represented in the form:

U, = _. ___[A,, (y, =) ,,(x, =) u°.(=) + B,, (y, =) g, (x, ..) u_" (=)} d=1 (16.1)

(i = ], 2..... 5),

where fl(x,=)=sin_xfori=l,4; f_ (x, =) ----cos=x , for i = 2, 3, 5 ; g, (x, =) -----cos=x for
i = 1, 4 ; g_(x, ,,) = sin=x for i = 2, 3, 5 ; the functions A_, are those entering in

(15.14):

An=ch=y-I 2(,--,navshav, A___(_d_sh=g_ych=y )

etc. ; the functions B_, are determined from expressions similar to (15.14)

but corresponding to a different representation of the initial functions
(Filon's form).

When the displacements and stresses across the contact planes of the

layers are continuous, the stresses and displacements in the ,n-th layer of

an infinite plate a.re:

U, = [ A;,h,,°, + B_,g,u°,'l d=,
it=l --

(16.2)

where the matrices DA_kJ and I B_,n are the products of the matrices:

IA_*)(=, hi, "/, Gi)l and I (_'Ae* (=, y, *=, G.) I .

li . I_ •

i-i I

respectively.

{n Gj) Hand I B_ )(=, v, ._, G=)II Bt, (=, hi, *j,

(1 -----1, 2..... m -- 1), (h._, _.<Y < h,_).

I I I
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The unknown functions u 0, and u_ have to be found from the boundary
conditions at y _ 0 and y = h •

Consider as example an infinite elastic foundation, on a hounded region
of which acts an external load (Figure 183). It will be assumed that this
foundation lies on a rigid subsoil, and that there is no friction between the

foundation and the subsoil. In this case the vertical displacements U2 and
the shearing stresses U, vanish for y= 0, so that in 06.2) we must put:

u_----u_fu_--u4O'=0 . To determine the unknown functions u_°, u_°', u_, us°', we
shall use the statical boundary conditions for y = h. Let only a normal

distributed load p(x), differing from zero in the interval a_ _x_a2, act at
y=h (Figure 183). We represent p(x) as a Fourier integral:

T at1 Ip (X)cosa (X__x) dk" (16.3)p (x) = _ da

Equating the expressions for the stresses Us and U,, obtained from (16.2)

for y= h, to the boundary value (16.3) and to zero respectively, we obtain:

a|

a_

2 B'al(_h) ui°"= -- _-_-I p (),) sin _ d),; _ B_(ach) u_'=O.

(16.4)

Having found u_ and up" (i = 1, 3), from (16.4) we determine the stresses
and strains in the plate from (16.2). The expressions for the displacements

and stresses cannot be obtained in finite form, since the integrals (16.2)
cannot be expressed in elementary functions and must be evaluated numeri-
cally.

The three-dimensional equilibrium problem of a multilayer foundation
extending to infinity in two directions can be similarly treated. We proceed
in this case from the sum of the four different representations of the initial
functions. One representation is (15.21), while the others are obtained

from (15.21) by suitably interchanging sines and cosines. In order to satisfy
the boundary conditions for z _ h it is necessary to use a double Fourier
integral.

II!
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TABLE 1

Function(Djft)=shzcos_z . where z=5.v_

0.t 0.2 0.3 0,4 o.5 0,6 rL7 tL8 0,9

II!

0 0 0 0 0 _') 0 0 0 0
0.05 0.05000 0.05CO0 0.04999 0.04999 0.04998 0.04998 0.04997 I).04996 0.114995
0.10 0.10019 0.100t8 0.10015 0,10012 II. 10007 O. 1(D02 0.09995 0.09988 0.09979
0.15 0.15058 0.15053 0.15045 0.t5033 0.15017 0.14999 0.14977 0.14952 0.14923

0.20 0.20130 0.20118 0.20098 0,20070 (L 20()33 0.199_9 0.19937 0.19877 0.19809
0,25 0.25253 0.25229 0.25190 0.25135 0.25063 0.24977 0,24875 0.24757 0.24624

0.30 0.30438 0.30397 O, 30329 0.30233 0,30t10 0.29960 0.29783 0.29579 _} 29349
O. 35 0.35697 O. 35631 O. 35522 O. 35370 O. 35173 O. 34934 O. 34652 0.34328 0.33961

0.40 O. 41042 O. 4(J943 0.40780 O, 40550 0.40256 O, 39898 O. 39475 O, 38990 O. 38443
0.45 0.46488 0.46345 0.46110 0.45782 0.45360 0.44848 0.44243 0.43551 0.45096 - _ . _ m
O. 50 O. 52045 O. 5t 849 O. 5t 525 O. 5107t O. 50490 O. 49782 O. 48950 O. 47996 O. 46922

O. 55 O. 57727 O. 57466 O. 57029 O. 56422 O. 55642 O. 54695 O. 53582 O. 52308 O. 50875
0.60 0.83550 0.63207 0.62636 0.61840 0.60822 0.59584 0.58132 0.56470 0.54606
0.65 0.69527 0.69087 0.68354 0.67333 0.66027 0.64443 0.62586 0.60465 O. 58(,_88
0.70 0.75672 0,75tt6 0.74191 0.72904 0.71259 0.69265 0.66932 0.64271 0.61295

0.75 0.82000 0.81308 0.80158 0.78559 0.76517 0.74046 0.71t57 0.67869 0,64t98

0.80 0.88527 0.87677 0.87i54 0.84333 0.81800 0.78774 0.75246 0.71235 0.66769

0.85 0.95266 0.94233 0.92519 0.89182 0.87105 0.83444 0,7918_) 0.74345 0.68972
0.90 1.02236 i .00993 0.98933 0.96072 0.92433 0.88046 0.82946 0.77175 0.70778

0,95 t.09451 t ,07969 1.05512 t .02104 0.97774 0.92565 0.86518 0.79695 0.72149

1. O0 t. t 6933 t. 16353 t. t 227t t. 08243 1.03t 33 O. 96994 O, 89884 O. 8t 877 O. 73052
1.05 1.24694 t.2263t t.t92t4 t.14489 t.088t2 t.0tt90 0.93014 0.83690 0.73445

t. t 0 t. 32758 1. 30346 1.26358 t,20843 t. t 3867 t. 05515 O. 95888 O. 85t Ol O. 73326

t.t5t.41139t.38337t.33704t.273091.t9229t.095780.984740.860740.72534 i i it.20 t.4986t 1.46620 1.4t270 1.33887 t.24582 t 13483 t .00750 0.86570 0.71145
1.25 t.58941 t.552t2 t .49059 1.41)58t t.29909 t.t72ti t .02601 0.86552 0.69i170

1.30 t.68404 i.84131 t.57085 t. 47389 t .35205 1.20739 1.04238 0.85975 0.66262
i .35 1.78270 t .73391 t,65538 t.M3tO t.40455 i .24047 t, 05380 0.84796 0.62669

1.40 t. 88568 1.830t5 t.73880 t. 6t344 t.45648 t.27t04 t. 06073 0,82966 0.58237

t .45 t .99310 i. 930i5 t .82666 t. 68486 t. 50766 t .29886 1. 06277 O, 80438 0.52911
t .50 2.10537 2.03419 t.9173t t, 75738 t.55795 t.32858 t.05947 0.77157 O, 4663"_

t ,55 2.22261 2.09738 2.01072 i .83091 i .60714 1.34488 t .05036 0.73067 0.39343

t. 60 2.3472t 2. 25688 2, t 0888 1.90705 t. 65648 1. 36358 t. 03586 O. 68170 O. 3 t 008
1.65 2.47338 2.37216 2,20646 t.98087 t.70t44 t.37582 t.0t28t 0.62230 0.21486

t.70 2.60748 2.49417 2.30895 2.05716 t, 74606 t.38464 0.98327 0.55357 0.10791
t .75 2.74774 2.62123 2.40064 2.i3422 t.78862 t.38834 0.94578 0.47429 --0,0tt72

t .80 2.89286 2,75358 2.52353 2.21195 t.82888 t.38873 0.89977 0.38372 --0.14470

t.85 3.04832 2.89142 2,63575 2.29021 t ,86642 t.37902 0.84451 0.28119 --IL2917t
t.90 3.20933 3.{)3501 275146 2.35889 t.90102 t.36475 0.77939 0.16592 --{),45346
1.95 3.37793 3.18466 2.87060 2.44781 t. 932t 9 t. 34337 O. 70358 O. 03719 -- O. 63066 _ll _11 I_
2. CO 3. 55458 3. 34055 2. 99339 2. 52687 t. 95959 t. 31423 O. 61646 --0. t 0590 --0. 82402 i I i2.05 3.73956 :L5030t 3,i0058 2.60579 1.98274 1.27666 0.51709 --0.26412 --1.03427
2.10 3.93350 3.67232 3.24978 2.68443 2.COit6 1.22996 0.40472 --(L43834 --I.26210

2.15 4,13668 3,84875 3.38350 2.76255 2.01429 t.t7338 0.27840 --0.62941 --1.50822

2.20 4.34969 4,03257 3.52107 2.83985 L02174 i.t0616 0.13723 --0.83829 --1 77339
2.25 4.57290 4.22416 3.66240 2.91607 2.02269 t.02741 --0.01970 --1,06583 --2.05820

2.30 4,80697 4.42376 3.80763 2.99091 2.01670 0.93624 --0.19348 --1.31,303 --2.36347

2.35 5.05016 4.63179 3.95659 3.06402 2.00292 0.83173 --0.385i6 -t.58087 --2.68966
2.40 5.,30957 4.84849 4,10957 3. i3499 t.98074 0.71290 --0. 59576 - 1.87027 --3.03758

2,45 5.57919 5.07431 4.26623 3.20344 t.94925 0.57873 --0.82642 -2.18223 --3.40766
2.50 5.862i0 5.30953 4.42687 3.26892 1.90775 0.42799 --1.07845 2.51779 --3.80055

2.55 6.15662 5.55456 4.59123 3.33099 1.85525 0.25961 --t.35284 --2.87790 --4.2i674
2.60 6.46972 5.80982 4.75935 3.38901 .79084 0.0723C --1.65112 --3,26355 --4.65659

2.65 6.79584 6.07564 4.93115 3.44247 .71345 --0.13520 --1.97442 --3,67583 --5,t2050

2.70 7.13793 6.35242 5.t0662 3.49079 t.62204 --0.36424 --2.32_16 --4.11566 --5.60891

2.75 7.49655 6.84058 5.28546 3.53325 t.M534 --0.61629 --2,70189 --4.5_i03 --6.12180

2.80 7.87293 8.94069 5.46778 3.56906 .39238 --O..qtO.q2 --3.10842 --5.08194 --6.65962 _ - _
2.85 8.26730 7.25289 5.65319 3.59750 .25157 --1.19532 --3.54581 --5.61029 --7.22196
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0,8 I 0.9

I

2.90 8.68123 7.57796 5.84188 3.61784 t.09168 --1.52563 --4.01547 --6.17010 --7.80934

2.95 9.11516 7.91621 6.03314 3.62895 0.91124 --t.88526 --4.5t876 --6.76203 --8 42094
3.00 9.57047 8,26815 6.22721 3.63007 O. 70866 --2.27606 --5.05752 --7.38707 --9"05686

3.05 t0.04774 8.63418 6.42342 3.62000 0.48225 --2 69997 --5.63294 --8 04607 --9"71624
3.t0 t0,54843 9.01490 6.62t8,3 3.59763 0.23028 --315889 --6 24701 --8"73943 10_aRo,_

3.t5 tt.07336 9.41081 6.81606 3.56177 : --0.04892 --3.65482 --6"90096 --9'46811 --t1"_._

3.20 tt.62428 9.82242 7.02326 3.51114 --0.35758 --4.18993 --7'59685 --t0"23253 --t1"_'_
3.25 t2.20160 t0.250t5 7.22537 3.44427 --0.69761 --4.76636 --833604 --t1"033t3 --17'_

3.30 12.80738 t0.69479 7.42810 3.35983 --1.07t12 --5.36655 --9"12047 --tt'87028 --t3"_7

3.3_ !3.44242 tt.t5675 7.36047 3.25599 --t 48060 --6 05250 --9'95143 --12"7441i --14"11_
3.40 _,_.t0859 tl.63661 7.83242 3 13135 --1.92814 --6.76704--10'83103--13"65499 --lz'o___

3.45 t4.80615 t2.t3509 8.03266 2.98386 --2.41663 --7.53249 --tt'76030 --t4"6025:' --1.{'79_6_
3.50 15.53965 t2.65246 8.23112 2.81175 --2.94872 --6.35155 --12174163 --t5"5868C --16"._t97

3.55 t6.30772 13.t8962 8.42657 2.61284 --3.52681 --9.22679 --t3 77574 --t6'60721 --t7"3672._

3.60 t7.tt336 t3.747t9 8.61848 2.38479 --4.15446 -t0.16123 --14186516 --t7'66339 --tg'_au_
3.65 t7 "7 " -- _ ......

.9o 84 t4.32540 8.80552 2.t2563 [ --4.83434 -tt.t5761 --t6.01041 --t8.75430 --t9 02671
3.70 t8.84359 t4.92543 8.98715 1.83256 i--5.57003 -t2.2t873 --17.21375 --t9.87902 --t9"85355

3.75 _09.77t99 t5.54752 9.16184 1.503t4 I--6.36465--t3.34785--18.4758t --2t.03608 --20"67251
3.80 _.._4572 t6.19250 9.32871 t.t34t7 ]--7.22211 --14.54809 --t9.79852 --9..2.22414 --2t'479i2
3.85 21.76625 t6.86075 9.48736 0.72313' --8.14585 --i5.82244 --2t 18216 --23 41778 22"26815

3.90 22.83704 t7.553t5 9.63323 0.26665--9.t40t5--i7,t74i4,--22:62890--24"68542--23"03433
3.95 23.95877 t8.27058 9.76776 --0.23881 --t0.20878--t8.60674--24.13866--25J95365 --23177083

4.00 25.13565 t9.0t3i6 9.88877 --0.79686 --tl.35670 --20.12331 --25.71311:--27.24325 --24.47251

4.05 26.,q8305 19.78t77 9.99392 --t.4t098 --t2.58750--2t.7276C--27.3520t --28.55t26 --25 13082

4.t0 27.66204 20.57702 t0.08t30 --2.08569_--t3.00673--23.42279--29.056t3]--29.87351 --25.73892

4. t5 29.01701 21.39985 t0.t4882 --2.82496 --t5.3t867 --25.21255 --30.82539 --31.20590 --26.12927
4.20 3043847 2225023 t0.1947t -3._25-t6.6295t_27.1002__3266062_32._36t -26 77021
4.25 _ _?_6 _3!2_937 t0.2t578 _ 5t527-t6.44307-29.06957-:_ 55_-_.68206 -27:t7,_
4.30 _ ._o_n za.o;_tv, t_o.20996 --5.47673--20.16644--31.t8438--36.52442--35.2150t --27.49380
4 35 6_.1..b2t 2,_.97606 t0.t7433 --6.522110--22.00409--33.38766--38.55151 --36.53586 --27.71405

4.40 _6.84079 25.94430 t0.t057t --7.65848--23 96331 --35.70350--40.64193--37.83841--27.82675
4.45 '8.638t7 26.94355 t0.00072--8.89029--26.04930--38.t3518--42.79222--39.t!504--27.81811

4._0 _0.5L296L7.97_432 9.656. i_t0.224ea_26.269_ -40._7_4500t2t -40._0¢ -27.67_
4.55 __.a__/_o;5 _..o_7tl8 _.6675t --tl.66829 --30.63003 --43.35951 --47.26550 --4t.55555 --27.38829

4.80 _a._tili_J5 _0.1_175 9.43215 --t3.22809--33.i3885 --46.15954--49.58444 --42.70082 --26.93962
4.6_ 46.73528 3t.259t6 9.t4u160 --t4.9tt93--35.80139 --49 08927--5i.95098--43.78207 --26 31484
4.70 49.00875 32.42019 8.80054 --t6.72708--38.62729 --52115078--54.46493 --44.78877 --25'50014
4.75 5t.38955 33.61402 8.39541 --t8.68222 --4t.62283i_55.34860_56.81814 --45.70843 --24_477t9
4.80 53.88572 34.84139 7.92303 --20.78564--44.706541--58.68.M0--59.30666--46.52672 --23 23084
4.85 56.49994 36.10361 7.379it --23.04742--48.t5772_--62 t6t05--61 82639--47 23167 9t'74264

4.90 59.24067 37.39897 6.75641 --25.47672 --5t.7t4t4--65"78t56--64"368')4 --47"80653 --t9"904e_
2i ' 6 " ' " " ' --- ......

4.95 6 . tt04 38.72870 .04834 --28.06394--55.47333 --69.54706!--66.92416--48.23565 --17 96785

5.C0 65.11925 40.09t99 5.24913 --30.87966 --59.44716 --73.460,13i--69.48834 --48.502i9 --t5"6,12_
5.05 _t.2695i _/.48935 3.3_.9_ 73 "_.87499. i--6,3.64207 --77.522821--72.CA822--48.58808 --12199692
5.t0 ._t_ ,_z._zoa_ .;:_bl0 --37.082341--_.07(i_6 --81.734821--74.59685 --48.47241 --10.0tt52
5.15 75.02932 44.38410 2.22M3 --40.513141--72.139511--86.098t91--77.tt912 --48.13608 --6.66598

520 097 -4416195,-7766=2- ,6t25t:_79 0761_47557t4-29 ,71
5.25 .44813 4 .40872 --0.40018 --48.102361--82.84640 --95.27670_--82.043tfi --46.71222 t.20t49

5.30 86,424t5 48,96811 --1.92318 --52.28761}--88.30426-t00.09t79_--84.4t582 --45.57649 5.76755
5.35 _90.58638 50.55720 --3.60130 --56.753t_--94.04447-11_5.0547_ --8G.7049_1--44.t2540 t0.78600
5.40 94.94931 52.17668 --5.44427 --6t.51652_-100.n8141 -1t0.165t_ --88.8984¢ --42.33204 t6.28t89

5.45 ,99.51624 53.82317 --7.46674 --_66.592041-106.42205_1t5,41915 --9 ).9648_ --40 16633 22 2768"
5.50 lu_.._sm,_ _,_.uo,:_ --_.t)_5 --71.9994_-1t3.08248-120 82217 --92 90797 .q7'59906 ,m'.vo,v_

•] ' -- -- ........ _..o.o_

5.55 t09.3t016 57.19076 --t2.74078 --77.755,,_-120.06896-t26.34031 --9468256--34 60179 35 86609

5.60 _!!._.5_9!7_.90_-L_.]_9_-8!!.E97__!z_7.E8__t31.99873_962745__31.t391_ 43"_t
5.65 _u.uo uo ou.._),:_o --_.c_ --uu.._z1_-l;_b.u_199-t37.355t4--97 6657( --27 17793 52'45681

5.70 125.8068,3 62.4O132 --20.73369 --97.31462_-143.t245t)_t43.67740_98"80147 --22"68378 60'60664
5.75 !.21.8.2.992 64.17122 --24.12_33-104.66___-.151.5_4265-t49.68205__99 67912--i7:6180_ 70:t0779
5.80 ].'_n.]3v_z t)5.9503t --27.81(_7 -l12.475884-160._bz3ti -155.78106-t00.25986 --1t.94517 80.27692
5.85 144.74g_45 67.73618 --3t.79946 -12D.760t7[-t69.55661 -t61.966t3-t00.50616 --5.62168 92 02674

5.90 151.66098 69.52451 --36.1t836-129.5490q-179.t7729-168.22260_t00.38820 --t.38896 102169704

5.95 t58.91886 7t.31240 --4[).765[)3-138.8678_-189.21598-174.53559_99.86154 9.13135 t14.98707

6.00 t66.48t94 73.09278 --45.82923-t48.741271-t99.6945t-180,88829:--98.89189 t7.64990 t28.02532
6.05 t74.4t552 74.85978 --5i.27074 -159.2C_)5,_-2t0.6t336,-t87.26t8:--97.43095 26 98616 t42.88289

6.10 t82.72274 76.6f1912 --57.13861 -170.2766_-22t.9936_ -t93.6372_ --95.43537 37.71910 t56 40166
6.15 191.4t393 78.33169 --63.45936 -181.995tq-233.83501 -t99.99t4t --92 85484 48 30579 t7t"65394
6.20 210 51847 8 09212 70 26326 t91 391161-246 t516_ 206 2959 _ a�'a_n_ _-'----- '

.... -- " - " - • ' - • --_ -_ ..... o5 0. oo,_oo t87.93t25
6.25 210.04306 81,6696) --77.5799_3--207.4996_-258.9666( -212.6332f --85 73602 73.46949 204 89921
6.30 22t).0t447 83.27021 --85.44577--22t.354/_-272.2741__2t8.6584,q!_81.08646 87.61488 222"68014

6.35 230.73290 84.91484 --940t163--236.2872_]-28_.4_4.5d-224.92918_75.72347 t03.00238 24t'56937
6.4(} 241.36929 86.28027 -102.96036-251.447t_-300.4071(:_230 46689 -69 30226 tt9.29138 260"66739

6.45 253.10847 87.77662 -1t2.82488-268.096881-3f5.6_00__236.368_4_69't1387 t37 09078 281"2t333
6.50 264.75237 68.96249 -t23.tl078-284.975.o_-330.61787_24t.42258 -_'76993 t55"8t572 30t"85056

6.55 277.61038 90.26258 ,t34.44346-303.5112q-346.9_296_246.76423_44147143 176124394 324"00713

6.60 290.358.38 91.2t779 -t46.23956-322.2724_-362.94522_25t.t7421-.33.90968 t97.60057 346"11525
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h A-.-I

TABLE 2

-I
Function ¢_ (z) = eh z cos Tz, where z = a_

0.I 0.2 0.3

0 I t [ i

0.05 1,00119 1.00115 I 1,00109
0.I0 1.00495 1.00480 1.00460

0.15 1.01119 1.01084 1.01027
0.20 t.0t987 t.0t925 1.01823
0.25 1,03108 1.03012 1.02850
0.30 1.04487 1.04346 1.041ii
0.35 1.06i22 1.05928 i .05503

0,40 1.08020 1.07761 1.07330
0.45 1. t0t84 t .09850 t.09292
0,50 1.12622 1.12199 1.11497

0.55 1.15334 1.14812 I.i4770

0.60 1.18334 1,16509 i.i6631
0.65 1,21620 1.20850 1.19568

0.70 i.25209 1.24289 1.22759
0.75 1.29103 1.28014 1.26203

0.80 1.55315 t.32035 t.3t247

0.85 t .37852 1.36358 t.33877
0.90 t.42730 t.40993 1.38tt7

0.05 1.47951 1.45948 1.42627
1.00 t.53536 1.51233 1.47417

t .05 t. 59494 1,56855 1. 52485
1. I 0 I. 65844 t. 62831 1. 57849

t .t5 1.72593 1.69t 66 t. 6350t

t. 20 1. 79764 1. 75876 t. 69460
t .25 t. 87367 1.82971 I. 757t7
t.30 I. 95427 1.90467 1. 8229t

t.35 2.03958 1.98376 t.89185

t. 40 2. t 2986 2.067 t 4 t. 96396
t. 45 2.22520 2. t 5493 2.03938

t.50 2.32599 2.24735 2.11823

1.55 2.43232 2.34450 2.20043
1.60 2. 54455 2.44663 2.28618

t.65 2.66282 2.55384 2.37546

t.70 2.78754 2.66640 2.46339
t-75 2.91887 2.78447 2.55015

1.80 3.05725 2.90828 2.66531
1.85 3.20288 3.03803 2.76939
1.90 3.35621 3.17391 2.87739
1.95 3.51750 3.31625 2.91750

2.00 3.68722 3.46521 3.10509

2.05 3.86738 3.62108 3.20509
2.t0 4.05326 3.75413 3.34873

2.t5 , 4.250A7 3.95463 3.47658

2.20 i 4.45782 4.13282 3.80860
2.25 4.67585 4.31907 3.74468
2.30 4.90460 4.51360 3.88496

2.35 5.i4503 4.7t682 4.02922

2.40 5.39769 4.92896 4. t7777
2.45 5.66290 5. t5W-_4 4.33024

2.50 I 5.94183 5.38157 4.48693
2.55 : 6.23417 5.62271 4.64756

2.60 6.54150 5.87428 4.81216
2.65 6.86398 6.13660 4.98063

2.70 7.20271 6.41007 5.15296

2.75 7.5,5808 6.69508 5.32884
2.80 7.93t 37 6.99221 5. 50837

2,85 8.32286 7.30164 5.69118

I 0.4 0.5 0.6 0 7 0.8 0.0

t t 1 t t I

i.00t00 t,00(O8 i.00075 1.00058 i.00040 t.(_0t7 -- iE -: _, n
t .004t9 1.00381 1.00320 t .00253 t .00t79 t. 00092
t. 00948 t. 00844 1.00720 t. 0057 t t -00402 1. ¢)0209
t .0t88t 1.01500 1.01273 t. 0t0t0 t.00704 1.00359

t •02625 t. 02334 1.0t982 1,01564 t .01085 1.00541_

t. 03782 1.03360 t.02845 t .02237 t.0t538 t .00747
t, 05050 t. 04566 1.03857 t. 02918 1.02053 t .00966

t. 06726 t. 05952 t. 05009 t. 03897 t. 026t 9 t. 0t 177

i .085t5 t.075t5 t.0630t t.04868 1.03227 t .0t373

1.i05t6 t.09257 1.07727 t.05926 t .03861 1.ot537
t.t2726 t.ttt69 t.09277 1.07052 t.04500 1.01644

t,t5t49 t.t3253 t.10948 t .08244 t,05t50 t.01679

1.17782 t.15497 t.t2727 t.09478 t .05769 t.016t0
t. 20629 1 17907 t. t460% t. 10747 1.06345 t. 0i42t

1.23686 1.20470 1,t6580 t. t 203t 1.06855 t .0t076

I l-|t. 26954 i .23t85 t. t8629 t ,13315 t .07275 1.00550
1.29049 t .26043 1.20746 t .14576 t.07579 0.99805

t .34123 1.29043 t .229t8 1.15798 t .07741 0.98811

1. 38020 t. 32t 67 t. 25t 28 1. t 6951 t. 07722, 0.97528
t.42t27 1.354t8 t.27356 t.18021 t .07508 0.95919
t. 46440 t. 39180 t .29428 1.18972 t .07046 0.93940

1.50959 t.42245 t.3t8tt t .19785 t.063t0 0.91600
t. 55681 t. 45800 t. 33998 i. 20420 t. 05256 0 88698

t.60692 t.4944t 1.36127 t.20854 1.03844 0:85342

t.65724 1.53t43 t .38t7_ t .20951 t.0203t 0.81423
t.7t039 I, 56900 1.40tt4 1.20965 0.9977i 0.76895

t. 76545 1.60694 t.4t922 t .20564 0.97015 0.71760

t. 82237 1.64509 t. 43564 1.19809 0.93710 0.65779

1.88106 t.68323 1.45012 t.18653 O. 89805 0.59072
t.94t54 t.72t09 t .t6228 t.t7049 0 85242 0.51520

2.00266 t.75278 t.47177 t.t4947 0"79961 0 43050 I l I

2.06738 t .79574 t .47822 t. t2295 0"73901 0133615

2.13259 t .83175 t .48119 1.09039 0.66996 0.23132
2.19922 t.86663 t .48026 t.05t17 0.59180 0.11537
2.26707 1.90002 1.47480 t .00468 0.50353 --0.01245

2.33592 t.93t63 t.46464 0.95033 0.40528 --0.15283
2.40633 t .96t05 1.44894 0.88733 0.29545 --0.30650

2,47731 t.98802 t .4272t 0.81506 0.17352 --0.47421
2.54892 2.01203 t .39887 0.73266 0.02872 --0.65672

2.62116 2•03272 t.36327 0.63946 --0.1o986 --0.85477
2.69362 2.04957 t .3t989 0.53452 --0.273fl3 --t .06913

2.766t6 2.06208 i. 26741 0.41704 --0.45169 --1. Y,C_953

2.83855 2.06970 t.20566 0.28606 --0.64673 --I .54971
2.91044 2.07200 t.13366 0.14065 --0.85913 --1.81748

2.98160 2.06814 1.05050 --0.04029 --1.08978 --2.10445

3.05165 2.05765 0.95526 --0.19741 --I .33970 --2,4t147
3. t 2027 2. 03969 0.84700 --0.39224 -- I. 60989 --2.73904

3.18702 2.01362 fl.72474 --0.60565 --1.9(1t3t --3.08800

3.25150 1.97850 0.58741 --0,83882 --221497 --3.45879 _ _ I
3.31327 t.93363 0.43380 --1.09308 --2.55195 --3.85212

3.37186 t.8780t 0.26279 --1.36944 --2.91321 --4.26847
3.42661 t .8107t 0.07311 --1.66944 --3.29976 --4.70825

3.47701 1.73065 --0.i3656 --1.90423 --3.7t271 --5.17188

3.52247 1.63676 --0.36755 --2.34525 --4.15.301 --5.65980
3.56225 t.52778 --0.62135 --2.72383 --4.62i66 --6.17205

3.59555 t.320t9 --0.89947 --3.13150 --5.11966 --6.70906
3.62168 !.25998 --t.20335 --3,56964 --5.64799 --7.2705N
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3.t0

3.15

3.20
3.25

3,30
3.35

3.40
3.45

3.50

3.55
3.60

3.65
3.70
3.75
3.80
3.85
3.90
3.95
4.00

4.05
4.10

4.15

4.20
4.25

4.30

4.35
4.40

4.45

4.50

4.55
4.60

4.65
4.70

4.75

4.80
4.85

4,90
4.95

5.00
5.05

5.1o

5.15
5.20
5.25
5,3_)

5.35
5.40

5.45

5,50
5.55

5.60
5.65
5.70
5.75
5.,_*

5.85
5.90
5.95

6. t)0

6.fl5
6.t0
6.t5

5.20
6.25

6.3O
6.35
6.40

6.45
6,;_)
6.55
6.60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

8.73395 7.67..398'

9.t6523 7.95970
9.6i804 8.30924

I O. 09286 8.67300
10.59134 9.05157

t1.t14t01 9.44543[

11.66298 9.855121
t2.23835 t0.28t02 I

t2.84227 t0.72392

13.47556 il. t8426
t 4.14006 tl. 66257

t 4.83603 12. t 5958
t5.5680t t2.67556

t6.33465 t3.2tt40

t7.t3893 : t3.76773
t7.982t2 t4.34477
18.86664 14.94367

19.79t75 t5.5_,73i20.76649 i6.2067t
2t .78597 t8.$7603
22.85577 t7.56755

23.97654 t8.284t2
25.15252 i9.02592

26-39907 t9.79378

27.67724 20.58_3
29.03144 2i, 4t049
30.45215 22.26023
31.94968 23.14539

33.50162 24.04677
35.13891 24.98438

38.85189 25.95212

38.64871 26.950901

40.53296 27.98123 I
42.50653 29.04356
44.07849 30.13764
46.74382 131 31717
49.0188,5 32.42555
51.39724 33.67685
53.89291 34.84668

56.50687 36.t0803
59.24635 37.402_6

62.11727 138.73259
65.12517 140.09564

68.27512 !41.49276
42.92367 i

5.8773.5 3.63982 t._1 --t.53490 -4.03986 --6.20758 --7,8567:
8,_ 3.64889 0.91626 --t.89562 --4.54358 --6.79918 --8.4672(

8.2,_ie 3.64812 0.71219 --2.28737 --5.08266 --7.42379 --9.t0t8_
8,452,30 3.63628 0.484411 --2.71210 --5.65827 --8.08225 --9,7599;

6.64877 3.61226 0.23t22 --3.17174 --6.27241 --8.77497 --10.4412(
6. 64114 3. 54787 --0 -049 t0 --3. 6682: --6. 92636 --9. ,50295 -- t t • 1442{
7. 04664 3. 52283 --0. 35877 --4- '2038_ --7. 622t 5 -- t0. 26660 -- I 1. 8686{
7.247i3 3,45464 --0.6997ti --4,78071 --8.36114 --ti.06636 --12.6t33_

7.44833 3.36898 --t.07390 --5.40113 --9.14532 --tt.90262 --t3.3753, =
7.64928 3.26401 --t.48425i --6.06743 --9.97597 --t2.77553 --14.t544_

7.84989 3.0t361 --t.93244J --6.78213 --10.855t9 --t3.68545 --14.9487. ¢

8.04889 2.9_988 --2"4215i I --7.54769 --tt.78403 --t4.63202 --t5.7553[
8.24614 2.65115 --2.954111 --8.36662 --t2.76488 --15.61524 --16.572t(
8.44048 2.61716 --3.532631 --9.24202 --t3.97270 --t6.63464 --17.3959_

8.63136 2.38835 --4.|60661 --t0-t764t --t4.88737 --t7.68978 --t8.224t_
8.81742 2.12851 --4.84088 --t1.t7270 --16.03206 --t8.77966 --t9.0524_

8.99814 i.83480 --5.57684 --t2.23368 --t7.23481 --t9.90333 --i9.8778_
9.17198 t.50480 --6.37i69 --t3.36262 --t8.49626 --20.84664 --20.6953, ¢
9.33806 t.t3531 --7.22934 --14,56266 --19.8135t --22,24639 --21.5006_
9.49598 0.72379 --8.15323 --15.83678 --2t.20t35 --23.4625t --22.2883_
9.64113 0.26688 --9.t4765 --t7.18823 --22.64746 --24.70567 --23.0532_

9.77500 ,--0.23899 --10.21636 --t8.62054 --24.15656 --25.97289 --23.7884£
9.8954t --0.797_K) --ii.36432 --20,13682 --25.73036 --27.26153 --24.48893

9.99995 --t.41183 --t2.595t0 --21.74072 --27.36852 --28.56850 --25.t45_

t0,08684 --2-08684 --t3.9t437 --23.43566 --29.07209 --29.83992 --25.7530(
10.t5386 --2.82637 --t5.32629 --25.22509 --30.84071 --31.22t4t --26.t422_ =

t0.t9930 --3.63489 --t6.83708 --27.11242 --32.67531 --32.5:5825 --26.7822_

i0.22286 --4.51840 --18.45585 --29.i0972 --34.58377 --34.25622 --27.t938_
10.2t372 --5.47874 --20.17387 --31,t9586 --36.53787 --35.22798 --27.5039_

t0.t777t --6.52477 --22.01142 --33.39873 --38.56435 --36.54802 --27.72331

t0.10676 --7.66079 --23.97053 --35.71425 --40.65418 --37,84981 --27.835t4
10.00345 --8.89271 --28.05641 --38.14558 --42.80389 --39.12572 --27.8257(

9.85854 --10.2272t --28.27652 --40.69591 --45.01232 --40,36686 --27.6836_

9.66967 --1t.670_ --30.63688 --43.36920 --47.27606 --4t.56483 --27.39441
9.43405 --t3.23076 --33.14555 --46.16886 --49.59446 --42.70945 --26.9450_

9.14627 --t4.9t466 --35.80794 --49.09825 --51.96047 --43.79007 --26,3196_

8.80110 --16.72984 --38.6336_, --52.15940 --54.37392 --44.79618 --25,_043_
8.39667 --18.68502 --4t.62849i --55.35688 --56.82665 --45.7t523 --24.48087
7.92423 --20.78880 --44.8033tl --58.69229 --59.31568 --46.5,3.274 --23.2343t
7.38001 --23.01831 --48.16363 _ --62.16867 --61.83397 --47.23746 --2t.745:_"

6,75706 --25.47916 --5t.7t910 --65.78787 --64.37441 --47.81111 --t9.99656
6.04894 --28.08676 --55.47889 --69.55404 --66.93(_88 --48.31108 --t7,96961

5.24962 --30.88247 --59.45236 --73.42258 --69.49465 --48.50659 --t5.64:_

4.35008 --33.87777 --63.64730 --77.52139 --72.u5414 --48.59207 --12.9979.q
3.345:45 --37.08_9 --68.07572 --48.47601 --10.01227

--48.139"_2, --6. 66642
71.5769U --81.74089 --74.60239
75.03436 44.38708 2,22358 --40.51586 --72.74439 --86,t0997 --77.12430
78.6._823 45.88,321 O.97890 --44.09400 --77.66750 --90.(;1803 --79.61266--47.56t_03i--2.9348fi

82.45267 47.41136 0,40020 --48.t0,_')1 --82.8",%997 --95.28195 --82.04771 --46.7t480 t.2o15,_

8649845 48.97055 1.92328 --52,29021 --88.30866'--100,09677 --84.42003 --45.57876 5.76784
90.59099 51.61283 --3.60148 --56-75600 --94.04925i --t05.060t( --86.70939 --44.12764 V).78655

94.95319 52.17881 , --5.44449 --61.5t903 --t00.085491 --1t0.1696_ --88.90203 --42.33377 16.28256

99.51992 53.82515 I --7.46702 --66.59450 --t06.425981 --1t5.42341 --90.96822 --40.16782 22.27769
104.304t2 55.49706 --9.68017 --72.00180 --1t3 08626--120.8t62t --92.9t10_ --37.60121 27.57979

109.29647 57.18560 --12.73919 --77.q5556--120.05392'--126.3244fl --94.6707i --34.59745 35.86i60

1t4.56230 58.91049 --t4.73709 --83.88201--t27.40232--132.00234 --96.27717 --31.t4003 43.50350
t20.05493 _0.36435 --t7.60923 --90.39443--t35.08134--t37.35854 --97.65817 --27.17860 52.45811

I 125.80964 62.40272 --20.73416 --97.3i660 --t43.12770 --t43.68061 --98.80368 --22.68429 60.6080(3
i 131.83259 84.17252 --24.12851 --104.67054 --t5t.5451i --149.68508 --99.68114 --17.6t842 70.10921

t38.14248 65.95t52 --27.81148 -112.47794 --t60.35530 --i55.78391 --1(D.26170 --il.94539 80.27839

144.74585 67,7373l --3_.79999-120.76217 _t69.55943i--16t.96882-t00.50782 --5.62177 91.13242
t5t.66325 69.52556 --36.11890-129.55094--t79.t7998--168.225t3--100.38970 1.38898 t02.69858

158.92101 7t.3i337 --40.78558 --139-82915 --189.21854/--174.547t5 --99.86289 9.t3i47 t15.98864
166.48399 73.09368 --45.82979--t48.74309--199.69647--180.89052 --98.89312 t7.650t2 128.02690

174.41745 74.86061 --51.27t31--159.20231--2t0.6157t_--187.26390 --97.43203 26.98646 t42.88448
182.72458 76.60990 --57.t3919--170-27840--22t.99593--193.63923 --95.43634 37.19141 t56.40324

',191.41568 78.33241 _63.45994--181.99676--233.83714--199.99324 --92.85568 48.32967 17t.76695
200.52012 10.92277 --70.26384--194.39276--246.16366--206.29763--89,64128 60.38418 t87.93280

210.(_'.462 8i.67021 --77.58048--207.50117--258.96859--2t2.53i10 --85.73662 73.47003 204,90074
220.01596 83.27077 --85.44634--22t.35561--272.27598--218.65997 --8t.08703 87.61647 222.68165

230.74236 84.92843 --94.01549--236.29696--286.45174i--224.93840 --75.72658 103.00660 24t.57928
24t 38666 86.28648--102.96777--251.46525--300.42874--230.48348 --69.30725 119.29996 260.68616

253.11772 87.77983- i12.8290|--268.1_1668--315.65198--236.37709 --62.11614 137.09580 28t.22361

264.75357 88.96289-.t23.11134--284.97725--330.6t937--241.42368 --53.77017 t55.81643 301.85t93

277.61152 90.26295--134.44401--303.51245--346.94439--246.78524 --44.47161 i76.24,167 324.00846

290.35946 91.18137 --146.240t0 --322.27367 --362 94656 --251.175i4 --33.9i000 t97 60130 346.11653
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TABLE 3

Function O, (z) = ch z sin "fz, where z = _

0.t 0.2 0.3 0.4 0,5 0.6 0.7 0,8 0.9

!1
0 0 0 0 0 0 0 0 0 0

0.05 0.00501 0.0t000 0.01502 0.02002 0.02503 0.03004 0.03504 0.0400_ 0.04503
0. t0 0,0t00l 0.02002 0.03004 0.04003 0,05004 0.06003 0.07002 0,08000 0.090110
0.t5 0,01517 0.03034 0.04549 0.06064 0.07577 0,09090 O. 10600 0.12106 O, i36i0

9.20 0.02040 0.04080 0.06116 0.08151 0.10183 0. t221t 0.i4234 0.16252 O, 18290
0.25 0.02578 0.05155 0.07727 0.10139 0.12859 0,t54t3 0.i7958 0.20491 0.22942

0.30 0.03136 0.06268 0.09395 0.12514 0. t562 0.18715 0.21791 0.24848 0.27683
0.35 0.03713 0.0742i O. ttlt8 O. i4805 0.18471 0.22t16 0.25732 0.29319 0.32869

0.40 0.04323 0.08639 0.12941 0.17224 0.2i478 0.25697 0.29876 0.34007 0.38083

0.45 0.04962 0.09913 O. t4844 0.19746 0.24607 9.294t9 0,34172 0.38854 0.43459 _ . w
0.50 0.05636 0.11257 0.16851 0.22403 0.27897 0.33323 0.38666 0.43912 0.49048
0.55 0.06350 O. 12680 O. 18972 0.25208 0,31423 0.37430 0,43381 0.49200 0.54870

0.60 0.07108 0.14191 0.21223 0.28t79 0.35033 0.41760 0.48339 0,54695 0.60950

0.65 0.07916 0.15799 O. 238i5 0.31333 0.389t6 0.46337 0,53561 0.60559 0.67300
0.70 0.08779 0.i75i5 0.26t65 0.34688 0.43040 0.5ti8 3,59072 0.66673 0.73947

0.75 0.09701 O. i9348 0.28884 0.38260 0.48067 0,56315 0.649i5 0.73103 0.8090i

0,80 O. 10687 0.21308 0.31791 0.42071 0.52082 0.6t760 0.71043 0.79871 0.88t87
0.85 0.tt744 0.23406 0.34899 0.46i39 0.57046 _ 0.67541 0.77547 0.86995 0.95814

0.90 0.i2881 0.25657 0.38225 0.50483 0,62335 0.73681 0.83570 0.94495 t .03797
9.95 0.14098 0.28069 0.41787 0.55127 O. 6797i 0.80201 0.91709 t .02389 1.12t45

t. O0 O. t 5405 0.30656 O. 45602 0.60091 O, 73980 O. 87128 O. 99408 t. t 0694 5.20874
t. 05 O. t 6808 9.33433 0,49689 O. 65396 0.80382 O. 94485 i .07546 1.19424 t. 29985

t.t0 0.i8317 0.36412 0.54o67 0.71069 0.872V t,02300 1,16t52 t.28600 1.39493

1.t5 0.19938 0.39557 0.58759 0.77132 0.94484 t .10593 i .25236 t .38228 t.4939t

1.20 0,2t675 0.43039 0.63784 0.83659 t.02237 1.199_t t.34829 t.48327 t.59693 i i
1.25 0.23543 0.467i9 0.69167 0.90536 I. I0,i89 1.28722 1.44944 1.58905 i ,70384
t.30 0.25549 0.50668 9.74932 0.97930 t.t9277 t.38610 t,55603 1.6997t t,8i472

i.35 0.27703 0.54902 0.81102 t.05827 t.28623 t.49083 t,66825 t.8t5,36 1.92940

i .40 0.30014 0.59442 0.87075 t.t4254 t.38565 1.60t65 t .78632 t.93602 2.04785
t. 45 O. 32496 O, 64306 O. 94766 t. 23241 t. 49125 i. 7 i886 t. 9 i 032 2.06173 2. t 6984

1.50 0-35194 0.69518 t .02323 t.32826 1.60350 t.84271 2.04053 2.19254 2,29536

1.55 0.38006 0.75101 1.t0335 t.43044 t.72259 t.97348 2.t7702 2.32838 2.42390
t.60 0.41064 0-85079 1.19022 t.53926 t.84897 2.11143 2.31998 2.46926 2.55545

t.65 0.44339 0.87475 t .28235 1.655t2 t.98290 2.25687 2.46946 2.61507 2.68909
1.70 0.47849 0.94322 t.38073 t .87852 2.12486 2.41004 2.62573 2.76570 2.82597

t.75 0.51609 t.01642 t.48565 1.90959 2,27513 2.57120 2.78871 2,921t6 2.96413
1.80 0.55633 t,09_67 1.59767 2,04900 2.43457 2.74066 2.95859 3.08093 3.i037i

1.85 0.59941 t.t7&_5 1.71705 2.19719 2.60229 2.91866 :L t3536 3.24510 3.24403
1.90 0.64547 1,26770 1.8443t 2,35454 2.78005 3.10545 3.31913 :',4i332 3.38468

1.95 0.69476 1.36316 1.97987 2.52160 2 96770 3.30133 3.50975 3.58526 3.52478

2.05 0.80376 t .57384 2.27802 2.88681 3.37483 3.72125 3.91192 3.93888 3.80057

2.t0 0.86392 1.68988 2.44158 3.08602 3.59486 3.94576 4.12326 4,1t96t 3.93498

2.15 0.92822 1.81366 2.61562 3.29711 3.82676 4.180.30 4.341i8 4.30233 4.06527
2.20 0.99685 t .94566 2.80068 3.52067 4.07133 4.25502 4.56576 4.48637 4.18941
2.25 t.070t6 2.08636 2.99733 3.75730 4.32771 4.68011 4.79647 4.67154 4.3i020

2.30 1.t4838 2.23627 3.20639 4,00761 4.59777 4.94579 5.03384 4.85578 4.42248
2.35 t.23t83 2.39600 3.42833 4.27237 4.88141 5.22222 5.27587 5,03960 4.52656

2.40 t.32089 2.56609 3.66414 4.55220 5.17930 5.50949 5.52383 5.22139 4.61994
2.45 1.4t584 2.74722 3.9t439 4.84789 5.49i75 5.8_fl67 5.77667 5.38499 4.70219

2.50 i.517t3 2.94000 4.18001 5.16013 5.81941 6.11689 6.03410 5.57608 4.77235
2.55 1.62508 3.14514 4.46169 5,48980 6.16272 6.43724 6.2973i 5.74634 4.82563

2.60 t. 74018 3.36339 4.76051 5,83759 6 • 52235 6. 76860 6.55992 5.91023 4.86326

2.65 I. 86272 3.59550 5.07722 6.20452 6.89854 7. I 1106 6.82699 6. 06640 4.88219
2.70 i .99340 3.84241 5.4i296 6.59130 7.29201 7.46443 7-09596 (1.25329 4,88047

2,75 2.13248 4 .t0483 5. 76855 6.99892 7. 70313 7, 82870 7. :_6575 6. 34938 1.85568

2.80 2.28072 4.38377 6.14531 7.42828 8.13265 _.20354 7.6355O 6,4241,q 4.8O585
2.85 2.43845 4.68011 6.54416 7.88038 8.58070 8.58894 7._405 6.Y8162 4.7284)7 In - 1
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I

\ (i I 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9

2.90 2.6_)631 4.99497 7.01212 8.3S625 9.04813 8.98442 6.17040 6.67944 4.62027

295 2,76504 5.32946 7.41330 8.85698 9.5_509 9.38967 8.43291 6.74765 4.4793t
3.t)_ 2.97519 5.68460 7.88630 9.38346 i0.04239 9.80439 8,60050 6.800.30 4.30279

3.(J5 3. 17747 6.06174 8.40741 9,93695 10.57013 10.22730 8.94t2_ 6.82963 4.08726
3.1o 3.39272 6.46204 8.91522 10.5t849 1t.11905 10.65962 9.t840"_ 6.83272 3.83013

3.15 3.62280 6.88673 9.47419 t1.12942 1t .68923 1t.09903 9.4t63_ 6.80712 3.52800
3.20 3.86_01 7.33759 10.06510 11.77086 t2.28t37 tl.545t5 9.6366'_ 6.74979 3.17757

3.25 4. 12362 7.8t576 10.68938 12.44395 12.89545 1t .99711 9.84244 6.65746 2.76630
3.30 4.39876 8.32296 1t .34891 13.t50t4 t3.53227 12.45403 t0.03t8_ 6. 52702 2.31789

3.35 4.69105 8.860_ 12.045t0 13.89050 t4.19120 t2.91464 10.2017£ 6.35494 t.80t45
3.40 5.01693 9.43106 t2.78058 14.66666 14.87365 13.37783 10.350t_ 6.13763 t.22240
3.45 5.33206 10.03573 t3.55646 t5.47992 t5.57878 t3.84108 t0. 4737_ 5.87128 0.57672

3.50 5.68282 10.67654 14.37560 16.33t69 t6.30749 14.30582 t0.5094_ 5.55173 0.t39.38
3.55 6.05520 1t.3b$54 15.23956 t7.22329 17.05884 14.76745 t0 63396; 5.17474 --0.92993
3.60 6.45104 12.07506 16.14931 18.15639 17.83390 15.22488 10.66406! 4.73605 --t.79923
3.65 6.87121 12.83747 17.t1200 19.13232 18.63t43 15.6763t 10.65544 4.Z'_)84 --2.75126

3.70 7.31775 t3.64494 t8.12539 20.15263 t9.45247 16.t1940 10.60448 3-65462 --3.79000

3.75 7.79t4,t t4,52132 19.t93t5 21.21891 20.29548 16.55t34 10.50681 3.00t95 --4.92028

3.80 8.29413 15.40548 20.318_8 22.33293 21.t5715 16.96991 10.35775 2.26793 --6.14546
3.85 8.82835 16.36428 2t.50:_89 2J.,t0209 22.04784 t7.37203 10.15251 t.44687 --7.47058
3.90 9.39500 t7.37900 22.75298 24.70987 22.95586 17.75412 9.88627 0.53352 --8.89930
3.95 9.99607 18.45298 24.06772 25.97627 23.88354 18.11346 9.55316 --0.47824 --10.43586
4.00 10.62437 19.58983 25.45236 27.29649 24.83137 18.44562 9.14798 --1.59398 --12 08444

4.05 tt.3t131 20.79251 26.90921 28.67270 25.79651 18.747tt 8.66419 --2.82051 --t3.84876
4.10 12.02942 22.06496 28.44287 30.10630 26.77913 19.0t332 8.09597 --4.16372 --t5.73292

4.15 t2.79t00 23.41074 30.05552 31.5986t 27.77640 19.23955 7.43599 --5.62999 --t7.73992
4.20 t3.59906 24.83423 31.75283 33.15189 28.78862 19.42t_ 6.67780 --7;22642 --t9.87432
4.25 t4.45965 26.34727 33.54641 34.77736 29.82023 t9.5577_ 5.81528 --8.96175 --22.14415
4.30 i5.36444 27.93t4_ 35.41337 36.44720 30.84535 t9.62729 4.83596 --t0.83586 --24.53475
4.35 t6.32743 29.61448 37.38454 38.19239 31.88537 t9.64i63 3.73663 --12.863t8 --27.06657
4.40 17.34920 31.39345 39.45749 40.00451 32.93147 19.58455 2.50703 --15.04787 --29.73649
4.45 t8.43200 33.27360 4i.63407 4t.88585 33.97798 19.45324 t.t385q --17.39791 --32.54482

4.50 t9.57979 35.26091 43.92118 43.83700 35.02414 19.238t3 --0.37857 --t9.91965 --35.49498
4.55 20.79590 37.36032 46.32206 45.85973 36.06181 t8.93t9t --2.05375 --22.62109 --38.58500
4.60 22.08526 39.57886 48.84427 47.95529 37.09697 18.52585 --3.89670 --25.50886 --4t.81798

4.65 23.45114 41.92254 51.49085 50.12536 38.11425 18.10657 --5.9179q --28.59039 --45.19112
4.70 24.89904 44.39814 54.26891 52.37107 39.11529 t7.37749 --8.12907 --31.87302 --48.70458

4.75 26.43264 47.01280 57.18267 54.69280 40.09226 t6.6t533:--10.54092 --35.36335 --52.35493
4.80 28.05744 49.77343 60.24044 57.09250 41.04049 15.71358 --t3.t6533 --39.06824 --56.t4t6i
4.85 29.77811 52.68911 63.44551 59.56963 41.95315 14.66102 --16.0132A --42.99430 --60.05827

4.90 3t.60168 55,76609 66.80650 62.12564 42.82406 13.41497 --19.t008t --47,14769 --64.06083
4.95 33.53285 59.01621 70.33054 64.76305 43.64643 12.05342 --22.43383 --51.53568 --68.26434
5.00 35.57848 62.44545 74.02368 67.47911 44.41243 t0.47251 --26.03137 --56.16209 --72.54245
5.05 37.74339 66.06497 77.89192 70.27463 45.tli85 8.68769 --29.90528 --61.03382 --76.92302

5.t0 40.03759 69.88495 84.94593 73.i5075 45.73757 6.68414 --34.07021 --66.15413 --8t.40054

5.15 42.46527 73.91524 85.18846 76.10606 46.27788 4.4463G --38.53973 --71.52785 --85.95998
5.20 45.(k3665 78.16697 90.63344 79.13952 46.72434 1.95689 --43.32810 --77.15816 --90.59175
5.25 47.75722 82-65277 95.28385 82.25162 47.06-354 --0.80135 --48.49664 --83.04916 --95.27623
5.30 50.63939 87.38509 100.15287 85.43977 47.28367 --3.84656 --53.92099 --69.20018 --100.00462

5.35 53.68948 92.37488 105.24334 88.70284 47.37108 --7.1977£ --59.75513 --95.61516 --104.75155
5.40 56.91811 97.63780 tt0.57152 92.03831 47.3t3,30 --10.8768t --65.97160 --102.29185 --109.50210
5.45 60.33435 103.18709 tt6.14032 95.44425 47.09250--t4.9026_ --72.57999 --t09.22960 --114.22818
5.50 63.950_ 109.03777 121.96506 98.91837 i 46.69534 --19.3(D41 --79.60328 --116.42637 --118.91003
5.55 67.76486 115.18706 128.02845 1102.43947 46.09436 --24.21422 --87.03568 --123.85921 --123.49784
5.60 71.82488 161.70706 134.40917 t06.05187 45.29569 --29.2984C --94.94125 --13t.58047 --128.02296
5.65 76.10719 t28.5596t t41.0_0tt t09.70232 44.53431 --34.948,_ --103.2872t --139.52487 --132.39t9t
5.70 80.63981 135.78146 147.99033 113.40351 42.95968 --41.0678_ --112.11090 --147.70341 --138.59289
5.75 85.43245 143.39178 155.23061:117.14874i 41.3856i --47.8852£ --121.42021 --156.10564 --140.66144
5.80 90.5062i 151,41070 162.79293 120.92673_ 39.51245--54.828_ --i3i.20694--164.65584 --i44.32736
5.85 95.87047 159.85935 170.67927 124.73804 37.31064 --82.525_ *--141.56516 --173.52,835 --147.77376
5.90 I01.5468_ 168,75991 178,90985 128,56898 34.75548 --70.80867--152,43i66 --182.51462 --150.88572
5.95 107.54760 178.13375 187.49164 132,40923 31.81720 --79.70991 --183.84076 --191.66148 --153.60215
6.00 113.86041 188.00704 196.44078 136.25085 28,46611 --89.283_ --175.81132 --200.94105 --155.87778
6.05 120.60993 198.40542 205. 78..'.'.'.'.'.'.'.'._2140.06107 24.66655 --99.50171--188.34540 --210.33366 --157.84792
6.10 127.70991 209.35357 215.70485 143.88794 20.38918--110.48182--201.46854 --219.80676 --158.85069
6.15 i35.09903 220.88173 225.80174 147.65388 15.59430--122.17877--215.17741--229.32805 --159.4.3494
6.20 i43.15404 233.0i706 236.14356 151.36574 I0.24429--i34.69i04--229.48896 --238.86109 --i59.31874
6.25 151.54263 245.79282 247.11376 t55.006t5 4.29693 --148.0382_ --244.40454 i --248.36736 --158.42968
6.30 160.41509 259.24161 258.53366 158.56081 --2,28993--162.26119--259.93321 --257.80393 --156.69565
6.35 170.01148 273.74809 270.75383 162.21269 --9.57284--177.6182_--276.42594 --264.60020 --154.22759
6,40 179.72337 288.30975 282.78142 165.32624 --17.56606--193.50657--292.85399 --276.26706 --150.36333
6.45 190.43458 304.35324 296.07320 188.68285 --26.38906--210.85911--310.60286 --285.55051 --145.75911
6.50 201.26899 320.45266 308,94568 171.44064 --35.98424 --228. 7327_ --328.19493 --292.81035 --139.60024
6.55 213.24250 333.22089 323.20682 174.42055 --46.56147--248.2730E--347.21743 --302.45527 --132.49976
6.60 225,35119 356.05136 337.20348 t76-72456 --57,98074--268.33229--365.98986 --309.91302 --123.67632
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k A-AM

TABLE 4

Function *_ (z) = sh z sin Tz,where z = _, "_

0.20 0.00403 0.O0805
0,25 0.00631 0.01262

0.30 0.00913 0,01826
0 85 0.0t250 0,02498

O. 40 O. 0t643 O. 03282
O. 45 0.02093 0.04182

0.50 0.02604 0.05202

O. 55 0.03178 0.0_347
0.60 0.03817 0.07621
0.65 0.04525 0,09032

0.70 0.05305 0.10586
0.75 0.06162 0,12289

0.80 0.07097 0,t4t49

0.85 0.08116 0,16176
O. 90 0.08226 0.18378
O. 95 0.10430 0.20765
t.00 0.11732 0.2,3,348
1.05 O. 13140 0.26138
1.10 O. 146B3 0.29148
1.15 O. 16305 0.3240t
1.20 0.18070 0.35880
1.25 0.19971 0.39831
t .30 0.22016 0.43662

1.35 0.24214 0.47987

1.40 0-26_73 0,52627
1.45 0.29106 0-57598
1.50 0.31820 0.62904

1.55 0.34729 0.68627
1.60 0.37879 0.74791
1.65 0.41185 0.81252
t .70 0.44759 0.88229

1.75 0.48584 0.95683

t. 819 O. 52674 1.03635

1.85 0.57048 t. 12149
t .90 0.61722 1.2t222

1.95 0.66719 1. 30907
2.00 0.7205,5 t. 41237
2.05 11.77755 t.52252
2.t0 0.83840 t.63995

2. t5 0.90336 t. 76511
2.20 I_ .97267 t. 89846

2.25 1.04665 2.04052

2.30 1.12552 2.19176
2.35 i .20963 2.35281

2.40 1.29982 2.46953
2.45 1.39491 2.70661

1.49683 2.90065

t.60538 3.10703

0.t 0.3 0.6 0.7 0,9
0.2 0.4 0.5 0.8

0 0 0 0 0 0 0 0 0 0
0.05 O, 00025 0.00050 0.00075 0.00100 0.00t25 0 00150 0.00175 0.00200 0.00225
0. t0 0.00t00 0.00200 0,0030i 0.0040i 0.00501 0 00601 0.00701 0.00801 0.00901
0.15 0.00226 0.00452 0.00677 0.00903 0.01128 0 01354 0.01578 0.01808 0.02027

0.01207 0.01609 0.02010 0 02410 0.02809 0.03208 0.03601
0.01892 0,02522 0,03149 0 03775 O. 04398 0,05019 0.05636
0.02737 0.03645 0.04551 0 05452 0.06348 0.07238 0.08122

0.03743 0.04984 0.06219 0 07446 0.08664 0.09871 O. t t066
0.049t7 0.08544 0.06160 0 09763 0.11351 0.12921 0.14469

0.08262 0.08331 0.10382 0 t2412 0.14417 0.16392 0.18335

0.07787 O. 10353 O. 12892 0 15399 O. 17868 O. 20293 O. 22666
0.09496 0.12617 0.15728 0 18734 0.21713 0.24626 0.27464
0.11398 0.15133 0.18814 0 22427 0.25960 0.29399 0.32733
0.13500 0.17912 0.22247 0 26559 0.30619 0.34620 0.38474
0.15813 0,20964 0.26012 0 30932 0.35701 0.40295 0.44691

0.18346 0.24301 0.30,530 0 35768 0.41231 0.46431 0.51384
0.21110 0,27937 0.34.585 0 41011 0.47175 0.53038 0.58560

0.24117 0.31886 0.39423 0 46676 0.5,3590 0.60120 0.66214
0.27380 0,36161 0.44850 0 52777 0.60476 0.67687 0.74350
0.30913 0.40782 0.50284 0 59331 0.67844 0.75745 0.82962
0.34729 0.45765 0 •f_-'-_ 0 66356 0.75709 0.84304 0.92057

0.38847 0.51127 0.62843 0 73570 0.64081 0.93367 1.01624
0,43280 0,_891 0.6_d3 0 81891 0.92680 1,02944 1.11684
0.48051 0.63075 0.77265 0 90433 1.02413 1.13037 I . 2..'kqD7
0.53174 0.89704 0.85230 0 99531 1.12400 I.M t.331_
0.58673 O. 7680i 0.93727 t 09193 1.22954 t.34797 t.44553
0.64571 0.84389 1.02764 t 19444 1.34067 1.46468 t.56378

0.70888 0.92498 I .t2423 t 30306 1.458t4 t.58672 t.68639
0.77650 1.01t54 1.22679 I 41802 t.58t52 1.71406 1.81306

0.6468i t.t0386 t.33570 t 53957 1.7t106 t.84668 t.94351
0.92617 1.20228 1.45140 I 66793 1.84698 1.98457 2.07764
t.00877 1.307tt t .57407 I 80333 t.98933 2.12764 2.23753

1.09791 t.4t968 t.70557 t 94768 2.14005 2.27776 2.35726
1.19t12 1.53737 1.84183 2.09631 2.29377 2.42903 2.49778

t.29154 t.66355 1.98761 2.25437 2.456i2 2.58706 2.64343

t.39855 t.79764 2.14175 2.42046 2.62522 2.74981 2.79035

t.5t269 t,94001 2.30469 2-59488 2.80t2i 2.91704 2.93861
t .634t9 2.09117 2.47672 2.77782 2.98406 3.08851 3.08749

t .76360 2.25150 2.65839 2.96955 3.17387 3.26394 3.23656
t.90t31 2,42154 2.84994 3.17033 3.37049 3.44300 3.38492

2.04787 2.60176 3.05189 3.38038 3.57409 3.62530 3.53202

2.20374 2.79268 3.26459 3. 59992 3.78436 3.81045 3.67665
2.36944 2.99464 3,48864 3.829t7 4.00143 3.99789 3.81872

2.54559 3.20884 3.72431 4.06838 4.22496 4.187t5 3.95643
2.73274 3.43527 3.97258 4-31769 4.45501 4.37755 4.06779
2.93146 3.67473 4.23261 4.57727 4.69108 4.56649 4.21548

3.14257 3.92784 4.50626 4.84735 4.93316 4.75913 4.33445

3. 36653 4.19535 4. 79341 5.12808 5.18076 4.94875 4. 44456
3.60432 4.47788 5.09474 5.41955 5.43365 5.13634 4.54451

3.85652 4.77623 5.41057 5.72181 5.69128 5.305,58 4.63268

2.50 4.12406 5.09i06 5.74152 6.03501 5.95334 5.50t_5 4.70748

2.55 4.40761 5.42326 6.08803 6.35923 6.22099 5.67670 4.767i4

2.60 1.72t08 3.32648 4.70827 5.77353 6.45077 6.69433 6.48793 5.84537 4.80989
2.65 1.84422 3.55978 5.02678 6.14289 6.83001 7.0404t 6.75917 6.006t3 4.88309

2.70 t.97547 3.80785 5.36428 6.53202 7.22644 7.39730 7.032t7 6-15742 4.83850
2.75 2.11512 4.07141 5.72159 6.94195 7.64042 7.76497 7.30579 6.29769 4.81615
2.80 2.26392 4.35147 6.10003 7.37355 8.07273 8.14310 7.57925 6.42509 4.77040

2.85 2.42217 4.6488.8 6.50047 7.82777 8.52342 8.53160 7.85128 8.53768 4-696.50
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I A-A-A

z_ 0.i
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2.90 2.59058 4.96482 6.92449 8.30580 8,99352 8.9301_ 8.13014
295 2.76982 5.30034 7.372_ 8.80858 9.48297 9.33837 8.38683
3.00 2.96048 5.65649 7,84730 9.33705 9.99272 9.7559( 8.64752
3.05 3.16325 6.03461 8.36978 9.89247 t0.52282 t0.t8t52 8,90t22
3.10 3.37898 6.43586 8.87910 t0.47588 tt.0740t 10.6t644 9. 14682
3. t5 3.6083_ 6.86148 9.43946 tt.08862 tt.64638 tt.05834 9.38181

3.20 3.8521_ 7.31324 t0.03t70 tt .73t80 t2.2406t tt.5068. 9.60469
3.25 4.11124 7.79229 t0.65728 12.40659 t2.85672 tt.96t_ 9-81289
3.30 4.38681 8.30034 tt.31807 13.tt44t 13.4955t t2.420t9 t0.0(O63

3.35 4.67951: 8.83906 t2.01548 13.85634 t4.t5639 12.88289 t0.t766t
3.40 5.00576' 9.41007 t2.75213 t4.63403 t4.84065 t3.34805 t0.327t5

3.45 5-32135 t0.01552 t3.529t5 t5.44874 15.54740 t3.8t4t0 10.45262
3.50 5'67247 10.65709 t4.3494t t6.30193 t6.27778 t4.27976 10.55023

6.63368 4.59238
6.71078 4.45483
6.76866 4.28144
6.79906 4,06896
6.80504 3,81462

6.78217 3.5t506
6.72740 3.16703

6.63746 2.76700

6.50928 2.31159
6.33932 t.79702

6,t2397 t.2t968
5.85946! 0.57556

5.54161 -- 0.t39t2
3.55 6.04522 11.33682 t5.2t444 t7.t9490: t7.0307t t4.743t0 10.6t643 5.16621 -- 0.92840
3.60 6.44142 12.05707 t6.t2704 t8.t2930 t7.80729 15.20218 t0.64817 4.72899 -- 1.79655
3.65 6.86193 12.82012 t7.06890 t9-t0649 t8.60628 15.65515 t0-64t06 4.22512 -- 2.74754

3.70 7.30881 13.62827i t8.t0325 20.12802 19.4287t t6.0997t t0.59152 3.65016 -- 3.78537
3.75 7.78279 14.48402 t9.t7t92 2t.t954,1 20.27304 t6.53304 10.49520 2.99863 -- 4.91484
3.80 8.28613 t5.39007 20.29826 22.31059 21.t3598 t6.95293 i0.34739 2.28566 -- 6.13962
3.85 8.82036 t6.34947 21.48442 23.47485 22.02788 t7.3563t 10.t4332 t.44556 -- 7.46382
3,90 9.38731 t7.36476 22.73933 24.68969 22.93704 t7.73957 9.878t7 0.533_ -- 8.8920i
3.95 9.98866 t8.4393t 24.04988 25.95702 23.86584 t8.t0004 9.54608 --0*47789 --t0.428t3

4.00 t0.62724 t9.57670 25.435.30 27.27818 24.8i472 18.43325 9.14185 --t_5929t --t2.07633

4.05 11.30444 20.77989 26.89297 28.65540 25,78094 t8.73579 8.65896 -- 2.818801 --t3.84040
4.t0 12.02282 22.05284 28.42725 30.06977 26-76443 t9.00288 8.09152 4.16143 --t5.72428

4.t5 12.78480 23.39911 30.04059 31.6_292 27.76260 t9.22999 7.43230 -- 5.62710 --t7.731t0
4.20 t3.59295 24.82307 31.73356 33.13699 28.77568 t9.4t236 6.67480 -- 7.22317 --t9.86539

4.25 t4.44964 26.32903 33.52319 34.75329 29.79960 19.5442t 5.81126 -- 8.95554 --22.12882

4.30 t5.35879 27.92118 35.40033 36.43378 30.83400 19.6200( 4.83418 --t0.83t87 --24.52572
4.35 16.32t99 29.60462 37.37210 38.17967 3t.87475 t9.63404 3.73539 --t2.85889 --27.05756

4.40 t7.34398 31.38399 39.44560 39.99246 32.92155 t9.57865 2.50627 --15.04334 --29.72753

4.45 t8.42697 33.26452 41.6227: 4t.87442 33.9687i t9.44793 t-t3825 --t7.393i7 --32.53594
4.50 t9.57496 35.25221 43.91034 43.82618 35.01549 t9.23339 -- 0.37847 --t9.9t473 --35.48622

4.55 20.79078 37.35t97 46.3117t 45.84948 36.05376 t8.92768 -- 2.05329 --22.6t694 --38.57638

4.60 22.08080 39.57086 48.83440 47.94560 37.08947 t8.52211 -- 3.89591 --25.50371 --4t.80953

4.65 23.44685 4t.9t487 51.48143 50.11620 38.10728 t8.00736!-- 5.91688 --28.58517 --45.18286
4.70 24.89493 44.39080 54.25994 52.36241 39.10882 t7.3746t -- 8.12772 --3t.86775 --48.69652

4.75 26.42868 47.00577 57.t74ti 54.68461' 40.08625 16.61284 --t0.53934 --35.35806 --52.34710
4.80 28.053tl 49-76587 60.23129 57.08332 4t.03426 t5.7tlt9 --t3. t6333 --39.06232 --56.13309

4.85 29.77446 52.68266 63.43774 59.56233 4t.9480t t4.65923 --t6.0tt28 --42.98903 --60.05091
4.90 31.59865 55.76074 66.80009 62.11968 42.81995 t3.44388 --t9.09696 --47.14317 --64.09497

4.95 33.53372 59.0i029 70.32348 64.75653 43.64205 t2.0522t --22.43158 --5t.5305i --68.25749
5.00 35.57524 62.43977 74.01696 67.47298 44.40839 t0.47t56 --26.02900 --56.15699 --72.6t007

5.05 37.74028 66.05954 77.88556 70.26885 45.10814 8.68697 --29.90282 --6t.02880 --76.91670
5.10 40.03462 69.8797C 81.93984 73.14581 45.73417 6.68364 --34*06773 --66.14922 --81.39449

5.t5 42.46241 73.9t0Z 86.18268 78.10094 46.27475 4.44600 --38.537t4 --7i.52304 --85.95421

5.20 45.03390 78. i6221 90.62792 79.13470 46.72150 t.95677 --43.32546 --77.15346 --90.58623
5.25 47.75459 82.64822 95.27860 82.24709 47.06095 -- 0.80131 --48.49397 --83.04459 --95.27098

5.30 50.63687 87.38071 t00.14788 85.43551 47.28t31 -- 3.84637 --53-9t83i --89.19574 --99.99963

5.35 53.68675 92.37019 t05.23799: 68.69833 47.36868 -- 7.19733-- 59.75210 _ 95.6i030 --104.74623

5.40 56.91579 97.63381 t10.59670 92.03456 47.31137 -- t0.87637 -- 65.96891 -102.28768 --109.49763

5.45 60.33213 t03. t8328 tt6.t3603 95.44072 47.09076 -- t4.90206-- 72.5773i -t09.22556 --tt4.22396
5.50 63.94794 109.03412 t2t .96098 98.91506 46.69378 -- t9.29975- 80.82406 -tt6.42247 --tt8.90605

5.55 67.51612 t15.20209 t28.04446_ t02.4523t 46.10018 -- 24_8865 -- 87.04658._123.87473 --t23.5t33t

5.60 71.82292 12t.70374 t34.40549 106.04897 45.29445 -- 29.29760- 94.93865--13t.57687 --128.0t946
5.65 76.10530 t28.55643 t4t.04662 t09.6996t 44.33370 -- 34.94752 -103.28465_i39.52t41 --t32.38863

5.70 80.63800 t35.77843 |47.98702 tt3.40098 42.93872 -- 4t.06691 -tt2. t0839_t47.700t t --136.60478
5.75 85.27362 t43.38889 t55.22747 tt7.t4637 4t.38t77 -- 47.68423,-t2t.4t775--t56.t0248 --t40.65859

5.80 90.50455 15t.40793 t62.78995 t20.92652 39.51172 -- 54.82757 -t3t.t9874--t64.7t558 --t44.32472
5.85 95.86888 t59.85670 170.67644 124.73597 37.31002 -- 62.52424 -141.56281 --173.52547 --147.7713i

5.90 t0t.54536 t68.75738 t78.907t7 t28.56705 84.75496 70.82586 -t52.42937_t82.5it88 --t50.68345
5.95 107.54614 178.t3t34 t87.489t0 132.40744 3t.8t677 -- 79.70877--163.83854--19t.65855 --t53.60007
6.00 t13.85901 188.00473 t96.43836 t36.249t7 28.46576 -- 89.262ti --175.80916--200.93858 --t55.87586

6.05 t20.60860 t98.40322 205.76154 t40.07952 24.6,_628 -- 99.50061 --t88.3433t --2t0.33t33 --t57.646t8
6.t0 t27.70862 209.35145 2t5.47974 t43.88649 20._6897 --tt0"46070--201.46650--2t9.80454i --158.85600
6.t5 135.09780220.87972 225.59969 t47.65234 15.594t5 --t22-t7766--2t5.t7546--229.325971 --t59.4.3350

6.20 t43.15286 233.015t4 236.14162 t5t.36449 t0.2442t --t34.68993--229.48707--238.859t2 --t59.34743

6.25 151 .54150 245.79099 247.11192 t55.00699 4.27100 -148.0372t --244.40282--248.36551 --t58.42845
6.30 160.41400_259.23985 258.53191 t58.55974 -- 7.73562 -t62.260t0 --258.84232--257.802t9 --t56.69459

6.35 170.00452 273.73487 270.74273 t62.20604 '-- 9.57255 -t77.6t097 --276.41461 --267.45539 --t54.22t27
6.40 179.7t043 288.28900 282.76107 t65.3t433 --t7.56480 -t93.49264--292.83290--276.287t7 --t50.3525t

645 t90.42762 304.342tl 296.06237 t68.67668 --26.38810 -210.85t40--3t0.59t5ti__285.54008 --145.75378

6.50 201.26807 3204512t 308.94428 17t.43987 --35.9840_ -228.73171 --328.193441__293.80902 --t39.5996t
6 55 2t3.24t62 338.2t950 323.20549 t74.42014 --46.56128 -248"27198--347.21600--302 45053 --t32.497t3

660 225.35036 356.05004 337.20224 176.72390 --57.98052 --268.33130 -365.98851L_309.91188 -123.67586
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k-A-A-m

TABLE 5 X (_) = sin Ix_.Both beam ends simply supported (case 1)

III

B, = 3.1416

First term of expansion

0.0
0.t

0.2

0.3
0.4

0.5

0.6
0.7

0.8
0.9

t.0

0.0000 t .0000
0.3090 0,95_1
O. 5878 0.8090

0.8090 0,5878
O. 95t t O. 3090
t .0000 0,OO0O

O.95_.1 .--0.3090
0.8090 --O, 5878
O. 5878 --0.8090

O. 3090 --0.95t
0.0000 --1,0000

t_z = 6.29_2

Second term of expansion

I

,Jb'
= x=-/z,_x.

0.0

O.i
0.2
0.3

0.4

0.5
0.6
0.7

0.8
0.g
t.0

'____d

0 ._ t .(XXX)
0.5878 0.8090

0.9511 0.3090
0.95t I --O .3090

0.5878 --0,8090
0.0000 --t .0000

--0.5878 --0.8O9O

--0.9511 --0. 3090
--0.9511 0.3090

--0.5878 0.8090
0.0300 t .0000

Thi rd term of expansion ] Fourt_.___h,ermo.._ f expansio.....___n

0,0
O.i
0.2

0.3
0.4

0.5
0.6
0,7

0.8
0.9

t.0

0.00130
0.8090
0.9511
0.3090

--0.5878

--1.0003
--0.5878

0.3090

0-9511
0.8090

O.O000

I.C000
O. 5878

--0.3090

---0-9511

--0.8090

0.0000
0.8090

0.9511
0.3090

--0.5878
--t .01300

0.0 0.0000
O. i 0.9511
0.2 0.5878

0 -3 --0.5878
0.4 -0.9511

0.5 0 -0000
0.6 0.9511
0.7 0.5878
0-8 --0.5878
0-9 --0,951t

i .0 O-0000

1.0000
0.3090

--0.8090
--0.8090

0.3090
t .0000
0.3090

--0.8090
--0.8090

0.3090
1.00(30
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h-A-A-It

0.00

0.05

0.t0
0.15

0 20

0.25

0.30
0.35

0.40
0.45

0.50

0.55
O. 60

0.65
0.70
0.75

0.80
0.85
0.90

0.95

1.00

0.00
0.05
0.10
0.15
0.20
0.25
(). 30

o.35
f_, 40

0.45

(_.50
O, 55

0.60

0.65
0.70

0.75
0.80

0.85
0.99

0.95

0.00

O. 05
O.lO
0.15
0.20
0.25

0.30

0.35
0 41_

0. 45

TABLE 12

Kinematic and force factors for a circular plate

,.,o(_) =,o(¢) o,(_) 6,(¢) I M_(F.) M,(_.) _(_) i _,(_) O,(¢) Q,_)
t

= 48 °

1.0O00
t.0000

t.0000
t. 0002

t.0(303
t. O0O5

t .(_7
1 ,O009

1.0010
1.0012

t .0012
t .00t2
1.0011

t. 00t t

1 ._6
1 .O000

0. 9992
O. 9982

0.9969
O. 9951
0.9932

0.0300

--0.0006
--0.0024

--0.0056
--0.0t00

--0.0156
--0.0225

--0.0306
--0.0400
--0 .O5O6

--0.0626
--0.0770

--0.0900
--0 .t 058
--0.t227

--0.t406
--0.1602
--0 .t810
--0 °2029

--0. 226t
--0.2504

0.O900

--0.0009

--0.00t6
--0.0024
--0.0030

--0.0034
--0.0035
--0.0034

--0.0030

--0.O021
--6.0009

0.0008
0 .(X)30

0.0058

0.0092
0.0t32

0.0t80
O. 0236

0.0300
0.037t
0.0453

0.00OO --0.O349

0.0250 --0.0343

0.0500 --0.0324
0.0749 --0.0293

0.0999 --0.0249
0.t249 --0.0t93
0.1500 --0-0t25
0 .t75t --0.0044

0.2002 0. 0050
0.2253 0.0t57

0.2504 0,0275

0.2754 0.0406
O. 3005 O. 055i
0.3257 0.0708
0.3509 O. 0877

O. 3760 O. 1058

0.40t2 0.t253
0. 4263 0- t 459
0.45t4 0.t680
0. 4764 O. t912

0.50t5 0.215t

: 47 °

0.9994

O. 9995

0.9996
O. 9998
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--0.0824 0.4008
--0.0837 0.4t00
--0.0843 0.4557

--O.0840 0.4857

--0.(_29 0.5120

m, (f) ,%(_)

0.9913 --0.0969
0.9947 --0.0948

O. 9992 --0.0922

t. 0027 --0.0895

1.0087 --0.0865
t .0t4t --0.0832

1.0t88 --0.0795

1.0259 --0.0755
t .0322 --0.07t3

t.0383 --0.0668
! .0448 --0.06t9
t 05t9 I--0.0567

t _0593 --0.0536

1.06_ --0.0453

Mj(_) I (J,(_,)

i

0.492t I--0. t6t4
0.4931 I --0.t850

0.4940 r -o.2o88

0.4952 I --0.Z330
0.4965 !--0-2572

0.4978 I --0._18

0.4993 , --0. _)69
0.5009 i --u. :_,izo
0.5028 I --O.3._T_
O. 5044 --o.383{d
0.5063 ' --0-41OO

0,5082 --u.a:_

0.5102 I --0-4_1
0.5t23 I --U-_i t

O:(_)

--0.o69O

--0.0776

--0.0869
--0.t008

--0.1033

--0.tto9
--0.tt8t

--0.t247

--0.t3o8
--0.t362
--0.1410

--0.t451

--0. t484
--0. t509

0.9703 --0.t209
0.9705 I--O.t20g

0.97t4 --0.t204
0.9729 --0.1t97

0,9753 --0,tt87
0.9775 --0.t175

0.9808 [--0.I159i
0.9845 I--0.It42
0.9888 --0.tt2t
0.9936 --0.1096

0.9989 --0.t070 _
1.005t --0.1040

t.0tt0 --0.1008
1.0178 --0.0973

t .0250 --0.0935

t.0325 --0.0894 i

1.0406 --0-0849
1.0489 --0.0801
1,0576 --0,0751

t.0663 --0`0697
t.0756 --0.0_0i

O. 4851

O. 4852
0.4854

0.4858

0.4863
0,4869
0.4877

0.4887
0.4898
0.4909
0.4923

0.4938
0.4955
0.4972
0.4990
0.50t0

0.50.31
0.5053
0.5076

0.5100
0.5125

o.o00o I 0.o00o
--O.02OO I-o.ott7
-0.044t I--0.0235
--0.0601 I--0.0350
--0.0886 I--0.0466
--0.1106 I--0.0580
--0.1335 P--0.0692

--0.t5t8 --0.0802
--0,1793 --0.0909

--0.2000 --0.10t4
--0.2259 --0.ttt5

--0.2468 --0 ,t213

--0.2728 --0.t307
--0.30t3 --0.1369

--0.3231 --0 .t480
--0.3473 --0 .t560

--0-374t --0.t633

--0.395t --0.1699

--0.4270 --0.t76i
--0.4547 --0.18i4

--0.4818 --0,186t

--0 .t689
--0- t527

--0.1352
--0.1164
--0.0964

--0.0748

--0.0522

¢=54"

0.9613
0.9616
0.9626

0.9643
0. 9666
0. 9696

0.973t
0.9774

0.9822

0. 9877
0.9938

t, 0005
t .0077
t .0t53
t .0237
t. 0324

t.0417
t .0515
t .0616
t .0720
t. 0829

--0.t378

--0 .t377
--0. t373

--0. t366
--0.1357
--0. t345

--0.1330

--0- t3t3
-0.1293

--0 A270

_0.t245
--0. t2t6

--0.1185
--0,1t51

--0.11t3
--0. t 074

--0 ,t03t
--0 `0986

--0.0036

--0.0829

0.48_
0.4807

0.4809
0.4813
0.4819
0.4827
0 4836

0.4846
0.4859
0.4872
0.4888
0.4904
O, 4923
0.4943

0.4965
0.4987

0.50tt
0.5036

05O63
0:5091

0.5t20

0,00OO I 0,00OO

--0-0200 I --0.0t32

--0.0424 --0.02fi5
--0.0602 --0.0396
--0-0852 --0.0527
--0 .II07 I --0.0656

--0.t284 --0.0784
--0.1520 I--0.0909

--0. t728 1-0.to34
-o.1942 ]-o.t154
-o.2t78 ] -o.t272
-o.2377 -o.t387

-0.2643 -o.i498

-o. 2826 -o. t 604

-o.3t24 -o.t706
-0.3393 -o.18o5

--0,3626 --0.t898
--0.3881 --0.t985
--0-4t48 --0.2066
--0.4390 --0.2t4t

--0.4603 --0.2208

o_[o_o_o_o_o_o_o7io3s°-1°-0.05 t.0002 0.0006 [--0.0077 0.0228 [--0.3085 I 0.95t5 --0.t544 [ 0.4756 --0-0202 i--0.0t49

0.t0 1.0008 0.0023 [ --0.0154 0.0475 J--0.3070 [ 0.9525 --0.tM0 ' 0.4759 --0-0404 --0.0299
0.t5 t.0017 0.0053 I--0.0230 0.07t4 '--0.3045] 0.9544 --0.t534 0.4763 --0.09O9 --0.0447

0.20 t.003t 0.0095 I--0.0305 0.0954 --0.3009 0.9570 --0.t525 0.4770--0.08t3 --0.0595
0.25 t,0048 0.0t48 ]--0-fl378 0.1t95--0.2964 0.9803 --0.15t3 0.4778 --0. t0t9 --0.074t

0.30 t.0(O8 0.02i5 I--0.0449 0.t437 I--0.29o71 0.9642 --0-t500 0.4788 --0.t227 --0.0887

0.35 t.0093 0.0292 ]--0.0519 0.1680 --O-_OI 0._9O --0-t483 0.4800 --0.t030
I
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k-A-A-A

O. 40

0.45

050
O. 55

0.60
0.65

0.70

0.75

0.80

0.85
0.90

0.95
t.00

0.00
0.05
0.t0
0. t5

O. 20

0.25

0.30
0.35

0.40
0.45

0.50

0.55
O. 60
O. 65

O. 70

O. 75
0.80
0.85
U.90

0.95
1.00

0.00

0.05

0.10
0 .t5

O. 2[)
0.25

0.30
0.35

0.40
O. 45

0.50

0.55
0.60

0.65

0.70

0.75
0.80
0.85

O. 90
0,95

t.00

0.00
0.05
0.10

0-15

0.20
O. 25

.o(_)

t .012t
t .0t5t
t .0t85

t.0223
t .0262

t .0304
t.0348

t. 0393
t .0441

t .0491

I. 054t
1.059t

1.0643

t .0000

t. 0002
t.0008

t .0019
1.0034

1.0053

t.0076
1.0t 03
1.0134

1.0t68
1.02O6
1.0247

t. 0292
t .0340
t .0390
1.0442
1.0497

1.0554

1 .O612
t .067t

1.0732

1,0000
1. ()O02
t. 0009

1.002t
1.0037

1.0058
1.0083
1.0tt3
1.0t47

1.0185

I. 0227
1.0273

I. 0323

1.0376

t .0428
1.0491

t.0E.52
1.06t7

1. O682
t .075t
t. 0820

1.0000

I, 0002
1.0010

1.0023
1.0041
1-0063

Vo(5) O_(U

0.0382 --0.0581
0.0t85 --0.0649

0.0600 --0.0703

0.0727 --0-0765

0.0868 --0.0816
0.t02t --0 ,O663

0.tt87 --0.0905
0.1367 ] --0.0941
0.t559 --0.0970

O, (_i) M_ (_)

0.t925 --0.2763

0.2173 --0.2676

0.2424 --0.2576
0.2675 --0.2467

0.293t --0.2346
0.3t91 --0.22t4

0.3452 --0.2069

0.37t8 --0.t9i2

0.3987 --0. t744
0.t765 --0.0994 0.426t --0. t563

0,t985 --0.t0t0 0.4539 --0.t370
0.22t9 --0.t0t9 _ 0.482t --0.tt63

0.2466 --0.10t9 0,5t08 --0.0943

¢=55 °

0.0000
--0.00O6
--0.0023

--0.0053

--0. 0094
--0.0t47
--0.02t2

--0.0289

--0.0378
--0.0480

--0.0593
--0.0720

--0.0859
--0.t0t0

--0.1t75
--0.1353

--0. t 544

--0.1749
--0. t 967

--0.2200
--0.2447

0.0000
--0.0985

--0.0170

--0.0255
--0.0339

--0.0420

--0.0.500
--0.0577

--0 .O654

--0.0725
--0.0795

--0.0860
--0,0920

--0.0977
--0.t029

--0.1075
--0.1tt5

--0.1t50

--0.tt7t
--0.1232

--0. t203

0.00¢0
0.0234

0.0470
0.0706

0.0942
0.1t8t

0.t420
0.t662
0.t905

0.2t5i
0.2407

0.2651
0.2904

0.3t62
0.3424

0.3690
0,3960

0.4234

0.45t3
0.4826

0.5087

--0.3420
--0,3415

--0. 3401

--0.3376
--0. 3344

--0. 3300

--0.3247
--0.3t83

--0.3tt0

--0.3026
--0.2933

--0.2827
--0. 27t3
--0.25_7
--0.2449
--0,2300

--0,2t39
--0.t965

--0. t 78t
--0.t,582

--0.1380

i

0.9744 --0.t464 0.48t4 --0.t655

0.0804 --0.t442 I 0.4828 --0.t868
0.9872 --0. t4t8 I 0.4846 --0.2000

0.9947 --0.1388 0.4855 --0.2309

1.0028 --0.1362 0.4885 --0.25_6
1.0it6 --0,1327 0.4907 --0.2767
t, 0208 --0.t292 0.493t --0.3003
t.0307 --0.t254 0.4957 --0.3245
t.0412 --0.t2t3 0.4984 --0.3492
t .052t --0.1169 [;.50t2 --0.3745
1.0639 --0.1123 (;.5042 --0.4_;3
t,0759 --0.t072 0.5074 --0.4270
1.O684 --0.t0t8 0.5t07 --0.4542

= 56 °

0.(_)()0
--o.0006
--0.O623
--0.0052
--0.0O93
-0.0145

-0.02t0
-0.0285
-0.0374
-0.0473

-0.0587

-0.071t
-O.O648
-0 4}998

-0-t102

-0-i338
-0 -t527
-0.1732

-0.1947

-0.2t79
-0. 2424

0.0000
-0. [)094

-0.0188

-0.028t
-0.0373
-0.0463
-0.0553
-0.O640
-0.0724

-(}.0806
-0.0884
-0.0959
-0.t030
-0.1097

-0.t159

-0.t215
-0.t268

-0.t314
-0.t352

-0.1385
-0-1409

0.0000 -0.37_i

O. 0232 -0.3760
0.0464 -0.3746
0.O696 -0.3724

0.0930 -0. 3692

0.1t62 -0.3652 I
O. 1403 -0 -3601 [
0.t642 -0.3542
0.t882 -0.3472
0.2t25 -0.3394
0,2372 -0.3306

O. 2622 -0.3207
0.2875 -0.3099
0.3131 i --0.2979

0.3392 -0.2849
O, 3658 -0, 2708

0-3928 j -0,2555
0.4204 I-0.2391

0.4482 -0.22t5
O. 4768 -0,2(;25

O. 5060 -0, t823

0.9397 --0.17t0

0.940i --0.t709
0.9412 -0.i705

0.9433 -0-t699
0,9461 -0.1691

0,9496 -0.1680

0.9539 -0.t667

0.9592 -0.1652
0.9651 -0.Ia34

0.9719 -0.1613
0.9794 -0.1590

0.9875 -0.1563

0.9965 -0.1535
t.0O6t -0.1504
i.0t65 -0.147t
t.0275 -0.t434

t.0392 -0.t395

t.05t6 -0.1353
t.0645 -0,t308

t.0780 -0.t26t
i.0922 -0.t210

-0.t873

-0.1872
-0.t869
-0.t863

-0.t855
-0.1845
-0.1833

-0,t8t8
-0. t800,
-0.17811
-0.t760
-0.t735
-0. t 709

-0. t 680
-0.t647
-0.t613
-0.1576

-0. t537
-I;.t494 t
-0.t449
-o. t400

Q*(1)

_=57 °

-0.0006 --0.0102 0.0228
-0.0022 --0, 0203 0.0457

-00051 I--0.0304 0.0686

-0.009t J-o.o4o4 0.09t7
-0.0t43 --0,0_12 O, t 189

0.9272
0,9276

0.9289

0.93tl
0.934i
0 9380

o:9428
O. 9484
0.9548
0.072t
O. 9702
O. 979t

O. 9889

t .0095
1.0t08

1• 0328
t. 0356
t .0592
t .0635
t.0884
t. 0942

--0.tl73
--0. t3t2
--0.1448

--0. t584

--0.t712
--0.1838

--0.t962

--0.208t
--0.2195

--0.2304
--0.2407

--0.2506
--0.2597

0.4698 0.0000 0.0000

0.4699 --0"0t91 --0.01_
0.4702 --0.0383 --O.f_21

0.4707 --0.0586 --0.0481

0.4714 --0.0770 --0.0641

0.4723 --0.0965 --0.0798
0.4732 --0.tt64 --0._955
0.4747 --0,t304 --0.1til

0.4762 --0. t566 --0.1265
0.4779 --0.t773 --0.14t8

0.4797 --0.t98t --0.t578
0.4818 -0.2197 --0.1714

0.484i -0,2414 --0.t858
0.4866 -0,_637 --0.2000

0.4892 -0.2865 --0.2138
0.4990 -0.3100 ; --0.2268
0.4950 -0.3339 I --0.2402

0.498t -0.3585 --0.2528
0.50i5 -0.3838 --0.2649
0.5050 -0.4tt0 --0.28t4
0.5087 -0.4366 --0.2876

(;.4636

0.463G

O. 4640
0.4646

0.4653
0.4663

0. 4675
0.4689

0.4705

0.4726
0.4743

0.4766

0.479t
0.4818

0.4847
0.4877
0.491t}
O. 4945

0.4981

0.5019
0.5059

0.O000 0.000O
-0.0t80 --0.0i74
-0.0359 --0,0347

-0.054t --0.0520
-0.0723 --0.O693

-o.0907 --0.0864
-0.1094 --0, i035

-0.t282 --0.t205
-().t475 --0.t376

-o.1670 --O. tMO

-0.1859 --0, t704

-0.2073 --0.t867
-o.2280 --0.2027

-0,24_4 --0.2i85

-0.27t3 --0.2340
-0.2938 --0.2492

-0.3170 --0.2640
-0.3408 --0.2784

!--0.3653 --0.2926

!--0.3906 --0.3O62
'--0.4155 --0.3t99

71o91o2o331571oo-0.4063 0.9t40 .0,2032 1.4568 -0.0t67 --0.0t86
-0.4050 0.9t54 .0-2029 ).4572 -0.0335 --0.0373

-0.4030 0.9177 -0.2024 ).4577 -0.0503 --0.0558
-0.4000 0.9209 .0.20t6 ).4_85 -0.0674 --0,0743

-0.3963 0.925t .0.2007 ).4596 -0.C845 --0.0928
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W..a

0.30
0.35

0.40

0.45
0.50

0.55

0.60
0.65

0.70
0.75

O. 80
0.85
0.90

0.95
t.00

0.00

0.05

0.10
0. t5

0.20

O. 25
0.30

0.35
0.40

0.45

0.50

0.55
0.60

0.65

0.7C
0.75

0.80
0.85
0.90
0.95

t.(X}

0.00
0.05
0.10

0.t5
0.20
0.25
0.30

0.35
0.40

0.45
0.50

0.55
0.60

O. 65
0.70

0.75

0.80
0.85

0.90

0.95
t.00

t .0O90

t .0122
t .Or 61

t. 02o2
t .0247
t,0297

t .0352
i .(_10
t .0473

t .['5_ 8
I. 06()7
1.0677

1.0757

t .0829
1.0908

t .0000
1. 0003
t. 00t0
t .0025
1 .f_,44 l
t .0¢68 '
I .0098
t.0t33
I .o173

t. 02t8
t .0268
i.03_2

t. 0382
I. 0446

t .05t4

t. 0585
t .0661
1.0741

t. 0823
t .o9n8
t.0996 i

t.0000
t. ('if}3

t.00tt
t.0026

t .0050
1.0073
1.0107

t.0t43

t.0186
t. 0234

t .0288
1.0355

t.04tt
1.048t
I. 0554
1.0632

t.0715
!. (_801
t.08_3
t.0°86
1. t083

vo (4) 6, (D

--0.02o6 --0.0599

--0.(_282 --0.0694

--0.03(8 --0.0786
--0.0467 --0. f'877

--0.0578 --0.(_9(14
--0.071)2 --0.1046

--0.0837 --0.11211
--0.0986 --0.t 2t)4
--0.t147 --0.127(i

--0. t_,22 --0.1343
--0. i 509 --0.t405
--0.t71t --0.146(_
--0.1926 --0.1510

--0.2154 --0.1555

--0.2399 --0.t590

O. 0000 O. 0000 [
--0.0()06 --0.0110 [

--0.0022 --0.02t9
--0.0a50 --0.0328
--0.0_90 --0.0435 ]
--0.0t60 --0.0542
--(L0203 --0.OG48

--0.0277 --0.11751
--0.0362 --n.0852
--0.0460 --0.095t
--0.0570 --0. t047

--0.0691 --0,t14t
--0.082_ --0.1265
--0.0971 --0.t318
--0.1130 --0 .t398
--0.t303 --0.t476

--0.1488 --0.t549
--0.1687 --0-t617
--0.t90t --0.t879
--0.2t27 --0.1734

--0.2369 --0.t784

o.oooo I o.oooo
-o,ooo5 i-o.ott7
--0.0022 --0.0235 I
-0.0050 -0.0351 I
--0.0088 --0.0466
--0.0t40 --0.0582

--0.0200 --0.0695
--0,0272 I--0.0807

--0.0356 I--0.0917 [
--0.0452 J --0.1024 l

--(L 0560 I--0.1129
--0.00_0 I --0.t232

--0.(_I 1 I--0.1331

--0.0955 I --0.1427
--0.1112 I--0.1519
--0.1282 I--0.1608

--0. 1466 I --0.169t
--0. t662 I --0. t769
--0.1873 ] --0. t843
--0.2097 --0.1910
--0,2336 --0.1972

m, (D6, (_) m, (0

I
0.t782 --0.3916

O. 1619 i --0.3860
0,1fl:_7 --0.379_
0.2037 --0.3722

0.2242 --0.3640
0.2_89 --0.3548
0.2840 I --0.3446

0.3095 --0.3334

0.33.55 --0.2211

0.3620 _--0.3u79
O. 3889 --0. 2926

0.4t64 --0.2782
0.4444 --0.2515

O. 4731 --0. 2436
0.5023 --0.2245

¢p= 58 °

omc_o -o.4_ ]
0.0225 --0.4L_) [

0.0449 --0.4_69 ]

0.0676 --0.4349 [
0.0903 --0.4_23 [
0.1t3t --0.4287
0.t361 --0.4245
0.t504 --0.4194
0.t829 --0.4134

O. 2067 --0.4066
O. 2308 --0.3989

O. 2554 --0.3904
0.2802 --0.3810

0,3055 --0,3786 i

0,3314 --0.3593 I
0.3577 --0.3470

0.3620 --0.3336

0,4120 --0.3t92
0.4400 --0.3037
0.4687 --0.2870
0.4986 --0.2691 1

¢p = 59"

0.0000--0.4695

0.022i --0.4692
0.0441 --0.4681

0.0664 --0.4664
O. 0887 --0.4639

0.1112 --0.4607

O. 1338 --0.4568

0.1,=67 --0.4522
0.1799 --0.4467
0.2034 --0.4406

0.2272 --0.4336

0.2514 --0.4258

0.2761 --0.4t72
0.3011 --0.4076
0.3268 --0.3973
0.3528 --0.3860

0.3796 --0.3738
0.4ff89 --0.36O3
O. 4349 --0. 3460

0,4636 --0.3306
0.4929 --0.3140

_= 60 °

0.0000 --0.5000 1

0.02t6 --0.4957
0.0432 --0.4988

0.0650 --0.4973
0.0870 --0.4950

O. 93()2

0.9352
0.943t
O. 9509

0.9590

0,9(;93
0.9798

O. 9911
t .(_J34

t. 0tC4
1. 0303

1 .(_50
t. 0606

1.0770
1. 0941

O. 8988
O. 8993
0.90)7

O. 9032
0.9(167
0.9tlt

0.9t65
0.9229

0. 9302
0.9386

0.9t78
O. 9581

O. 9693

0.9814
0.9945
t.0085
t .0235
t.0392

t.056t
1. 0737

1.0922

O. 8829
0.8834

0.8850
0.8874

O. 89t2
0.8958

0.9015
0.9083

0.9t61
O. 9248

O. 9346
O. 9455

O. 9573
0.9702

0.9840
O. 9989
t .0147
t .0317
1.0495

1.0683
1.0881

I

--0. t996

--0.1982

--0.19(i5
--0.1948

--0.1927

--o.i9o5I
--0. I _80
--0.t 853

--0.1823
--0.t790

--0.t756
--0.t7t9

--0.1_79

--0 .t637
--0.159t

M, rE)

0.4609
O. 4024
0.4641
0.406t

0.4683

0,4706
0.4733

0.4762
0.4792

0.4826
0.4863

0.4898
0.49'_8

0.4980

O. 5023

Qx(_)

--0.t0t9
--0.1 t 95

--0 .t376
--0.t559
--0. t 746

--0, t 939
--0.2t35

--0.2337
--0.2546

--0.2761
--0.2982

--0.3210
--0.3447

--0.3690
--0.3942

Q, (_)

--0.tt13
--0.t296
--0.t478
--0.t6,_

--0.1838
--0.20t6
--0.2191

--0.2365
--0.2538

--0.27O7

--0.2873
--0.3O37
--0.3197
--0.3353

--0.3506

--0.2t92 J
--0.2t9t

--0.2t88
--0.2t83

--0.2t77
--0.2ti18 I
--0.2t_8 I
-o.2t45 I
-o.21_o I
--0.2t13
--0.2094
--0.2074 1
--0.205t
--0.2025
--0.1998

--0.1968
--0.t936
--0.1902

-o.t8_ l
--0.18_5
--0.1783

0.4494
0.4495
0.4499
0.4505
0.45t4

0.4545

0.4538
0.45_
0.4573

0.4594

0.46t7
0.4643

0.4670

0.470t
0.4734
0.4769

O. 4807
O. 4847

0.4889
0.4934

0.4981

0.0000 i 0.00¢0

--0.0t53 t--0.0t97
--0.0309 --0.0395

--(I.0463 I--0.0592
--0.062t --0.0789

--0.0778 --0.0_86
--0,0939 1--0.1t80
--0. tt03 [--0.t375
--0.1270 --0.1570
--0. 144t l--0. t763

--0.t6t5 --0.1955
--0.t795 --0.2t47

--0.t979 --0.2337
--0.2170 --0.2525

--0.2355 --0.27t2

--0.2568 --0.2898

--0._778 --0.3082
--0A996 --0.3262

--0.32_! --0.3440

--0.3455 --0.3617
--0.3695 --0.3790

--0. 2347

--O.2346

--0. 2344
--0. 2339

--0.2333

--0.2325
--0.2316

--0.2304
--0,2290
--0. 2276
,--0.2258
--0.2240 i
--0.2219

--0.2t95 I
--0.2t70 I
--0.2143 1
--0.2tl3
--0.2082

--0.2048
--0.2012
--0. t973

0.4414 I 0.0000
0.44t5 [--0.0140
0.44t9 --0.0280

0.4426 --0.0421
0.4435 --0,0564

0.4446 --0.0709

0.4461 --0.0856
0.4477 --0.1006

0.4497 --0.tl58
0.4519 --0.t3t5

0.4543 --0.t476

0.4571 --0 .t64t
0,4600 I--0.18t3

0.4633 --0.t989
0.4667 --0.2172
0.4704 --0.2361
0.4744 --0.2_58
0.4787 --0.2763

0.4832 --0.2975
0.4879 --0.3t97

0.4929 --0.3427

0.0000
--0.0207

--0.04t4
--0.0622

--0.0829

--0.1035
--0. t24t
--0. t448
--0.1654

--0.1859
--0.2063

--0.2268
--0. 247 [
--0.2673
--0. 2875
--0.3075
--0.3275

--0.3472
--0.3668
--0.3863

--0.4056

o.1, 0.05 1.0003 --0.0(05 --0.0125 0.8664 --o 24.q.q I 0.4331 --0.0t25 I--0.0t08
0.t0 t.00t2 --0.0022, --0.0250 0.8680 --0.24.q7 ! 0.4325 --0.0250 ]--0.02t6
0.15 1.0028 --0.0049 --0.0374 I 0.8708 --D.24Y3 I 0.4342 --0.0377 [--0.0324
0,20 1.0050 --0.0(',87 --0.0408 I 0.6745 --o.2488 I 0.4352 --0.0,_05 |--0,0433

! I !
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IAAA

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.09
0.05
0.10
0.15
0,20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0,65
0.70
0.75
0.80
0.8'5
0.90
0.95
t.00

0.09

0.05

0.10
0.15

0.20
0.25

0.30
O. 35

0.40
0.45

0.50

0.55

0.80
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.09

0.09

0.05
0. I0

0.15
0.20

0.25

.o(_) +o(0

1.0978 --fl.013f
1.0tt2 --0.019(
t .0152 --0,026;
t .0198 --0.035(

1.0250 --0.0444

1,0307 --0.055(

1,037t --t"f.o667
1.0440 --0.0797
t ,0514 --0.0939

1.0593 --0.1093
1,0678 --0.1261
1.0767 --0.1441
t .(_61 --0,1635
1.0959 --0.1842
1.1061 --0.2064
1.tt67 --0.23OO

t. 0000 0.09OO
1.0C_3 --0.0905
t.09t3 --0.0921
!. 0030 --0.0048
t.0053 --0.0085
t.0083 --0.0132
t.0119 --0.0192
1.0181 -41.0262
1.0210 --0.0343
1.0265 i--0.0435
1. 0327 --0,0539
1.0395 --0.0054
1. 0468 -0.0781

1.0547 --0.0921
1.0633 --0.1073
1.0722 -0.1236 i
1.0819 -0.1414

1.0919 -0.1605
t .t026 -0. 1809
1.tt36 -0.2027
t.1252 -0.2260

1.0090 0.0909
1.0903 -0.0095
1.0913 -0.0920
1.0030 -0.0046
1.0053 -0.9083
t.0983 -0.0t29
1.01t9 -0.0187
1.0161 -0.0256
t.02tt -0.0336
t .0266 -0.0426
1.0327 -0.0527
!. 0395 -0.0640
t .0468 -0.0765
! .0549 -0.0902
1.06L_ -0.1050
1.0725 -0.1212
1.082.2 -0. 1385 i

t.0924 -0. t572

I. 1031 --0, t774
1.1 t43 --0 • t987
t.1261 --0.22t6

o,(0

--0.0920
--0.074t
--0.0862
--0.0979
--0.1096
--0.1210
--0. t322
--0.1430

--0. t 535
--0, t633

--0.1736
--0. t832
--0.1921
--0.2006

--0.2(_6
--0.216t

O.Ofh30
--0.0t32
--0,0265
.--0.0396
--0.0528
--0.0658
--0.0788
-0,0915
-0.1042
--0.1167
-0.1290
--0.1410
-0. t 529
-0.1644
-0.1757
-0. t865

-0.1972
-0.2073
-0.2t70
-0.2260
-0.2349

0.0090
-0.0132
-0.0265

-0.0396

-0.0527
-0.0658

-0- 0788
-0.09t6
-0. I0_'_
-0.tt69
-0.1363
-0.1415
-0.1535 I
-0.1653
-0. t 768
-0.1881
-0. t989

-0.2004
-0.2t95
-0.2293
-0.2387

e, ft.) hi, (6)

O. 1090 --0.492
0.1312 --0.4886
O. 1537 --0.4831
O. 1765 ---0.4791
O. 1998 --0.4741

0.2232 --0.4671
0.2471 --0.460_
0.2768 --0.453(
0.2962 --0. _4_

0.3215 --0.435(
0.3476 --0.4237
0.374t --0.413_
0.40t2 --0.40t. =
0.4290 --0.3884

0.4578 --0.374_
0.4870 --0,3591

q=-- 61"

0.0909 --0.5299

0.0218 --0. 5296
0.0425 --0.5288

O. O638 --0.5274
O. 0852 --0, 5255
O. t069 --0.5230
0.1287 --0,5199
0.1508 -0.5163
0.1732 -0.5120
0.1959 -0.b071

0.2170 -0.50t5
0.2425 -0.4054!
0. 2665 -0.4885

0.2910 -0.4808

0.316t -0.4725
0.3418 -0.4634
0.3681 .-0.4535
0.3950 =O.4425
0.4227 --0.4308

0.4511 -0.4182

0, 4805 -0.4045

= 62 °

0.0900 1 --0.5592
0.0207 I --0.5590
0.0415 1-0.5583

0.0924 I -O.bbTl

.0834 -0.5555

D.t045 -0.5_3
.1259 -0.5507

_. 1476 -0.5475

).1695 I-o.5438).1918 -0.5396
).2144 -0.5348
).2376 -0.5295
).2612 -0.5235 :
). 2854 -0.5t69 i

).3103 -0.5096
).3354 -0.5017

)-36t5 I -0.493t

).588t -0.4635
).4155 -0.4732
}.4439 -0.4621

).4729 _).4500

_=63"

b.0909 I-o. s_78 !
_.0202 I--0.5876 IL0405 I--0.5870
_.0609 1 0.5861
_.o8t4 IO.5847

hI0201 0.5830

0.8793 --0.2481
0.8853 --0.2472

0.8924 --0.2462

O. 6005 --0.244.¢
0.9097 --0.243_
0.9200 --0.242(
0.9314 --0.2404
0.9498 --0.298_
0.9573 --0.236_
0.97t9 --0.2341
0.9876 --0.2317
1.0943 --0.2289
1.0222 --0.2261
1.0410 --0.2230
t.06t1 --0 2198
t.0821 --0_2162

0.8480 --0.2649
0.8486 --0.2648
0.8502 --0.2M6
O. 8531 --0.2M3
O. 8570 --.(1.2638
O. 8620 --0.2632
O. 8882 --0.2625
0.8755 --0.26t6
0.8840 --0.2604

0.8936 --0.2593
0.9043 --0.2579
0.9t6t --0.2565
0.9292 -0.2548!
0.9433 i-0.2529
0.9586 --0.2509

0.9749 --0.2488
0.9926 --0°2463

t,0112 -0.2439
1,03tl I--0.2411
1.052t -0.2382
1.0742 -0.2350

0.8290 I--0.2796
0.8296 --0.2795
0.8313 --0.2794
0.8342 I --0.279i
0.8383 . -0. 2787
0.8435 .-0.2782
0.8499 - -0.2775

0.8574 . -0.2768
O. 8662 --0.2758
0.8760 ---0.2748
[).8871 --0.2736
_.8994 I--0.2724

_.9t2_ I--0.2709

•927 5 -0. 2693
3.9434 -0.2676
3.960_ -0.2657
3. 9785 -0.2637
). 9981 -0. 2615
[ .018(4 -0.2590
L.0406 -0.2565
L.o_7 i-o_8

M, (_)

0.4364

0.4379
0.4396

0.4416
O,4439
0.4465

0.4494

O. 4525
O. 4558

0.4595
0.4634

0.4676
O. 4721
O. 4768

• 0.4818
0.487t

0.4240
0.4241

0. 4246

O. 4253
0.4262
0.4275

0.4290
O. 4309
0.4330

0.4354
O.438O

0.4410 i
0.4442

O,4477

0,4516
0.4557

0.4600

0. 4a47
O. 4697
O. 4749

O. 4805

0.4145

0.4146

0.4151
0.4158

0.4168
0.4181
0,4197

0.4216
0.4238

0.4262
O. 42.90

0.4_20

0.4355

0.439t
0.4430
0.44?3

0.4518

0.4567
0.4618
0.4672

O. 4729

oooIoor +o+1++l. 0004 --0.0005 - .0.0147 ). 8096 - -0.2939 ).4046
1.0914 --0.0020 .0.0294 ),8114 -0.2937 ).4051

L.0933 [ --0.0045 .0.0440 ).8143 -0.2935 ).4058
[.0959 I--0.0081 0.0586 ).8185 I--0.2931 ).4069

[.0092 j -0.0126 0.0732 ).8238 I--0.2927 ).4082
I

r Q,(O Q,(_)

--0. O634 --0.054 !

--0.0766 --0.0649
--0.0901 --0.0757

--0.1040 --O.O865
--0.tl82 --0.0974
--0.t328 --0. t(_2

--0,1479 --0. 1190
--0.1636 --0.1298

--0.t798 --0.t405
--0.1966 --0.t513
--0.2t42 --0.t62i

--0.2324 --0. t729
--0.25t4 --0.1835

--U. ZT|_',I i -0.11}41
--0.292o I -0.2047

--u._l_m i --0.2153

0.0_00 0.0000
--0,0109 --0.0225
-0.0220 -0._49
--0.0331 --0.0674
--0.0443 --0.0899
--0.0558 --0. t 124

--0.0675 --0. t350
--0.0794 --0.1576

--0.O917 --0.t802
--0.1043 --0.2028
--0.tt74 --0.22M
--0.1309 --0.2482
--0,1450 --0.2708

--0. 1597 I --0. 2937

--0. t750 i --0.3165

--0.t930 --0.3393
--0.2077 --0.3621
--0. 2262 --0.3851
--_). 2435 --0.4('81
-0.2617 --0.4:'/}9
--0.2829 --0.4539

0.0009 0.0909
-0.0094 --0.0232
-0.0i88 --0.0464
-0.0283 --0.0695
-0.0380 --0.0928
-0.0477 --0. 1161

-0.0578 --0.1394
-0.0682 --0. t 629
-0.0788 --().1862

-0.C899 --0.2098
-0. t013 --0.2334
-0.1133 --0.2571
-0. i257 --0.2809
-0.1387 --0.3o47

-0.1524 --0.3287
I --0.1667 --0.3528

-0. t817 l --0.377fl
I--0.t976 --0.4013
I--0.2t63 --0.4256
i--0.2318 --0.4_01

--0.2503 --0.4748

I 0.00_ 0.0090
I--0-0977 --0.0228
I--0.0156 --0.0475
1_0.0234 -0.0714
I--0.0315 --0.0953
I--0.0396 --0. t192
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I-A-A-A

0.30
0.35
0.40
0.45
0.50
0.55
O.eO
0.65
0.70
0.75
0.80
0.85
0.90
0.95
t.00

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.00
0.05
0,10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.50
0.05
0.70
0.75
0.80
0.85
0.90
0.95
1.00

.. g)

I. 0132
1.0179
1.0234
I. 0295
1.0364
I. 0440
1.0323
1,0812
I .O709
1.08q0
1.0919
I. 1035
1.1156
1.1284
t. 14t7

1.0000
1.0304
1.0015
1.0035
1.0031
1,0096
1.0138
1.0188
1.0245
1.0310
1.0383
1.0463
1.0549
1.0543
1 .O745
1.0653
1.0969
I, 1091
1,1220
t. 1355
t. t498

1.0000
1,0004
1.0016
1.0036
1.0064
1.0100
1.0144
1.0_.9_
1.0256
1.0324
1.0340
1.0483
1.0575
1.0874
t .O78O
1.0895
i. t018
t. t 145
1.t282
t. 1425
1. i576

e.(t) I el(e.) e.(l_:

--0.0183 1 -0.0877 O. 1229
--0.0250 I --0.1021 O.1441
--0.0328 I --0.t162 0,t656
---0.0;15I -0.1305 O.1874
--0.0515 I--0. i414 0.2006
--0.0325 I--0. i583 0.2324
--0.0"/47 I--0.1719 0.2..555
--0.0880 ] --0. i853 0.2793
--0.1072 I --0.1987 0.3036
---0.1185 I--0.2117 0.3287
--0.1355 I--0.2244 0.3543
--0.t538 l --0.2368 0.3807
-0. t735 i --0.2489 0.4078
--0. t 945 I --0. 2607 O.4359
--0,2t69 I--0.272t 0.4647

-0.0000 --0.0000
--0.0305 --0.0154
--0.00t9 --0.0508
--0.0044 -0.0461
-0.0379 -0.06t5
-0.0123 --0.0766
-0.0t78 --0.0D19
-0.0243 --0.1071
-0.0319 --0.1221
-0.0405 --0.1371
-0.0501 --o 1519
-0.081o --o:1667
-0.0729 -o. 1812
--0.0859 --0.t956
--o.too1 --0.2099
--0.1156 -0.2239
-0.1323 -0.2379
--0.1502 -0.2513
--0.1892 --0.2647
--0.1900 --0.2776
--0.2119 --0.2903

0.0000
0.0197
0.0395
O. 0593
O.0783
0.0994
o.tt98 i
o. 1405
0.1815
0.1828
0.2046
0.2268
0.2496
0.2728
0.2968
0.3213
O.3485
0.3725
0.3994
0.4271
0.4556

0.0000 0.0000 0.0000
-0.0005 -0.0161 -0.0190
-0.0319 -0.0322 --0.0382
-0.0043 --0.0481 --0.0376
--0.0O77 -0.0659 -0.O770
--0.0t20 --0.08t8 -0.0974
--0. 0174 - 0.0861 --O.litk5
--0.0237 -0.i12i -0.1366
--0.0310 -0-t279 ---0.1571
--0.0394 --*0.1436 -0.1780
--0.0488 .--0.t593 -0.2022
-0.0593 --0.1748 --0.2209
-0.0709 -0.1903 --0,2433
-0.0837 --0.2056 --0.2660
-0.0976 --0.2209 --0.2895
--0.1t26 --0.2359 --0.3134
-0.1289 --0.2508 --0.3383
--0. t465 --0-2655 --0.3639
--0.1653 --0.2800 --0.3895
.--0,1855 --0.2943 --0.417_
-0.2071 -0.3083 --U.4458

,'Wl(t_)

-0.5808
--0.5783
-0.5754
--0.5720
--O.5684
--0,5643
--0.5597
--0.5548
-0.5495
-0.5437
-0.5376
-0.5310
-0.5239
-0.5165
--0.5085

¢p _ 64"

--0.6t57
-0.6t56
--0.6145
--0.8t43
-0.6133
-0.6tt9
--0.6103
--0.6083
-0.6060
-0.6034
-0.5008
-0.5974
--0.5937
---0.5899
--0.5858
-0.5811
--0.5763
--0.5712
-0.5656
--0.5596
-0.5533

-0.2588
-0.258e
-0.2578
-0.2595
-0.2546
-0.2523
--0.2493
--0.2458
--0.24i7
-0.2371
--0.23t7
--0.2259
--0.2193
-0.2122
-0.2043
-0. t956
-0.t865
--0,t764
--0.t854
--0.1537
-0.14i0

M, (0

0.8304
0.8582
0.8471
0.8573
0.8887
O,8813
o .8952
0.9103
0.9266
0.9442
0.968t
0.9882
1.0047
t. 0273
t.0513

0.7880
0.7886
0.7904
0.7934
0,7977

i 0.8032
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M, (_)

O.4096
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0.4228
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0.4332
0.4383
0.4438
0.4496
O.4557

0.3830
0,383i
0.3836
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0.3888
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0.3905
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0.4229
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I (L(() Q.(()

I --0.04_t) --0.1432
I --0.0567 --0.1672
I--0.0657 --0.1924

--0.0751 -0,2156
I --0.0849 --0.2402
I --0.0931 -0.2646
I --0. i039 --0.2894
I -0.t!71 --0.3143
r -0.129t -0.3392
I --0.14t7 --0.3044
I -0.1550 -0. 3898
I-0.1891 -0,4i54
I-0.1839 -0.4412
i -0, 1997 -0.4672

-0,2163 -0.4933

0.0000 O.OOeO
-0.0060 -0.0242
--0.012t -0.0485
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--0,0248 --0.0972
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--0.0378 --0.1862
-0.0447 --0.1709
--0.0520 I --0.1957
--0.0596 --0.2203
-0.0677 -0.2459
--0.078t j--0.2709
--o, o$51I--o.2965
--o.o_6 I-0.3222
--0.t047 l--0.348t
-0.1153 l--0.37_3
-0.1248 I-0.4007
-0.1389 [--0. 4275
--0.15t9 [--O.4544
--0.1657 1-04818
.-0,1802I-0.5093

0.0000 0.0030
-0.OO43 -0.O245
-0.0067 -0.0493
--0.0t32 --0.0749
-0.0177 ---0.0996
-0.0_21 -0.1262
--0.0257 -0.1495
-0.0327 --0.t736
--0.0358 -0.1990
-0.04t5 -0.2244
-0.0478 -0.2_]0
---0.0544 --0.2759
•-0.06i4 --0.3021
--0.0890 -0.3285
-0.0"/72 -0.3552
--0.08.59 -0.3822
--0.0954 -0.4096
-0,1056 --0.4372
.-0.1165 --0.4653
--0.1281 --0.4939
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SUBJECT INDEX

Assumption of equality to zero of

transverse elongations. 3

Beam, infinite, 59, 81

--, finite, 81, 92

---, long, 133

---, rigid, 65, 81, 89, 133, 228

--, short, 133

Bending, axisymmetrical, 162

--, cylindrical, 129

--, of a beam, 3

--, of a thick plate, 294, 303

--, of a narrow plate, 3

Bessel functions, 166

Betti theorem, 106

Bimoment, 278

Bottom of a cylindrical reservoir, 208

Boundary condition, geometrical, 277

-----, kinematic, 216

, mixed, 216, 277

Bubnov-galerkin method, 138, 152, 290

Buckling, flexural, 260

--, torsional, 260

Characteristic numbers, 21"/

--of elastic, 9, 26, 49, 50

--of a beam, elastic, 49, 75

--of a foundation, generalized, 96

-of a plate, generalized, 96

--of a single-layer foundation, 96

Components of displacement vector, 265

-- of intensity vector, 265

-- of stress tensor, 265

Concentrated reactions, 71, "/4

Contact plane, 284, 319

Deflection, generalized, 48, 98, 107

--of a beam, 64

Deformation of a shell, 186, 189, 190

----with bending, 187, 190

Differential operators, biharmonic, 2'/1

----, harmonic, 2"/1

----, polyharmonic, 2'/1

Discrete-continuous system, 15

Displacement, 2, 30, 265

--, dynamic. 226

--, generalized, 2, 3, 30, 48

-% longitudinal, 2

-- of a shell, 187

-----, normal, 185

Elastic foundation, double-layer, 27

--layer of finite thickness, 284

----of uniform thickness, 2'/7

----of variable thickness, 277

-- line, 226

Equation, biharmonic, 190

---, characteristic, of a homogeneous

boundary value problem, 216

--, geometrical, of a shell, 186

--of a spherical shell, 188

--of a beam bending, 47

-- of bending of a circular plate, 161

---- of thin plates, 95, 97,

Equilibrium conditions, 5, 31, 138

----, generalized, 48, 99, 103

----, variational, 142

Factors, kinematic, 55, 58

Factors, static, 55, 58

Fictitious reactions, 140, 144

Flexibility index of beam, 79,

---- of plate, 146

Force, critical, 255, 256, 258, 261

, , Euler, 258

-- external, 5

-- fictitious, 104, 199

-- generalized, 8, 27

, compressive, 256

, internal, 10'/

. shearing, 8. 23. 49. 60, 66, 97, 107

-- inertia, 228, 232, 267

--, internal, 5

---, surface, I0

Forces and moments, annular (peripheral_

162

• generalized. 53

----in a shell, 186

--, internal normal, 5
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II-A-A-A

---, -- shearing, 5

Foundation, elastic double-layer, 25, 89

, multilayer, 322

--, -- single-layer, 95

---,--three-dimensional, 30

--modulus, 15,64

--with two characteristics, 34

Fourier coefficients, 309

Frequency of free vibrations of a plate,

241, 244

--of natural vibrations of a beam. 109

--of vibrations, 216, 220, 231

Function, hyperbolic-trigonometric, 172

-- of bending of a beam on an elastic

foundation, 50

Functions, eigen, 217, 220

--, initial, 290

-- of beam bending, 52

---- vibrations, 109

-- of natural vibrations, 216

-- of transverse distribution of the

displacements, 2, 4, 15

-% trigonometric, 112

Fundamental system of functiom, 110

Gauss curvature, 184

Gorbunov-Posadov method, 73, 81

Hankel functions, 166

--_ modified, 194

Hypothesis, foundation modulus, 15

Hypothesis, Kirchoff-Love, 283

Influence coefficient, 53

--functions, 54, 58

Initial parameters, 53, 55, 57, 75, 123

Integral-differential form of operators,

272, 295

Laplace operator, 95

Laplacian, 36, 162

Length, characteristic, 75

Levy problem, 98

Load, 56

---, antisymmetrical, 3, 68, 113, 123, 155

Loading, antisymmetrical, 68

---, symmetrical, 65

Maclaurin series, 268

Matrix of direct transformation, 54, 275

-% transformation, 54

---, unitary, 53

Method, mixed, 266

-- of Cauchy-Krylor, 320

--of displacements, 2, 211, 265

-- of forces, 212

--of foundation modulus, 64, 207

-- of fundamental functions, 116

--of initial functions, 267

----parameters. 52, 75, 119

-- of krylov, 7, 255

--of strains, 211

-- of stresses, 266

-- of trigonometric series, 320

--, symbolic, 268

Model of elastic foundation, multilayer, 13

-------, plane, generalized, 10, 13

------with two characteristics, 13, 34

.... foundation moduli, 15

--of Winkler-l_uchs, 15

Modulus of elasticity, 2

Moment, bending, 60. 97, 137

--, generalized, 187

-- of inertia, 258, 260

--, torsional(torque), 97

Momentary impulse, 222, 224, 231

Navier theorem, 98

Number of degrees of freedom, 5, 31

Orthogonality of eigenfunctions, 217

Plate, cizcular, 161, 163, 168, 181, 182

---, finite, 178

---, infinite, 175

-% multilayer, 313, 321

---, multispan, 316

-% rectangular, 117, 256, 260, 298, 301

--. rigid, 169

---, thick, 157

-- undergoing plane stress, 301

Poisson ratio, 2

Problem, axisymmetrical, 175

--, temperature, 40

---, three-dimensional, 265

---, two-dimensional, 1, 290

---, Vlasov, 98

Principle of virtual displacements, 8
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b A-A-A

Properties of a foundation, 15, 34

Punch, annular, 173

---, circular, 169

---, symmetrical, 69

Reaction, uniform, 67, 74

Rectangular strip, 306

Reduced half-length of beam, 80

Reduction of three-dimensional to two-

dimensional problem, 277

-- of two-dimensional to one-dimen-

sional problem, 98, 99

Rigidity of a cylindrical plate, 138

Shell, cylindrical, 212, 212

---, spherical shallow, 184

Slope, 199

Solution, Filon, 310, 313, 316

"-, Filonenko-Borodich, 15

---, Ribiere, 299, 313, 316

"--, Sadovskii, 69

---, Wieghardt, 15

State of plane stress of a shell, 1

-of strain, 5, 9

--of stress, 9

---, plane, 49, 293

Stieljes integral, 7, 33

Strain, bending, 186

--, compression, 187

---, plane, 9

---, temperature, 40

---, transverse, 5

---, shearing, 1, 186

Stresses, 31

---, normal, 1, 5, 30

---. shearing, 5, 30, 107

Stresses, thermal (temperature), 41

Theory of plates,

approximate, 280

----, bimoment, 278. 283

----. exact, 280

----, moment, 283

Thomas function, 204

Torsion of a narrow plate, 129

Transformation, direct, 275

--, inverse, 275

Two-dimensional problem of the theory of

elasticity, 5

Vibration, simple harmonic, 215

Vibrations, antisymmetrical, 248, 253

--, free, 240

-- of abeam, 213, 215, 229

, forced, 225

-- of an elastic beam, 229

-- of a foundation, 213

-- of a plate, 232

-- of a rigid beam. 227

-- symmetrical, 247

Vertical displacements of the foundation

surface, 74

Vietes theorem, 165

Wieghardt solution, 15

Winkler hypothesis, 15

Winkler-Zimmerman hypothesis, 97

-- - -- model, 13

Work forces, 5, 32

--of internal forces, 100, 142

--done by external load, 100, 142

----stresses, 37, 102, 141

--, virtual, 5, 7, 107
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